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1. Introduction 

 Since its first introduction by Evensen (1994), the 
ensemble Kalman filter (EnKF) technique for data as-
similation has received much attention. Rather than 
solving the equation for the time evolution of the prob-
ability density function of model state, the EnKF meth-
ods apply the Monte Carlo method to estimate the fore-
cast error statistics. A large ensemble of model states 
are integrated forward in time using the dynamic equa-
tions, the moments of the probability density function 
are then calculated from this ensemble for different 
times (Evensen 2003). 

Recently, EnKF was applied to the assimilation of 
simulated Doppler radar data for modeled convective 
storms (Snyder and Zhang 2003; Zhang et al. 2004; 
Tong and Xue 2005, Xue et al. 2006, Gao and Xue 
2007) with great successes. But the application to real 
radar data was not very elegant (Dowell et al. 2004; 
Tong and Xue 2007). One of the advantages of EnKF 
method over variational method is that it can dynami-
cally evolve the background error covariances through-
out the assimilation cycles, thereby providing valuable 
uncertainty information on both analysis and forecast. 
Recently, Caya et al. (2005) showed that with simulated 
radar data, the EnKF method can outperform a similarly 
configured 4DVAR scheme after the first few assimila-
tion cycles.  When combined with an existing ensemble 
forecast system (operational ensemble forecasting sys-
tem is usually run at a lower resolution compared to the 
operational deterministic forecast), the EnKF method 
can provide quality analyses with a relatively small 
incremental cost compared to a 4DVAR system that 
requires repeated integrations of the forward prediction 
model and its adjoint.  

Same as 4DVAR, the overall computational cost of 
ensemble-based assimilation methods is significant 
because of the need for running an ensemble of forecast 
and analysis of nontrivial sizes (usually a few tens to a 
few hundreds), especially when high-density data are 
involved and when the ensemble of all forecasts is run 
at high resolutions. One of the major sources of errors 
with the EnKF is the sampling error associated with the 
limited ensemble size. A larger ensemble helps improve 
the background error covariance estimation, but incurs 
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high computational cost. To reduce the computational 
cost and sampling errors, Gao and Xue (2007) proposed 
a dual-resolution (DR) hybrid ensemble DA strategy 
that is in a way analogous to the incremental 4DVAR 
approach. With this strategy, an ensemble of forecasts 
is run at a lower resolution which provides the back-
ground error covariance estimation for both an ensem-
ble of LR analyses and a single HR analysis. On the 
meso- and convective scales, especially for intense 
buoyant convection that is both highly nonhydrostatic 
and intermittent, the WSR-88D Doppler Radar is the 
only operational instrument capable of providing high 
spatial and temporal resolution observations, but only 
radial velocity and reflectivity. The EnKF methods can 
provide the cross-covariances among the state vari-
ables, which can be used to retrieve the variables not 
directly observed by the radar.  

Another big challenge is that the WSR-88D radar 
network provides a huge amount of data every several 
minutes across the country. To successfully assimilate 
these data into numerical models, data thinning can not 
be avoided. In this work, we study the impact of radar 
data densities when assimilating them using the ensem-
ble Kalman filter method through OSSEs with the Ad-
vanced Regional Prediction System (ARPS). The radar 
data thinning problem is investigated for the cases 
where the data density is higher than, lower than or 
similar to model resolution. The problem of data fre-
quency will be examined in the future.  

The rest of this paper is organized as follows. In 
section 2, we describe the design of the OSS (Observ-
ing System Simulation) experiments. Some preliminary 
experimental results are presented in section 3. Sum-
mary and conclusions are given in section 4. 

 
2. Assimilation System  

The key to the ensemble-based filter algorithms is 
the estimation of the background error covariance and 
the calculation of the Kalman gain matrix using a fore-
cast ensemble. It was first proposed by Evensen (1994). 
Since then, there have been a number of further devel-
opments with the algorithm to ensure that the technique 
works when the ensemble size is relatively small (Bur-
gers et al. 1998; Houtekamer and Mitchell 1998). 
Whitaker and Hamill (2002) proposed an ensemble 
square-root filter algorithm (EnSRF) that does not re-
quire the perturbation of observations; the assumption 
that the observational errors are uncorrelated enables the 

 1



processing of the observations serially, one at a time,  
leading to a considerable simplification of the analysis 
scheme.  

As with all Kalman filter algorithms, the EnSRF al-
gorithm proceeds in two steps, an analysis step and a 
forecast or propagation step. In the analysis step, the 
following equations are used to update the state vectors 
for the ensemble mean and individual ensemble mem-
bers:  

( ) ,o fa b H⎡= + −⎣x x K y x ⎤⎦  (3) 

( )(a a f f
n β α= + − −x x I KH x x ),n  (4) 

Here, x is the state vector we seek to analyze or esti-
mate, and superscripts a and b refer to the analysis 
(posteriori estimate) and background forecast (prior 
estimate), respectively, and yo is the observation vector, 
following the standard notation of Ide et al (1997). H is 
the forward observation operator that maps the model 
state to the observations, and H is the linearized version 
of H. n represents the nth ensemble member and the 
overbar denotes the ensemble mean. β  is a covariance 
inflation factor that is usually slightly larger than 1. The 
α  is given in the EnSRF algorithm by (Whitaker and 
Hamill 2002)  

1
1

1 ( )b Tα −
−

⎡= + +⎢⎣
R HP H R ⎤

⎥⎦
. (5) 

This procedure produces an ensemble of analyses, as 
given by Eq. (4). R and P are, respectively, the covari-
ance matrices for the observation and background er-
rors. In the forecast step, forecasts are made from each 
ensemble analysis and are used as the prior estimate or 
background in the next analysis-forecast cycle; the algo-
rithm continues as the analysis cycles are repeated.  
 
3. Experiment Design and Preliminary Results 

 
In this study, we test the impact of data density to 

the EnSRF data assimilation using simulated data from 
a classic May 20, 1977 Del City, Oklahoma supercell 
storm (Ray et al. 1981). Such simulation experiments 
are commonly referred to as Observing System Simula-
tion Experiments (OSSE, see, e.g., Lord et al. 1997). 
The prediction model, the ARPS, is used in a 3D cloud 
model mode and the prognostic variables include three 
velocity components u, v, w, potential temperature θ, 
pressure p, and six categories of water substances, i.e., 
water vapor specific humidity qv, and mixing ratios for 
cloud water qc, rainwater qr, cloud ice qi, snow qs and 
hail qh.  
The truth simulation or nature run is created using the 1 
km horizontal resolution, all the model parameter set-
tings and configurations are same as Gao and Xue 
(2007). As in Snyder and Zhang (2003) and Tong and 
Xue (2005), the simulated radial velocity, Vr, are as-

sumed to be available on the grid points. Random errors 
drawn from a normal distribution with zero mean and a 
standard deviation of 1 ms-1 are added to the simulated 
data. Since Vr is sampled directly from velocity fields, 
the effect of hydrometeor sedimentation is not involved. 
The ground-based radar is located at the southwest cor-
ner of the computational domain, i.e., at the origin of x-
y coordinate. Different from most existing 4DVAR and 
EnKF studies, the prediction model is not assumed per-
fect, the truth simulation is done on 1 km grid, while all 
EnKF experiments are done on 4 km model grid, so 
model error caused by different model resolution is 
quite large.  

As an initial effort, we perform three sets of ex-
periments, LR_1km, LR_4km and LR_8km using simu-
lated data every 1 km, 4 km and 8 km respectively in 
the horizontal. But vertically the simulated data are 
available every 500 m for all experiments. Also, the 
data are assumed to be available where reflectivity is 
greater than 0 dBZ. We start the initial ensemble analy-
sis at 30 min of the model integration time when the 
storm cell reaches peak intensity.  

Figures 1(d, e, f) and 2(d, e, f) show the analyzed 
fields at the surface and at the 3.5 km level respectively 
for SR_1km with high density data (1km) being used. it 
can be seen from Fig. 1d that after 2 analysis cycles, 
only velocity structure around the storm is somewhat 
captured while other perturbation fields, such as the 
perturbation potential temperature and reflectivity, are 
very weak. The updraft is established pretty well at the 
3.5 km level (Fig. 2d) but its structure is smooth (Fig. 
2a). After six more analysis cycles, at t = 70 minutes, 
the low-level flows immediately underneath the storm 
cells become more stronger (Fig. 1e vs Fig. 1b) al-
though the outflow to the southwest of the storms is 
generally too weak, and directions of wind vectors 
more tend to west. Similarly, the extent of the cold pool 
is too small on the southwest side. However, the differ-
ence from the truth is that the left moving storm looks 
much stronger than the right mover. At the later times, 
the low-level reflectivity starts to gain a hook echo pat-
tern (Figs. 1c and 1f). Because the EnSRF experiment 
is performed with 4km model grid, the overall fields are 
much smoother and the cold pool is too warm even with 
this high density data.  

When the horizontal data density is reduced by a 
factor of 4 in LR_4km, same resolution as EnSRF 
analysis, the analyzed low-level cold pool, gust front, 
and precipitation pattern at the end of the assimilation 
window become a little more smooth from those of the 
truth (Fig. 1i); the reflectivity core becomes broader 
and the hook echo is less well defined. The mid-level 
updrafts appear only a bit weak, two mesocyclones still 
look very clear (Figs. 1g-i vs Figs. 1a-b). When we fur-
ther reduce the data density to 8 km resolution, the ana-
lyzed two storms are still there, but much smoother and 

 2



weaker (Fig 1j-l and Fig 2j-l). The more thinner of ra-
dar data, the more weaker of updraft. However, in the 
above three experiments, the maximum of reflectivity 
has not changed too much, and the development of 
mesocyclone indicated in Fig 2 in all cases remain very 
clear. Further reduce the data density caused the miss-
ing of storms in the analysis. The apparently larger sen-
sitivity of the w analysis to the data density appears to 
be related to the accuracy of horizontal divergence 
analysis when vr resolution is significantly reduced. 
Overall, the horizontal data density of 8 km appears too 
low for our analysis that uses a 4 km model grid. A 4 
km horizontal data resolution is a reasonable compro-
mise between accuracy and cost. 
 
4. Summary and discussion 

To successfully assimilate radar data into numeri-
cal models, data thinning can not be avoided. In this 
work, we study the impact of radar data density when 
assimilating them using the ensemble Kalman filter 
method through OSSEs with the Advanced Regional 
Prediction System (ARPS). Since the truth run is from 1 
km grid, and EnSRF experiments are performed in 4 
km grid, the results are generally smoother than the 
truth simulation because of model errors. However, the 
evolution of storm still can be reproduced, especially 
the low-level cold pool, precipitation (indicated by re-
flectivity). It is concluded that for storm scale data as-
similation, the data density should be at least similar to 
model resolution. Using the data in much lower density 
than model resolution may significantly undermine the 
strength and morphology of the storm. Further experi-
ments will be done with different thinning strategies 
and different model resolutions and data frequency in 
the near future.  
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Fig. 1. Horizontal winds (vectors; ms-1), perturbation potential temperature (contours at 1 K intervals) and 
simulated reflectivity (shaded contours, in dBZ) at 250 m AGL, for the truth simulation (1km) (a)-(c); low-
resolution ensemble mean analyses for LR_1km (d)-(f), LR_4km (g)-(i), and SR_8km (j)-(l). The times shown 
are 40, 70, and 100 min. Wind vectors are shown every 4 km. 
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Fig. 2. Same as Fig. 1, but for perturbation horizontal winds from the environment and the vertical velocity w 
fields at 3.5 km AGL. The w contour interval is 4 ms-1 and positive contours are solid and negative contours 
are dashed. 
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