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A hybrid 3DVAR-EnKF data assimilation algorithm is developed based on 3DVAR and ensemble Kalman filter (EnKF) programs
within the Advanced Regional Prediction System (ARPS).The hybrid algorithm uses the extended alpha control variable approach
to combine the static and ensemble-derived flow-dependent forecast error covariances.The hybrid variational analysis is performed
using an equal weighting of static and flow-dependent error covariance as derived from ensemble forecasts. The method is first
applied to the assimilation of simulated radar data for a supercell storm. Results obtained using 3DVAR (with static covariance
entirely), hybrid 3DVAR-EnKF, and the EnKF are compared. When data from a single radar are used, the EnKF method provides
the best results for themodel dynamic variables, while the hybridmethod provides the best results for hydrometeor related variables
in termof rms errors. Although storm structures can be established reasonablywell using 3DVAR, the rms errors are generallyworse
than seen from the other two methods. With two radars, the results from 3DVAR are closer to those from EnKF. Our tests indicate
that the hybrid scheme can reduce the storm spin-up time because it fits the observations, especially the reflectivity observations,
better than the EnKF and the 3DVAR at the beginning of the assimilation cycles.

1. Introduction

The effective assimilation of radar data into a numerical
weather prediction (NWP) model requires advanced data
assimilation (DA) techniques, such as variational and ensem-
ble Kalman filter methods. A three-dimensional variational
(3DVAR) system, which includes a mass continuity equation
and other appropriate model equations as weak constraints,
has been developed in recent years [1–5]. This system
was designed with special considerations for assimilating
radar data into a convective-scale nonhydrostatic model—
the Advanced Regional Prediction System (ARPS)—and has
been used to provide initial conditions for numerous real-
time convective-scale data forecasts. These forecasts have
been produced since 2008 using grid spacing that varied from
4 to 1 km for domains covering the entire continental United
States as part of the NOAA Hazardous Weather Testbed
(HWT) Spring Experiments [6, 7]. For the HWT Spring
Experiments, Level-II radial velocity and reflectivity data

from over 120 operational Weather Surveillance Radar-1988
Doppler (WSR-88D) radars were analyzed using the 3DVAR
system, and ensemble forecasts were produced by adding
additional initial condition perturbations to this 3DVAR
analysis. The ARPS 3DVAR system has also been used in a
large number of real case studies with encouraging results
[2, 3, 8, 9]. Barker et al. [10] and Xiao et al. [11] also applied
the 3DVARmethod to assimilate Doppler radar observations
into the Weather Research and Forecasting (WRF) model
[12].Themajor advantage of the 3DVARmethod is its compu-
tational efficiency and the ease by which weak constraints can
be included. However, the truly flow-dependent background
error covariances were not included in either ARPS 3DVAR
or WRF 3DVAR systems at that time.

Compared to 3DVAR, the more advanced 4DVAR tech-
nique incorporates the full prediction model into the assim-
ilation system and implicitly includes the effects of flow-
dependent error covariances through the use of both the
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forward and backward models. In recent years, the 4DVAR
technique has helped improve global forecasts at several
operational NWP centers, including the European Centre for
Medium-Range Weather Forecasts, Meteo-France, Meteoro-
logical Service of Canada, and Japan Meteorological Agency
(JMA) [13]. Research has also focused on storm-scale radar
data assimilation using the 4DVAR method by Sun and
Crook [14–16]. In these studies, both radial velocity and
reflectivity data were assimilated into a convective cloud-
resolving model. Despite some encouraging results, 4DVAR
for convective-scale applications has been limited to the
use of simple microphysics in almost all cases because
the strong nonlinearity within sophisticated microphysics
schemes makes the minimization process difficult. Honda
and Koizumi [17] report difficulties, including slow conver-
gence, when including complex ice microphysics within the
inner loop of the 4DVAR systemwhenusing a nonhydrostatic
model at JMA.

The ensemble Kalman filter (EnKF) is an advanced data
assimilation method that shares many of the advantages of
4DVAR. It has gained considerable popularity in recent years
in meteorology and oceanography since first proposed by
Evensen [18]. For convective storms, very encouraging results
have been obtained in recent studies using the ensemble
Kalman filter method in analyzing wind, temperature, mois-
ture fields, and evenmicrophysics variables from radar obser-
vations of convective storms [19–26]. One of the advantages
of the EnKF method over variational methods is that it can
explicitly evolve and carry the background error covariances
through the assimilation cycles. However, one of the major
sources of error with ensemble-based DA is covariance
matrix rank deficiency or sampling error as a result of a
relatively small ensemble size [27, 28]. This problem can be
more severe with storm-scale data assimilation because the
degrees of freedom of the system are typically even larger
relative to the practical ensemble size.The commonly utilized
remedy to the rank deficiency problem is to apply covariance
localization by a Schur product as introduced byHoutekamer
and Mitchell [27]. This solution, however, prevents the use of
distant correlations that are physically meaningful. Further,
the modification to the spatial covariances within a cut-off
radius by a Schur product also introduces imbalances, and
the effect is more substantial when the localization is more
restrictive [28]. This problem may be remedied or reduced
when using a hybrid 3DVAR and EnKF method.

As discussed above, the 3DVAR method is attractive for
convective scale assimilation because of its computational
efficiency and the ease by which weak constraints can be
added. However, the major shortcoming is that the back-
ground error covariances are stationary and isotropic and
error covariances related to the model equations cannot
be simply defined. In addition, for convective-scale radar
data assimilation, only observations of radial velocity and
reflectivity are typically measured, while all other state vari-
ables have to be “retrieved”; in this case, the flow-dependent
background error covariances, such as that derived from a
forecast ensemble, are especially important. Oneway to blend
the advanced features of both variational and EnKF methods
and to overcome their respective shortcomings is to employ

a hybrid ensemble 3DVAR framework. In such a framework,
a combination of the static background error covariance and
the flow-dependent error covariance derived from an ensem-
ble is used within the variational analysis. For large-scale data
assimilation, such an approach was initially demonstrated
for a quasigeostrophic system by Hamill and Snyder [29]
and further developed by Lorenc [30], Buehner [31], and
Zupanski [32] with different formulations. Another relatively
new approach estimates the four-dimensional background-
error covariances from the ensemble members to produce a
4D analysis with the variational data assimilation approach.
In this method, the tangent-linear or adjoint versions of
the forecast model are no longer needed. This approach
was called the En-4DVar approach [33–35] but was recently
renamed as 4DEnVar [36].

Wang et al. [37] showed that the formulations proposed
by Hamill and Snyder [29], Lorenc [30], and Buehner [31],
though different in implementation and computational cost,
are mathematically equivalent. Barker et al. [38], Li et al.
[39], and Zhang et al. [40] recently reported the capability of
the WRF hybrid system for mesoscale applications. Further
studies have demonstrated the potential advantages of the
hybrid method over both the pure variational and pure
ensemble methods for mesoscale and global applications,
especially for small ensemble size [41–44]. However, the
application of hybrid methods to convective scale data
assimilation has so far been limited. The purpose of this
paper is to demonstrate the potential usefulness of the hybrid
EnKF-3DVARmethod for convective scale data assimilation,
especially when assimilating radar data.

The rest of this paper is organized as follows. In Section 2,
we introduce the hybrid EnKF-3DVAR system developed in
this study. Section 3 describes the DA experiment design.
Experiment results and quantitative performance are
assessed in Section 4. We conclude in Section 5 with a sum-
mary and outlook for future work.

2. The Hybrid EnKF-3DVAR Scheme

In the implementation of the hybrid method for convective
scale, the ensemble covariance is incorporated in the varia-
tional framework using the extended control variablemethod
[30, 31, 37]. A convenient approach, initially suggested by
Buehner [31], is to combine the ensemble-derived and static
covariancematrices through the augmentation of state vector,
from k to (k, w) within the 3DVAR cost function, which can
be written as

𝐽 =
1

2
k𝑇k +
1

2
w𝑇w + 1
2
[𝐻 (x𝑏 + Δx) − y𝑜]

𝑇

× R−1 [𝐻 (x𝑏 + Δx) − y𝑜] + 𝐽
𝑐
,

(1)

where

Δx = Δx
1
+ Δx
2
= 𝛽
1
B1/2k + 𝛽

2
P1/2w (2)

is the analysis increment of state vector x, B is the static
3DVAR background error covariance matrix, and P is the
covariance matrix derived from an ensemble of forecasts.The
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control variable k is defined in association with B, and w
is the augmented control vector associated with P. The size
of k is the number of analysis variables multiplied by their
dimension, and the size of w is the ensemble size multiplied
by the dimension of variables. By using control variables
k and w, instead of Δx

1
and Δx

2
in (2), the minimization

procedure is preconditioned by B1/2 and P1/2, respectively.
This technique was first proposed in the context of data
assimilation by Derber and Rosati [45]. The definition of
(B)1/2 is the same as Gao et al. [1]. If no localization is applied
to the ensemble covariance, P1/2 is simply a rectangular
matrix whose columns are the ensemble perturbation vectors
divided by √𝑁 − 1, where𝑁 is the ensemble size. The local-
ization of the ensemble covariance in a variational system
with preconditioning is discussed in Lorenc [30], Buehner
[31], and Wang et al. [37]. The procedure and cost of doing
so were also discussed in these papers. For computational
efficiency, we also use the recursive filter for covariance
localization, as suggested in Wang et al. [41].

In (2), there are two factors 𝛽
1
and 𝛽

2
that define the

weights placed on the static background error covariance and
the ensemble covariance. To conserve the total background-
error variance, 𝛽

1
and 𝛽

2
are constrained by

𝛽
2

1
+ 𝛽
2

2
= 1. (3)

A similar constraint was applied in Hamill and Snyder [29].
This approach for combining two covariancematrices to form
a hybrid covariance provides flexibility since it allows for
different relative contributions from two covariancematrices.
When 𝛽

1
= 1, the analysis is back to a 3DVAR analysis

scheme, when 𝛽
2
= 1, the analysis is mathematically equiv-

alent to a EnKF scheme, and in between, we have a hybrid
scheme that incorporates a mixture of both static and flow-
dependent error covariances. When 𝛽

2
= 1, the scheme is

essentially a variational formulation of an ensemble-based
analysis scheme, and it can be called 3DEnVAR. Though the
dimension of the control variables is increased, the form of
the background term of the cost function remains unchanged
from that of 3DVAR, so that codes from an existing 3DVAR
system can readily be utilized [30].

In the current study, the hybrid system will assimilate
both radar reflectivity and radial velocity data. Within
this system, flow-dependent background-error covariances,
in particular cross covariances between microphysical and
dynamic variables, will be derived and utilized. The single-
resolution version of the EnKF system of Gao and Xue [46]
is used for updating the ensemble perturbations in the data
assimilation cycles. In Gao and Xue [46], an efficient dual-
resolution (DR) data assimilation algorithm was developed
based on the ensemble square root Kalman filter method and
tested using simulated radar radial velocity data for a super-
cell storm. Within the algorithm, radar observations were
assimilated on both high-resolution and lower-resolution
grids using ensemble Kalman filter algorithms and the flow-
dependent background error covariance estimated from the
lower resolution ensemble. In that paper, the DRmethod was
compared to a standard full-resolution ensemble square root
Kalman filter method which is used in this study.

Different from other hybrid systems [40, 41], for this
hybrid method, an extra model integration for the length of
the analysis cycle is needed to produce a control forecast and
analysis cycle. The EnKF analyses are performed to update
analysis perturbations for each ensemble member. Then, the
cost function (1) is minimized to obtain optimal analyses of
control vectors k and w, and the optimal analysis increment,
Δx, is derived from (2). The ensemble mean analysis is
replaced with the hybrid EnKF-3DVAR analysis. Finally, the
initial conditions for the ensemble and one control forecast
are obtained. The above steps are repeated for each data
assimilation cycle (Figure 1).

3. Model and Experimental Design

3.1. PredictionModel andTruth Simulation forOSSEs. We test
our hybrid EnKF-3DVAR algorithm and compare its results
with those of 3DVAR and EnKF schemes, using simulated
data from a classic supercell storm of May 20, 1977, near Del
City, Oklahoma [47]. The ARPS prediction model is used
in a 3D cloud model mode, and the prognostic variables
include three velocity components 𝑢, V, and 𝑤, perturbation
potential temperature 𝜃󸀠, pressure 𝑝, and six categories of
water substances, that is, water vapor specific humidity 𝑞V,
and mixing ratios for cloud water 𝑞

𝑐
, rainwater 𝑞

𝑟
, cloud

ice 𝑞
𝑖
, snow 𝑞

𝑠
, and hail 𝑞

ℎ
. The microphysical processes are

parameterized using the single-moment, three-category ice
scheme of Ying Lin et al. [48]. More details on the model can
be found in Xue et al. [49, 50].

For our experiments, the model domain is 57 × 57 ×
16 km3. The horizontal grid spacing is 1 km, and the mean
vertical grid spacing is 500m. The truth simulation run
is initialized from a modified real sounding plus a 4K
ellipsoidal thermal bubble centered at 𝑥 = 48, 𝑦 = 16,
and 𝑧 = 1.5 km, with radii of 10 km in 𝑥 and 𝑦 and 1.5 km
in the 𝑧 direction. Open conditions are used at the lateral
boundaries. The length of simulation is 2 hours. A constant
wind of 𝑢 = 3ms−1 and V = 14ms−1 is subtracted from the
observed sounding to keep the primary storm cell near the
center of model grid. The evolution of the simulated storms
is similar to those documented in Xue et al. [50]. During the
truth simulation, the initial convective cell strengthens over
the first 30min. The strength of the cell then decreases over
the next 30min or so, which is associated with the splitting
of the cell at around 55min. The right moving (relative to
the storm motion vector which is towards north-northeast)
cell tends to dominate the system, and its updraft reaches
a peak value of over 40ms−1 at 90min. The initial cloud
starts to form at about 10min, and rainwater forms at about
15min. Ice phase fields appear at about 20min.A similar truth
simulation was also used in Gao et al. [51], Tong and Xue [21],
and Gao and Xue [46].

3.2. Simulation of Radar Observations. The simulated radial
velocity observations are assumed to be available on the grid
points. The simulated radial velocity, V

𝑟
, is calculated from

V
𝑟
= 𝑢 sin𝜙 cos 𝜇 + V cos𝜙 cos 𝜇 + 𝑤 sin 𝜇, (4)
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Figure 1: Illustration of cycle used in a hybrid EnKF-3DVAR analysis scheme.

where 𝜇 is the elevation angle 𝜙 is the azimuth angle of radar
beams, and 𝑢, V, and w are the model-simulated velocities
interpolated to the scalar points of the staggered model grid.
Random errors drawn from a normal distribution with zero
mean and a standard deviation of 1ms−1 are added to the
simulated data. Since V

𝑟
is sampled directly from the model

velocity fields, hydrometeor sedimentation is not involved.
The ground-based radar is located at the southwest corner
of the computational domain, that is, at the origin of the
𝑥-𝑦 coordinates. The simulated reflectivity observations are
calculated based on Smith et al. [52] and Ferrier [53]. For
reflectivity, random errors drawn from a normal distribution
with zero mean and a standard deviation of 3 dBZ are added
to the simulated data. The radial velocity data are assimilated
and are only available where the truth reflectivity is greater
than zero in the analysis domain.We also use only the data at
every other grid point from the 1 km truth simulation grid in
horizontal, so that the total data used are one-fourth of total
model grid points.

3.3. Design of Assimilation Experiments. We start the initial
ensemble forecast at 20min of the model integration time
when the storm cell is well developed. To initialize the
ensemble members, random noise is first added to the ini-
tially horizontally homogeneous first guess defined using the
environmental sounding.A 2Dfive-point smoother is applied
to the resultant fields, similar to a method used by Zupanski
et al. [54]. The random noise is sampled from Gaussian
distributions with zero mean and standard deviations of
5ms−1 for 𝑢, V, and 𝑤 and 3K for potential temperature.
These perturbation variances are somewhat larger than those
used in Tong and Xue [21], but the standard deviation of
the final perturbations is not necessarily larger because of
the smoothing. Other variables, including the microphysical
variables, are not perturbed at the initial time.The radial and
reflectivity observations are calculated and assimilated using
a 5min cycle in all three data assimilation schemes. The first
analysis is performed at 20min, and 20 ensemble members
are used. A cut-off radius of 8 km is used in most of our
experiments.

We perform two set of experiments. The first group of
experiments is performed to compare the performance of
three different schemes when observations from a single
Doppler radar are used. The second group of experiments
will be performed when observations from two Doppler
radars are used. For comparison purposes, all three methods
(3DVAR, EnKF, and Hybrid EnKF-3DVAR) are performed
with 16 data assimilation cycles where each cycle has a 5min
analysis-prediction interval. The total assimilation period is
75min.

4. Results

4.1. Single Observation Experiment. Figure 2 provides anal-
ysis results of a single observation with three model vari-
ables, showing that ensemble information can provide flow-
dependent estimates of the background-error covariance and
that both the EnKF and hybrid 3DVAR-EnKF methods can
utilize such information to provide flow-dependent analysis
increments. Because mass continuity equation is used as
a weak constraint in 3DVAR [1], the 3DVAR method can
also provide a kind of flow-dependent anisotropic non-
Gaussian type covariance structure for both 𝑢 component
and 𝑤 component (Figures 2(a) and 2(b)). However, the
3DVAR cannot provide increments for potential temperature
(Figure 2(d)), though updated potential temperature can be
obtained through a cycled 3DVAR analysis (built up by
integration of a convective NWPmodel, ARPS in this study).
The EnKF provides a flow-dependent covariance structure
(Figures 2(b), 2(e), and 2(h)), and the hybrid 3DVAR-EnKF
provides a covariance structure in between the other two
structures. In addition, both EnKF and hybrid 3DVAR-EnKF
can provide increments for unobserved variables, such as
potential temperature which is not directly related to radial
velocity (Figures 2(h) and 2(i)). Because the mass continuity
equation is used as a weak constraint in 3DVAR, this actually
provides a physical constraint for three components of wind
field. Similar to Buehner [31] and to take advantage of both
3DVAR and EnKF methods, 50/50 weightings are chosen in
the cost function.
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Figure 2: Wind vectors: 𝑢-component increment by using (a) 3DVAR, (b) EnKF, and (c) hybrid 3DVAR-EnKF, 𝑤-component increment by
using (d) 3DVAR, (e) EnKF, and (f) hybrid 3DVAR-EnKF, and potential temperature increment by using (g) 3DVAR, (h) EnKF, and (i) hybrid
3DVAR-EnKF by assimilating a single radial velocity at the black dot.

4.2. Experiments with Single Radar. As stated above, the first
group of experiments is performed with radial velocity and
reflectivity data from a single radar. Figure 3 shows the final
assimilation results after 16 assimilation cycles with 5min
prediction-analysis intervals. The low-level flow, reflectivity

patterns, and the strength of the cold pool from both EnKF
and hybrid EnKF-3DVAR agree very well with the simulated
truth (Figure 3(a)) and are better than the result using 3DVAR
(Figure 3(b)), although this 3DVAR can also establish the
storm structures reasonablywell.Themost obvious difference
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Figure 3: Horizontal winds (vectors; ms−1), perturbation potential temperature (contours at 1-K intervals), and simulated reflectivity (shaded
contours; dBZ) at 250mAGL for (a) the truth simulation; (b) the 3DVAR analysis; (c) the EnKF analysis; and (d) the hybrid EnKF-3DVAR
analysis for the single radar experiment. The time shown is at 100min (the end of data assimilation cycles). Wind vectors are shown every
2 km.

is the reflectivity field in the center ofmodel domain.The area
of reflectivity values greater than 55 dBZ is over extended in
a peanut-shaped region for 3DVAR. The spread of potential
temperature is little bit far to the south-southwest direction
in the southwest corner (Figure 3(b)). But the strength of the
cold pool in 3DVAR, as indicated by minimum perturbation
potential of −7.30∘, is closer to the truth simulation (−7.28∘)
than seen in either EnKF or the hybrid EnKF-3DVAR.

The rms errors of the analyzed fields with data from a
single radar are shown in Figure 4. The rms error calculation
is limited to the regions where the truth reflectivity exceeds
10 dBZ. Figure 4 shows that the rms errors formodel variables
𝑢, V,𝑤, 𝜃, and 𝑞V and reflectivity𝑍 (derived from the hydrom-
eteor mixing ratios) generally decrease with the cycles in
all three experiments. The errors for 3DVAR decrease more
slowly and remain at a higher level at the end of assimilation
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Figure 4: The rms errors of the analysis and forecast for the 3DVAR, (red) EnKF, (green) hybrid EnKF-3DVAR, (blue) methods averaged
over points at which the reflectivity is greater than 10 dBZ for (a) 𝑢-wind component, (b) V-wind component, (c) vertical wind speed, (d)
potential temperature, (e) water vapor mixing ratio, and (f) reflectivity.

cycles than those for the ensemble based methods for most
of model variables. For example, the rms error of 𝑤 is close
to 3ms−1 at 100min for 3DVAR method, while that in EnKF
and hybrid EnKF-3DVAR is close to 1.3ms−1. The rms errors
of 𝑞V for 3DVAR is 0.4 g/kg, and that in ∘EnKF and hybrid
EnKF-3DVAR is below 0.2 k/kg. While these differences are
significant, the error levels late in the assimilation period for
EnKF and hybrid EnKF-3DVAR are unrealistically low due
to the perfect model assumption. For real data cases where
model error exists, the analysis errors are likely to be much

larger (see, for example, Dowell et al. [22, 23]). For systems
containing discrete intense updrafts, the rms error tends
to exaggerate errors because of small spatial displacement
and/or structure discrepancies, such as those seen in Figure 4.
So the results for 3DVARmay still be reasonable. It should be
noted that for most of model variables, the performance of
EnKF and hybrid methods is very close to each other, with
EnKF a little bit better. Interestingly, the differences among
the rms errors for 𝑍 in different experiments are smallest
(Figure 4(f)). The rms error of 𝑍 is decreased to about
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Figure 5: The same as Figure 3 but for the experiment with two radars.

5 dBZ in all three experiments. The variation of rms errors
is volatile for 3DVAR, especially near the very beginning of
the assimilation. The method can decrease the errors from
about 40 dBZ to 10 dBZ in two data assimilation cycles, but
the errors quickly increase to above 20 dBZ after the 5 min
model integration step. The rms errors for the EnKF method
decrease more smoothly throughout the data assimilation
cycles because of its statistical nature. Perhaps the advantage
of hybrid method is most obvious for reflectivity, as it fits
the observed reflectivity field more closely than the other two

methods. Though the evolution of rms errors is also volatile
for the first 10 minutes, it quickly settles down, and its rms
errors are the lowest among all three methods.

4.3. Experiments with Two Radars. The second group of
experiments is performedwith radar data from two simulated
Doppler radars. Figure 5 shows the final assimilation results
after 16 assimilation cycles. As expected, the low-level flow,
reflectivity patterns, and the strength of the cold pool look
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Figure 6: The same as Figure 4 but for the experiment with two radars.

much better (Figure 5(b)) for 3DVAR (Figure 5(b)), espe-
cially for the reflectivity field. The pattern for potential tem-
perature is improved when compared with the single radar
experiment (Figure 3(b)) but is still not as good as the truth
simulation (Figure 5(a)) and that for EnKF (Figure 5(c)) and
the hybrid EnKF-3DVAR (Figure 5(d)). So with more data
used, the results for 3DVAR are improved. Again, the most
obvious improvement is for the reflectivity field in the center
of model domain.The area with reflectivity values larger than
55 dBZ is more similar to the shape of truth simulation. The
storm structure for all three methods is well established by

the end of data assimilation at 100min of reference model
assimilation time.The variation of rms errors for the analyzed
fields using data from two radars is shown in Figure 6. It is not
surprising that the rms errors for model 𝑢 and V are much
improved for 3DVAR. For the first several data assimilation
cycles, the errors for 3DVAR are the lowest. With more
cycles, the errors for the hybrid method become the lowest
among threemethods. Formost of variables (except potential
temperature), the errors for 3DVAR decrease more quickly
than seen in the other two methods for the first several data
assimilation cycles but then remain at higher levels for later
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DA cycles. The variation of rms errors is less volatile when
data from two radars are used compared to when data from
a single radar is used for 3DVAR.The other features are quite
similar to the cases when data from a single radar are used.

5. Summary and Future Work

A hybrid EnKF-3DVAR data assimilation system has been
developed based on existing 3DVAR and ensemble Kalman
filter (EnKF) programs within the ARPS model. The algo-
rithm uses the extended control variable approach to com-
bine the static and ensemble-derived flow-dependent forecast
error covariances [30, 31, 37].

The method is applied to the assimilation of radar data
from a simulated supercell storm. Two groups of experiments
are performed using different amounts of radar data. Results
obtained using 3DVAR (with static covariances entirely),
hybrid EnKF-3DVAR, and EnKF are compared. When data
from a single radar are used, results show that after 16 cycles
of data assimilation, the EnKF and hybrid schemes provide
similar results. When evaluated in term of rms errors, the
EnKF provides slightly better results for the model dynamic
variables, while the hybrid provides slightly better results
for the hydrometeor related variables. Though the storm
structures can be established reasonably well using 3DVAR,
its rms errors are generally worse than those from the other
two methods. When data from two radars are used, the rms
errors for the hybrid method are smallest for most of the
model variables. With two radars, the results from 3DVAR
are close to those fromEnKF.These tests also indicate that the
hybrid scheme can reduce the storm spin-up time because it
fits the observations, especially the reflectivity observations,
better than the EnKF and the 3DVAR at the beginning of
the assimilation cycles. Thus, precipitation exists from the
beginning of the model integration.

Our future studies will try to answer a number of key
questions within the hybrid EnKF-3DVAR framework just
described.They include the following. (1)What is the optimal
choice for the relative weight of the static and flow-dependent
covariances for storm scale radar data assimilation? (2)What
is the optimal combination of ensemble size and grid spacing
for a specific computational cost? (3) How does the overall
performance of the proposed method compare with 3DVAR
and EnKF methods when model error is present? More
sensitivity experiments will be performed to answer these
questions in the near future, and results will likely help us
to solve the challenges of applying this method to real-world
scenarios. Even if these questions are successfully answered,
the high computational cost of this method is still likely to
be a big hurdle. For this, we will apply the dual-resolution
strategy as developed for the EnKF scheme in Gao and Xue
[46]. A new strategy for hybrid data assimilation proposed
by Penny [55] also will be tested within a storm scale data
assimilation framework in the near future.
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