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ABSTRACT

In this paper, a new method of dual-Doppler radar wind analysis based on a three-dimensional variational
data assimilation (3DVAR) approach is proposed. In it, a cost function, including background term and radial
observation term, is minimized through a limited memory, quasi-Newton conjugate-gradient algorithm with the
mass continuity equation imposed as a weak constraint. In the method, the background error covariance matrix,
though simple in this case, is modeled by a recursive filter. Furthermore, the square root of this matrix is used
to precondition the minimization problem.

The current method is applied to Doppler radar observation of a supercell storm, and the analysis results are
compared to a conceptual model and previous research. It is shown that the horizontal circulations, both within
and around the storms, as well as the strong updraft and the associated downdraft, are well analyzed. Because
no explicit integration of the anelastic mass continuity equation is involved, error accumulation associated with
such integration is avoided. As a result, the method is less sensitive to the vertical boundary uncertainties.

1. Introduction

Dual-Doppler wind analysis methods have greatly
aided our understanding of weather phenomena ranging
from mesoscale convective complexes to clear air
boundary layers (e.g., Browning and Wexler 1968;
Brandes 1977; Ray et al. 1981; Reinking et al. 1981;
Carbone 1983; Kessinger et al. 1987; Parsons and Krop-
fli 1990; Atkins et al. 1995; Dowell and Bluestein 1997;
Sun and Crook 1997, 1998). However, most of these
methods still suffer from notable deficiencies, including
the setting of often-arbitrary vertical velocity boundary
conditions, spatial interpolation and discretization er-
rors, uncertainties in radial wind estimates (due to, e.g.,
sidelobes and ground clutter), and the nonsimultaneous
nature of the measurements. These problems have been
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discussed in Miller and Strauch (1974), Ray et al.
(1975), Doviak et al. (1976), Gal-Chen (1982), Testud
and Chong (1983), Chong et al. (1983a,b), Ziegler et
al. (1983), and Shapiro and Mewes (1999).

The most pronounced difficulties among the above
concern the vertical velocity boundary condition and
interpolation procedure. The natural boundaries for the
problem are the irregular boundaries of the data region
itself. If the region of dual-Doppler data coverage ex-
tends all the way to the ground, then the impermeability
condition can safely be applied. Unfortunately, the low-
er data boundary often lies hundreds to thousands of
meters above ground level, where it is often inappro-
priate to apply the impermeability condition directly.

When the analysis is performed in a special cylin-
drical polar coordinate system, termed as the coplane
coordinate system by Lhermitte and Miller (1970), it
usually includes two steps: interpolation from a radar
spherical coordinate system to the coplane coordinate
system, and interpolation from a coplane coordinate sys-
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tem to a Cartesian coordinate system after the analysis
is completed. Because of the irregular spatial distribu-
tion of the radar observations, large intervals between
elevation angles [as large as 58–68 for Weather Sur-
veillance Radar-1988 Doppler (WSR-88D) data], and
the presence of bad data values, significant error can be
introduced in the spatial interpolation processes.

Gao et al. (1999) proposed a variational method that
performs analysis in a Cartesian coordinate system and
permits flexible use of radar data in combination with
other information [e.g., soundings, or a vertical profile
obtained with the velocity–azimuth display (VAD)
method]. Furthermore, it allows for the use of mass
continuity and smoothness constraints by incorporating
them into a cost function. In particular, by applying the
anelastic mass conservation equation as a weak con-
straint, the severe error accumulation in the vertical ve-
locity can be reduced because the explicit integration
of the anelastic continuity equation is avoided. The
method performs well in both idealized Observing Sys-
tem Simulation Experiments (OSSEs) and real data cas-
es. However, there exist some difficulties in specifying
the optimal weighting for each constraint. In the pre-
vious study, weightings were selected based on past
experience and repeated tuning experiments. Finding the
optimal weighting for each constraint may require many
numerical experiments.

Proposed herein is a new technique, based on a stan-
dard three-dimensional variational data assimilation
(3DVAR) approach, whereby a background error co-
variance matrix, though simple, is modeled by a recur-
sive filter, and the square root of the matrix is used for
preconditioning. Using the recursive filter is a simple
and efficient way to spread the effect of each radar
observation to the analyzed grid points (Wu et al. 2002).
Recent developments with spatially recursive filters
(Purser et al. 2003a) enable the construction of a var-
iational analysis in physical space, which allows more
degrees of freedom in defining the error statistics adap-
tively. The eventual goal is to have an analysis system
with inhomogeneous and generally anisotropic three-
dimensional background error covariance. Compared to
the smoothness constraint used in Gao et al. (1999), the
recursive filter is more effective in achieving the desired
spreading of observations to nearby grid points, and
theory (Purser et al. 2003a) provides guidance for spec-
ifying filter coefficients.

The aim of the preconditioning procedure is to de-
crease the number of iterations in the minimization pro-
cess for obtaining the optimal solution of the analysis.
The weight assigned to each constraint is specified ac-
cording to its assumed error magnitude, so that each
weight has its physical meaning rather than being cho-
sen somewhat arbitrarily based on experience and it-
erative experiments.

Because the method combines interpolation and anal-
ysis into a single step, as with the earlier variational
scheme of Gao et al. (1999), the analysis is performed

more naturally and directly in a Cartesian coordinate
system; only an interpolation from the regular Cartesian
grid to the irregular radar observation points is needed.
Since this interpolation process is usually well defined,
the error should be smaller than when interpolation is
performed from an irregular radar coordinate system to
a regular Cartesian coordinate system. Further, this re-
verse interpolation procedure accurately preserves the
radial nature of radar observations.

This paper is organized as follows. In section 2, the
variational method is introduced. In section 3, the basic
capabilities of the recursive filter are tested by placing
a single observation in the center of model domain. The
developed method is then applied to the analysis of a
dual-Doppler dataset from an observed tornadic super-
cell storm. Finally, a summary and concluding remarks
are given in section 4.

2. Description of variational methodology

a. Formulation of cost function

The standard formulation of variational methods was
derived from first principles by Lorenc using Bayesian
probabilities and assuming Gaussian error distributions
(Lorenc 1986). The concept of a variational method is
to determine the analysis by direct minimization of a
cost function. The gradients of cost function must be
derived to determine the search direction in the mini-
mization. The cost function may be written as

J(x) 5 J 1 J 1 JB O C

1
T 215 (x 2 x ) B (x 2 x )b b2

1
T 211 [H(x) 2 y ] R [H(x) 2 y ] 1 J . (1)o o C2

In its simplest form, the cost function, J, may be
written as the sum of two quadratic terms: the first, JB,
measures the departure of the analysis or control vari-
able, x, from the background, xb, and is weighted by
the inverse of the background error covariance matrix
B; the second term, Jo, measures the departure of the
analysis x, at the observation locations by means of
interpolation operator H, from the observations yO, and
is weighted by the inverse of the observational error
covariance matrix R. To impose additional physical con-
straints among the analysis variables, a dynamic or
smoothness constraint term, JC, can be added to the cost
function. This term is also called the penalty term.

The goal of the analysis is to find state, xa, or the
solution of x, for which J is minimized. At the minimum,
the derivative of J vanishes, and the so-called optimal
estimate, xa, satisfies

21 T 21=J(x) 5 B (x 2 x ) 1 H R [H(x) 2 y ]b o

1 =J (x) 5 0, (2)C
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where H is a suitable linear approximation operator of
H in the vicinity of xb.

The second-order derivative or the Hessian of J(x)
can be derived as

2 21 21 2T¹ J(x) 5 B 1 H R H 1 ¹ J (x).C (3)

If ¹2J(x) is positive definite, then there exists a unique
xa that minimizes the cost function J(x).

b. Preconditioned control variable

Following Courtier et al. (1994) and Courtier (1997),
suppose the optimum analysis xa can be obtained by
adding optimal analysis increment dxa to the background
xb:

x 5 x 1 dx ;a b a (4)

then the cost function can be rewritten as

1
T 21J (dx) 5 (dx) B (dx)inc 2

1
T 211 (Hdx 2 d ) R (Hdx 2 d ) 1 J (dx), (5)C2

where d [ yo 2 Hxb is the innovation vector and sub-
script ‘‘inc’’ for J denotes ‘‘incremental.’’ The back-
ground error covariance matrix B can be regarded as an
operator and is constructed using its square root: B 5

T 5 CTC. Here C is uniquely defined as theÏB ÏB
symmetric matrix that has the same eigenvectors as B
and eigenvalues of the square root of those of B.

An effective way of preconditioning the minimization
procedure is to define an alternative control variable q,
according to

21q 5 C dx or dx 5 Cq. (6)

Then Eq. (5) becomes

1 1
T T 21J (q) 5 q q 1 (HCq 2 d ) R (HCq 2 d ) 1 J (q).inc C2 2

(7)

The gradient and Hessian of Jinc can also be derived,
with the former obtained by differentiating Eq. (7) with
respect to q:

T T 21=J (q) 5 (I 1 C H R HC)qinc

T T 212 C H R d 1 =J (q). (8)C

The Hessian follows as
2 21 2T T¹ J 5 I 1 C H R HC 1 ¹ J (q),inc C (9)

where I is the identity matrix. Comparing Eqs. (9) and
(3), it is evident that the preconditioning resulting from
(9) prevents the smallest eigenvalue from becoming less
than unity, while there is no guarantee of such with the
Hessian given in Eq. (3). Typical minimization algo-
rithms converge faster when the condition number, de-
fined as the quotient between the largest and smallest

eigenvalues of the Hessian matrix, is smaller. Thus, this
new Hessian matrix is much better conditioned than the
Hessian of the original problem (3).

The matrix C defined in (6) can be broken down as

C 5 DF, (10)

where D is a diagonal matrix of the standard deviation
of the background error B and F is the square root of
a matrix whose diagonal elements are equal to one, and
off-diagonal elements are the background error corre-
lation coefficients. In practical data assimilation for nu-
merical weather prediction (NWP), full matrix F is too
large to compute explicitly or store into computer mem-
ory. Assumptions and approximations are usually made.
It can be shown that the effect of applying operator F
on control variable q in Eq. (7) can be achieved through
the use of equivalent spatial filters (Huang 2000). Here
we follow the work of Purser and McQuigg (1982),
Lorenc (1992), and Hayden and Purser (1995), who
model the effect of F using a recursive filter that is
defined by

Y 5 aY 1 (1 2 a)X for i 5 1, . . . , ni i21 i

Z 5 aZ 1 (1 2 a)Y for i 5 n, . . . , 1, (11)i i11 i

where Xi is the initial value at grid point i, Yi is the
value after filtering for i 5 1 to n, Zi is the initial value
after one pass of the filter in each direction, and a is
the filter coefficient given by the following formulation
(Lorenc 1992):

2 2a 5 1 1 E 2 ÏE(E 1 2), E 5 2NDx /(4L ), (12)

where L is the horizontal correlation scale, Dx is the
grid spacing, and N is the number of filter passes to be
applied. This is a first-order recursive filter, applied in
both directions to ensure zero phase change. Multipass
filters (N greater than unity) are built up by repeated
application of (11). Two- and three-dimensional filters
can be constructed by applying this filter successfully
in each direction. It can be shown (Purser et al. 2003a)
that such multidimensional filters, when applied with
several passes, can accurately model isotropic Gaussian
error correlations. The filter is also flexible enough to
allow for anisotropic error correlations (Purser et al.
2003b).

For simplification, we assume that the observation
error covariance matrix R is diagonal with constant di-
agonal elements given by the estimated observation er-
ror, which is 1 m s21 for typical radar observations
(Miller and Sun 2003; Xu and Gong 2003).

c. Variational dual-Doppler radar data analysis

In our variational dual-Doppler wind analysis, the
first term, JB, in the cost function measures how close
the variational analysis x 5 (u, y, w) fits the background
fields xb 5 (ub, yb, wb). The background may be pro-
vided by a previous model forecast, a nearby sounding,
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or a wind profile from another Doppler radar analysis
program, such as the VAD method (Browning and Wex-
ler 1968). The second term, JO, measures the difference
between the analyzed radial velocity, Vr, which can be
approximated (for distance between radar site and data
point r less than 100 km) as

(X 2 X )u 1 (Y 2 Y )y 1 (Z 2 Z )w0 0 0V 5 , (13)r r

and the observed radial velocity y0 5 Vrob. The forward
operator, H(x) in this case, is represented by Eq. (13)
and a linear interpolation operator that maps Vr from
the grid (Cartesian coordinates) to observation points
(spherical coordinates); u, y, and w are wind components
in Cartesian coordinates (X, Y, Z); and (X0, Y0, Z0) is
the radar location. It should be noted that the cost func-
tion could include other observations that directly or
indirectly provide information about u, y, and w, such
as single-level data from surface observations or data
from wind profilers, aircraft, or even satellites if these
data could be beneficial to the analysis.

The third term, JC, can be expressed as

1
2J 5 l D , (14)C c2

which imposes a weak anelastic mass continuity con-
straint on the analyzed wind field, where

D 5 ]ru/]x 1 ]r y/]y 1 ]rw/]z,

and is the mean air density at a given horizontal level.r
The weighting coefficient, lC, controls the relative im-
portance of this penalty term in the cost function. To
specify lC, the radar-observed radial velocities are pro-
jected in the x, y, and z directions to obtain an estimate
of the u, y, and w fields. These partially measured wind
fields then are applied to assess the divergence, and lC

is given by (Liou 1999)
2121 ]ru ]ry ]rw

l 5 1 1 dx dy dz , (15)C E 1 2[ ]V ]x ]y ]z
V

where V is the analysis domain.
To solve the above variational problem by direct min-

imization, we need to derive, by using Eq. (8), the gra-
dients of the cost function with respect to the control
variables, which contain the increments of three wind
components transformed to q according to Eq. (6). After
the gradients of the cost function are obtained, the prob-
lem can be solved in the following steps.

1) Choose the first guess of control variables q (in our
experiments, all first guess increments are zero).

2) Calculate the cost function according to Eq. (7) and
the gradient according to Eq. (8).

3) Use a conjugate-gradient method (Navon and Legler
1987) to obtain updated values of the control vari-
ables,

(n) (n21)q 5 q 1 b f (]J /]q),inc (16)

where n is the number of iterations, b is an optimal
step size obtained by the so-called line search process
in the optimal control theory (Gill et al. 1981), and
f (]J/]q) is the optimal descent direction obtained by
combining the gradients from several previous it-
erations.

4) Check if the optimal solution has been found by
computing the norm of the gradients or the value of
J itself to see if either is less than a prescribed tol-
erance (we choose J/JO 5 1023, and JO is the cost
function for the first iteration). If the convergence
criterion is not satisfied, repeat steps 2 and 3 using
updated values of q as the new guess. The iteration
process is continued until a prescribed convergence
criterion is met or a maximum iteration number is
reached (300 here).

5) Finally, recover the analysis variables, u, y, and w,
from q using Eq. (6).

d. The effect of terminal velocity

Before applying the above variational method, the fall
speed of precipitation has to be taken into account when
radial velocity data are used. For radar scans at nonzero
elevation angles, the fall speed contributes to the Dopp-
ler estimate of radial velocity. Thus, the observations
of radial velocity are adjusted to remove this contri-
bution using

aV 5 V 1 w sinu,r r t (17)

where is the radial velocity actually observed by theaV r

radar, Vr is the true radial velocity of the air, wt is the
terminal velocity of precipitation, and u is the elevation
angle (08 is horizontal). An empirical relationship is used
to relate the reflectivity, R, and raindrop terminal fall
velocity (Foote and du Toit 1969; Atlas et al. 1973):

r 0 0.114w 5 2.65 R , (18)t 1 2r

where r is the air density and r0 is its surface value.
Note that, in this formulation, wt is positive downward.

3. Experiment results

To demonstrate the effectiveness of the described var-
iational method for real data, we apply it to the 17 May
1981 Arcadia, Oklahoma, supercell storm (Dowell and
Bluestein 1997). Twelve coordinated dual-Doppler
scans were obtained from the Norman and Cimarron,
Oklahoma, S-band Doppler radars over the 1-h period
spanning the pretornadic phase of the storm. The anal-
ysis is performed in a Cartesian coordinate system with
83 3 83 3 37 grid points. The grid spacing in the
horizontal is Dx 5 Dy 5 1000 m and in the vertical is
Dz 5 500 m. The standard deviation of errors for the
radar radial velocity is set to 1 m s21, and the standard
deviation of background errors (only a single sounding
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FIG. 1. Locations of the Cimarron (0, 0) and Norman (40.0, 220.0),
OK, radars that observed the 17 May 1981 Arcadia, OK, storm (shad-
ing) and the analysis domain (box).

FIG. 2. Wind contours demonstrating the application of the recur-
sive filter to a single radial velocity (26 m s21) observation relative
to the Cimmaron radar with iteration N 5 1 and correlation scale Lh

5 5Dx and Lz 5 5Dz: (a) the response function of u in a horizontal
cross section; (b) w in vertical cross section. Distance scale in km.

is used in this analysis) is taken to be 10 m s21. The
analysis domain and the relative positions of two radars
are shown in Fig. 1. To clearly show the behavior of
the analysis method, we perform four experiments using
a single observation within the analysis domain before
applying the method to the observed supercell storm
with several full volume scans.

a. Single-observation experiment

In our first experiment, we place only one radial ve-
locity observation with Vr 5 26.60 m s21 relative to
Cimmaron radar within the analysis domain at a selected
gridpoint location (42.70, 29.90, 9.60) and exclude the
mass continuity constraint from the minimization pro-
cess (JC 5 0.0). Figure 2 illustrates the spread of the
information from this single observation over the one
pass with N 5 1 and a correlation scale L 5 5 Dx defined
by the first-order recursive filter in (11) and (12). Note
that the analysis increments of both horizontal velocity
u and vertical velocity w exhibit diamond shapes, while
the desired shape in the absence of any equation con-
straint is circular.

Since the single radial velocity observation is placed
at z 5 9 km, it also contributes significantly to the
vertical velocity (Fig. 2b) with a maximum of 5 m s21

in the grid cell nearest the single observation. When the
recursive filter is applied two times (N 5 2), the result
is closer to being isotropic but still not perfectly so (Fig.
3). The appearance of isotropy is not adequately

achieved until N 5 4 (Fig. 4). This shows that the first-
order recursive filter can only provide an excellent ap-
proximation to the isotropic Gaussian structure with four
or more passes. Therefore, we use four passes in the
following experiments.

It is also necessary to properly choose a correlation
scale length in our scheme. If it is too large, the analyzed
field will be too smooth and the analyzed mesocyclone
and mesoanticyclone will be too weak. If it is too small,
the analysis wind fields will lack coherent structure be-
cause the gap between the neighboring tilts cannot be
filled. Here, using L 5 5Dx for the horizontal scale and
L 5 5Dz for the vertical, given both radars’ scanning
sequences and parameter settings, has been found to
produce credible results. Additionally, this feature is
very well preserved as the number of passes increases,
as indicated by the analyses shown in Figs. 2–4.
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FIG. 3. The same as Fig. 2, but for N 5 2.

FIG. 4. The same as Fig. 2, but for N 5 4.

When the anelastic mass continuity equation is added
to the cost function as a weak constraint, the response
covariance function of this single observation differs
from previous cases in both the horizontal wind and
vertical velocity (Fig. 5), both of which are no longer
isotropic. This result is more realistic, however, because
the mass continuity equation builds up an appropriate
coupling among the three wind components. For ex-
ample, in the analyzed w field, instead of a single region
of positive w in response to one positive radial velocity
measurement, there is now one positive region as well
as one negative region of w. This structure represents
the response of the flow to mass conservation. If more
data are used, the relationship among analysis variables
should be more coherent than without using it. Fur-
thermore, additional equation constraints that couple the
wind with other fields can be added, and it is possible

to incorporate flow-dependent anisotropic spatial cor-
relations into the analysis through a recursive filter. A
better and more complete analysis could be expected
with these improvements, and work is under way along
these lines.

b. Application to a real supercell storm case

In this section, we apply the method described above
to the complete dataset for the 17 May 1981 Arcadia
supercell storm. Using the dual-Doppler analysis pro-
gram contained in the National Center for Atmospheric
Research (NCAR) software package CEDRIC (Mohr
1988), Dowell and Bluestein (1997) performed a de-
tailed dual-Doppler analysis of this storm that will serve
as our benchmark. Using the same dataset, we also per-
formed a dual-Doppler analysis using a variational pack-
age developed by ourselves (Gao et al. 1999). Due to
the lack of more radar data, neither this nor the Dowell
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FIG. 5. The same as Fig. 2, but for N 5 4 and with mass
conservation equation as a weak constraint.

FIG. 6. Wind vectors and vertical velocity (contours) analyzed from
data sampled by Norman and Cimarron radars using the variational
method for Arcadia, OK, at 1634 CST 17 May 1981 tornadic storm.
Also shown as shaded contours of the reflectivity field. (a) Horizontal
cross section at z 5 0.3 km. (b) Vertical cross section through the
A–B line in (a). The rear-flank gust front at this level is indicated by
the cold front symbol in (a). Radar observations are only available
where there is reflectivity shading, and winds shown are relative to
the storm, which was moving from 2408 at 11.7 m s21.

and Bluestein analysis can be validated against a more
accurate analysis. Therefore, the present discussion re-
mains qualitative, and the analysis results are compared
with a conceptual model and previous research.

The results of our analysis for 1634, 1638, and 1643
central standard time (CST) on 17 May are shown in
Figs. 6, 7, and 8, respectively. During this period, the
low-level precipitation echo evolved from a north–south
elongated pattern (Fig. 6a) into one with a pronounced
hook shape (Fig. 8a) as the low-level rotation intensi-
fied. The presence of such a hook-echo pattern in the
reflectivity field signifies the transition of the supercell
storm to the tornadic stage (Brandes 1981). The ad-
vancement of the gust front from west to east, pushed
by cold outflow behind, is clearly seen from these fig-
ures. Ahead (east) of the gust front, the analyzed low-
level flow shows strong southerly to southeasterly
winds, and the flow turns to easterly as it reaches north-
east, then the north side of the center of rotation (me-

socyclone), which roughly coincides with the kink of
the hook echo. Some of this flow eventually turns south-
ward on the northwest and west sides and feeds into the
outflow behind the gust front.
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FIG. 7. As in Fig. 6, but for 1638 CST.

FIG. 8. As in Fig. 6, but for 1643 CST.

Strong convergence in the near-surface flow is found
within 10 km east of the gust front, where positive ver-
tical motion at 300 m above ground is analyzed to reach
more than 10 m s21 at the first two times (1634 and
1638 CST) and increases to more than 20 m s21 by 1643
CST, at which time two maxima are found within 5 km
of the gust front (Fig. 8a). Also found in the vertical
velocity field is a downdraft maximum near the kink of
the hook echo and on the west side of the occlusion
point of the forward- and rear-flank gust fronts (only

the latter is drawn in the figures). This downdraft ap-
pears realistic because of the time continuity among all
three analyses and is consistent with the rear-flank
downdraft commonly found in tornadic supercells.

Overall, the analyzed low-level flow structures shown
in these figures are consistent with the reflectivity pat-
terns and are typical of tornadic supercell storms with
strong low-level rotation (e.g., Lemon and Doswell
1979).
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FIG. 9. Three-dimensional perspective of a numerically simulated
supercell thunderstorm as it transitions to its tornadic phase. The
storm is evolving in westerly environmental wind shear and is viewed
from the southeast. The cylindrical arrows depict the flow in and
around the storm. The thin lines show the low-level vortex lines, with
the arrows along the lines indicating the vector direction of vortex.
The heavy barbed line marks the boundary of cold air beneath the
storm. (a) The stage at which a strong downdraft starts to form and
(b) about 10 min later. The shaded arrow in (a) represents the rota-
tionally induced vertical pressure gradient, and the striped arrow in
(b) denotes the rear-flank downdraft. (From Klemp 1987.)

In a vertical cross section (Fig. 6b), plotted through
line A–B in Fig. 6a, a strong updraft core is retrieved
and is roughly collocated with the midlevel mesocy-
clone (center of strong rotation) and the core of maxi-
mum reflectivity. The main updraft is seen to originate
ahead of the low-level gust front and reaches a height
of 16 km. It gains a maximum intensity of 40.4 m s21

at 10 km in this cross section and is, as expected, near
the area of maximum reflectivity aloft. The main down-
draft is located below the updraft core and is collocated
with a region of high reflectivity behind the gust front.
At a later time (Fig. 7b), it is clearly shown that a very
strong downdraft begins to develop beneath the updraft
core between 4 km and the ground. Figure 8b shows
that the downdraft is encircled by a larger updraft. This
structure is realistic and typical and represents a tran-
sition of the supercell to the tornadic phase (Houze and
Hobbs 1982). At this time, a downdraft forms at the
center of an earlier updraft core, a process explained
clearly in the review article of Klemp (1987), a figure
from which is reproduced in Fig. 9. According to this
article, it is believed that a downward pressure gradient
force created by the reduction of low-level pressure as
a result of intensification of low-level rotation is be-
lieved to be the cause of downdraft intensification.

Because this analysis is valid about several minutes
before the tornadogenesis, the large horizontal shear
caused by the narrow downdraft and surrounding up-
draft could be the source of development of the sub-
sequent tornadic vortex. These features, including a de-
crease in updraft intensity (reduced from about 40 to
25 m s21 from Fig. 6b to Fig. 7b), a small-scale down-
draft forming underneath the updraft, and a flow at low
levels in which cold-outflow and warm-inflow air spiral
around the center of circulation, suggest that both hor-
izontal and vertical flows are kinematically consistent.
Similar features were also observed and documented
quite well by Lemon and Doswell (1979) in their case
studies. They also qualitatively agree with those ana-
lyzed by Dowell and Bluestein (1997) and Gao et al.
(1999) but provide more detailed structures of this tor-
nadic storm.

When radar data are to be used to initialize an NWP
model, a complete description of the wind and other
meteorological variables is needed for the entire model
domain (Droegemeier 1997). Even for diagnostic stud-
ies, consistent analysis outside the radar data areas is
also desirable. Conventional observations such as from
rawinsondes, or background fields from NWP models,
can be used to complement radar data. However, the
radar data must be blended with the background infor-
mation.

Lin et al. (1993) proposed a method for obtaining a
smooth transition from regions with radar observations
to the ambient environment defined by a single sound-
ing. Ellis (1997) also used an OSSE to fill the data voids
(hole filling) in simulated radar data. In both cases a
variational wind adjustment procedure was then applied

to the hold-filled wind field. The variational wind ad-
justment improves the statistics of each hole-filled wind
field. In Gao et al. (1999), a single sounding was used
to specify the background environment. In that study,
although no observational constraint was available out-
side the radar-observed data areas, the analysis took on
the values of the background and the transition was
smooth between the data area and nondata area, owing
to the use of a smoothness constraint.

In the current method, observational information is
spread by means of the background error covariance
that is modeled by a recursive filter, which in its current
form is isotropic and homogeneous. As noted previ-
ously, the standard error deviation for radar radial ve-
locity observations is set to 1 m s21 and that for the
background sounding is set to 10 m s21. By doing so,
we ensure that radar observations dominate in the region
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FIG. 10. As in Fig. 6, at 1643 CST, but for experiment without the
anelastic mass conservation equation as weak constraint. (a) Hori-
zontal cross section at z 5 0.3 km. (b) Vertical cross section through
the A–B line in Fig. 6a.

containing radar observations and that the background
plays only a marginal role in that area. However, where
no radar observations exist, the analyses would take on
the values of background field. The transition between
the two is more natural in that variational data assim-
ilation optimally blends observations with the back-
ground.

c. The role of the anelastic mass continuity constraint

Our variational method produces satisfactory results
for 3D dual-Doppler wind analysis, including the ver-
tical velocity. To clearly show the role of the weak mass
continuity constraint with the real data, we perform an
experiment that is identical to the control case (the
above) except that the mass continuity constraint is re-
moved. As shown in Fig. 10, the reasonable horizontal
wind is retrieved (but not as well as the previous anal-
ysis); however, the retrieval of vertical velocity w is
very poor, and no coherent structure in w is retrieved
below 10 km, though the results above 10 km are qual-
itatively good. This result is not surprising, though, be-
cause very limited information about w is contained in
the radial wind observations at low levels.

With conventional dual-Doppler analysis or retrieval
methods, the vertical velocity is obtained by vertically
integrating the mass continuity equation; in this sense,
the equation is used as a ‘‘strong constraint’’ because
the equation is exactly satisfied. The main difficulty lies
in specifying vertical boundary conditions on w. The
requirement of zero vertical velocity at the ground is
the most natural physical condition (Miller and Strauch
1974). However, it has been demonstrated that upward
integration is unreliable because the bias errors in the
divergence field can be amplified exponentially with
height (Ray et al. 1980). Thus, a variational wind ad-
justment was applied to the analyzed winds in their
multiple-Doppler radar analysis with the anelastic mass
continuity equation used as a strong constraint. Matejka
and Bartels (1998) compared eight methods of calcu-
lating vertical velocity in a column and found that their
two variational methods performed best in many cases,
but the methods still have problems with the low bound-
ary condition, which may in part be due to the use of
the mass continuity equation as a strong rather than
weak constraint.

Vertical integration of the anelastic mass continuity
equation is particularly difficult for our current dataset
because of the presence of large data voids. The resul-
tant w field from such integration can be very problem-
atic even if an additional variational adjustment is ap-
plied. It is therefore advantageous to apply the mass
continuity equation as a weak constraint so that explicit
integration of the continuity equation is avoided.

To summarize, in conventional dual-Doppler analysis
techniques, the horizontal and vertical winds are derived
in two separate steps. With our method, the horizontal
and vertical wind components are analyzed in a single

step by adding a weak anelastic mass continuity con-
straint to the cost function. The use of a weak instead
of strong constraint also leads to procedural simplicity
in that the explicit solution of an elliptic equation, which
would arise from the use of a strong constraint, is avoid-
ed. The latter tends to be sensitive to the specification
of boundary conditions. This finding also agrees with
the results of Xu and Qiu (1994) and Gao et al. (1999).
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FIG. 11. As in Fig. 6, at 1643 CST, but for experiment without the
recursive filters. (a) Horizontal cross section at z 5 0.3 km. (b) Ver-
tical cross section through the A–B line in Fig. 6a.

d. Experiment without recursive filter

To test the important role of the background error
covariance, we perform an additional experiment with-
out employing the recursive filter. In this case, the in-
fluence of observational data is confined to the imme-
diate surrounding grid points of observations. For our
case of incomplete radar data coverage, the analysis is
expected to be at least very noisy. Figure 11 shows the
analyzed flow field and clearly illustrates that the result
is quite unsatisfactory. At 5 km above the ground, the
mesocyclone and mesoanticyclone are not well defined,
though both still have some structure because the radar
observations are dense at that level (not shown). The
poor quality of the analysis is even more evident in a
vertical slice (Fig. 11b), which reveals the presence of
noise, especially in the anvil region and below 2 km.
Also, the analyzed vertical velocity extrema are one-
third of those in the control experiment. We believe the
poor analysis of horizontal velocity contributed to errors
in horizontal divergence so that the mass continuity con-
straint also became ineffective.

This indicates that use of a recursive filter to model
the background error covariance in the analysis plays a
very important role in our variational method even
though the filter used is simple, being isotropic and
homogeneous. Work is under way to develop a more
sophisticated inhomogeneous recursive filter to more re-
alistically model the background error covariance, fol-
lowing the work of Purser et al. (2002a,b).

4. Summary and concluding remarks

In traditional dual-Doppler analysis, the need for ex-
plicitly integrating the mass continuity equation, as well
as including ‘‘hole-filling’’ procedures, increases the so-
lution sensitivity to boundary condition uncertainties.
In addition, the separate interpolation from radar ob-
servation data points to analysis grid points in traditional
methods can introduce errors. In this paper, we devel-
oped and tested a variational analysis scheme that is
capable of retrieving and analyzing three-dimensional
winds from dual-Doppler observations of convective
storms. It was shown that the variational method has
notable advantages over traditional dual-Doppler anal-
ysis techniques. The main conclusions can be summa-
rized as follows.

1) The new method is able to incorporate radar data
and background fields, along with mass continuity
and other dynamic constraints, in a single cost func-
tion. By minimizing this cost function, an analysis
with the desired fit to these constraints and obser-
vations is obtained in a single step.

2) The background error covariance matrix, though
simple in this case, is modeled by a recursive filter,
and the square root of the matrix is used as a pre-
conditioning of minimization. Because the varia-
tional method preserves the radial nature of the ob-

servations, it allows for the forward interpolation
from model grid to observation points so as to keep
the observations close to their ‘‘raw’’ form.

3) Because no explicit integration of the anelastic mass
continuity equation is involved, error accumulation
during such integration is avoided. As a result, the
method is less sensitive to boundary condition un-
certainties.
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It is our plan to generalize our variational analysis
procedure to include additional data sources, and to in-
troduce additional dynamic constraints in the cost func-
tion so that thermodynamic fields are retrieved simul-
taneously with the winds. This procedure may also pro-
vide further improvements to the wind analysis.
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