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ABSTRACT

A real-time, weather-adaptive three-dimensional variational data assimilation (3DVAR) system has been

adapted for the NOAA Warn-on-Forecast (WoF) project to incorporate all available radar observations

within a moveable analysis domain. The key features of the system include 1) incorporating radar observa-

tions from multiple Weather Surveillance Radars-1988 Doppler (WSR-88Ds) with NCEP forecast products

as a background state, 2) the ability to automatically detect and analyze severe local hazardous weather events

at 1-km horizontal resolution every 5min in real time based on the current weather situation, and 3) the

identification of strong circulation patterns embedded in thunderstorms. Although still in the early de-

velopment stage, the system performed very well within the NOAA’s Hazardous Weather Testbed (HWT)

Experimental Warning Program during preliminary testing in spring 2010 when many severe weather events

were successfully detected and analyzed. This study represents a first step in the assessment of this type of

3DVAR analysis for use in severe weather warnings. The eventual goal of this real-time 3DVAR system is to

help meteorologists better track severe weather events and eventually provide better warning information to

the public, ultimately saving lives and reducing property damage.

1. Introduction

Proper early identification of a supercell thunder-

storm, or a supercell embedded in a cluster of storms, is

critical to the issuance of public warnings for severe

weather. Several studies by Burgess (1976), Burgess and

Lemon (1991), and Bunkers et al. (2006, 2009) found the

determination of whether a thunderstorm is a supercell

thunderstorm is very important to accurate and timely

severe weather warning operations. These studies also

revealed that over 90% of supercells are severe (i.e.,

produce tornadoes, large hail, or severe surface winds).

One of the defining characteristics of a supercell is

the existence of a midlevel mesocyclone (Lemon and

Doswell 1979). A mesocyclone was originally defined as

the Doppler radar velocity signature of a storm-scale (2–

10-km diameter) vortex (Burgess 1976), which corre-

sponds to the rotating updraft–downdraft couplet of

a supercell thunderstorm. Mesocyclones in the United

States are typically cyclonic and also may contain the

more intense tornado vortex. In the last 20 years, several

criteria have been established for mesocyclone recog-

nition based on a wealth of Doppler radar observations,

especially after the deployment of the Weather Sur-

veillance Radar-1988 (WSR-88D) network (Burgess 1976;

Burgess et al. 1982, Burgess and Lemon 1991; Burgess

and Doswell 1993; Stumpf et al. 1998). Based on these

criteria and other conceptual models (e.g., Lemon and

Doswell 1979), amesocyclone detection algorithm (MDA)

was developed to help meet the needs of the meteorol-

ogists making a warning decision (Stumpf et al. 1998).

Although this approach has met with success, some of

the hallmark characteristics of supercells, such as the
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depth and persistence of the circulation, the strength of

a single updraft core, and themaximum vertical vorticity

magnitude, are very difficult to identify with the MDA

based upon single-radar observations alone.

Although the low-level (0–1 km AGL) coverage pro-

vided by the current WSR-88D network rarely overlaps

within the continental United States (Fig. 1b), the mid-

level (3–6 km AGL) coverage across the eastern two-

thirds of the country is much more complete (Fig. 1a).

Thus, observations from multiple WSR-88Ds can be

combined to provide an improved three-dimensional

wind analysis of storm structure. This type of multiradar

approach has already proven useful for improved quanti-

tative precipitation estimation (QPE) and severe weather

detection using radar reflectivity observations, as dem-

onstrated by both the National Mosaic and Multi-

sensor QPE (NMQ) system (Zhang et al. 2011) and the

Warning Decision Support System—Integrated Informa-

tion (WDSS-II; Lakshmanan et al. 2007b). These systems

provide three-dimensional radar reflectivity and azi-

muthal shear analyses at 1-km resolution every 2.5min

(Lakshmanan et al. 2006). The development of a single

high quality analysis that includes observations from

multiple sources can help overcome several limitations.

First, using multiple observations of the same feature

improves the analyses as errors decrease with aggrega-

tion. Second, the use of multiple radars can help fill in

data voids, such as those below the lowest and above the

highest radar scanning angle. Third, while forecasters

make their warning decisions based on the best infor-

mation available, the escalating data flow rates from new

sensors and applications, combined with workload and

timeliness requirements, may limit forecasters’ ability to

effectively use all available information. This situation

can be ameliorated by fast data assimilation methods

that merge all available information together as quickly

as possible for human decision makers.

In this study, we investigate the possibility of identi-

fying mesocyclones by merging all available informa-

tion fromWSR-88D radars together using the Advanced

Regional Prediction System (ARPS; Xue et al. 2000,

2001) three-dimensional variational data assimilation

system (3DVAR; Gao et al. 2004). The system produces

physically consistent high-resolution analyses based on

multiple data sources including observations from sev-

eral nearbyWSR-88Ds and operationalmodel forecasts.

While the ARPS 3DVAR was originally developed to

initialize storm-scale numerical weather prediction (NWP)

models, it may also have value in producing accurate

real-time wind analyses for use in severe weather

warning operations. Not only does the analysis system

have the potential to make better use of observations

from theWSR-88D network, it can blend in information

from operational model forecast products and con-

ventional observational platforms to produce three-

dimensional wind analyses valid both inside and outside

the storm. Although still in the early development stage,

results from initial experiments show that the system

performed very well during the spring of 2010 while

undergoing testing and evaluation within the Hazardous

Weather Testbed (HWT), where many severe weather

events were successfully detected and analyzed.

The rest of this paper is organized as follows. Section 2

provides an overview of the 3DVAR data assimilation

(DA) system. The data and NWP products used and

the analysis procedure description will be presented in

section 3. Some preliminary experiment results are re-

ported and assessed in section 4. We conclude in section 4

with a summary and outlook for future work.

2. The ARPS 3DVAR system

The ARPS 3DVAR system was designed and devel-

oped especially for radar data assimilation at the con-

vective scale (Gao et al. 1999, 2002, 2004; Xue et al. 2003;

Hu et al. 2006a,b; Stensrud andGao 2010; Ge et al. 2010,

2012). It applies weak constraints that are suitable for

convective storms in a different manner than is done

with 3DVAR systems developed for large-scale appli-

cations. A 3DVAR system starts from a first guess, or

background, that is often provided by a forecast model

and adjusts the first-guess fields as observations are as-

similated. The resulting analysis is a blend of the first

guess and the observations. The process is influenced by

FIG. 1. Coverage of the WSR-88D network at height(s) of

(a) 3 and (b) 1kmAGL. These plots are the center of the beam at 0.58
elevation (NEXRAD lowest allowed tilt) (McLaughlin et al. 2009).
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assumed constraints and is determined by minimizing

a cost function using numerical techniques.

FollowingGao et al. (2004), the standard cost function

J of 3DVAR can be written as

J(x)5
1

2
(x2 xb)TB21(x2 xb)

1
1

2
[H(x)2 yo]TR21[H(x)2 yo]1 Jc(x) . (1)

The analysis vector x contains the three wind compo-

nents (u, y, and w), potential temperature (u), pressure

(p), and water vapor mixing ratio (qy), while the cost

function equation includes three terms. The first term is

the background term, which measures the departure of

the analysis vector x from the background xb weighted

by the inverse of the background error covariance ma-

trix B. The background is provided by a numerical

model analysis or forecast interpolated in space and

time to the 3DVAR domain. The second term is the

observation term, which measures the departure of the

3DVAR analysis vector x from the observation vector

yo where H(x) is the forward operator that converts

from the model variables to the observation. This sec-

ond term is weighted by the inverse of observation error

covariance matrix R that includes both instrument and

representativeness errors. It is usually assumed di-

agonal, and its diagonal elements are specified accord-

ing to the estimated observation errors. The third term,

Jc(x), represents the dynamic or equation constraints,

which are very important for this convective-scale 3DVAR

system. All the above three terms are used in this study

and are briefly discussed below.

In previous variational Doppler wind analyses (Gao

et al. 1999, 2004), the background term is used to provide

information on the storm environment. This background

information can be from a previous NWP model fore-

cast, a nearby sounding, or a wind profile from another

Doppler radar analysis program, such as the velocity

azimuth display (VAD) method (Browning and Wexler

1968). In this study, the National Centers for Environ-

ments Prediction’s (NCEP) mesoscale NWP model—

the North American Mesoscale model (NAM; Janji�c

et al. 2003)—is used to produce the background field

for the analysis to utilize data from all available sources.

While Gao et al. (1999) show that storm analyses are

not very sensitive to the background field, the use of a

background field allows for the inclusion of environ-

mental information in the analysis. Forecasters are then

able to display storm and environmental conditions from

a single, unified, dynamically consistent three-dimensional

analysis and avoid the difficulties and inconsistencies

that can arise when only irregular radar data with many

holes and inner boundaries are used.

For the second term, the observation vector yo in-

cludes WSR-88D radial velocity data only. The radar

forward observation operator for radial velocity is written

following Doviak and Zrni�c (1993) as

yr 5
dh

dr
w1

ds

dr
(u sinf1 y cosf) , (2)

where yr is the projected radial velocity, r is the slant

range (ray path distance), h is the height above the

curving earth’s surface, s is the distance along the earth’s

surface, and f is the radar azimuth angle. When WSR-

88D radial velocity only is used, the observation error

variance is usually set to be between 1 and 2m s21, which

is typical of radar instrumental error (Doviak et al. 1976;

Miller and Sun 2003); we chose the former in this study.

The second term in (1) is simplified to

Jo(x)5
1

2
[H(yr)2 yobr ]2 . (3)

The analysis is projected into the observation space

using the forward operator defined by (2), with a tri-

linear interpolation operator used to interpolate from

model grid points to radar observation locations. How-

ever, different from the Weather Research and Fore-

casting (WRF) model’s 3DVAR scheme (Barker et al.

2004), which was designed mainly for synoptic and me-

soscale data assimilation, the ARPS 3DVAR approach

uses multiple analysis passes that have different spatial

influence scales. The use of multiple passes is found to

be advantageous for analyzing convective storms (Hu

et al. 2006b; Gao et al. 2009; Schenkman et al. 2011). The

quality control within the ARPS 3DVAR also includes

buddy checking, velocity dealiasing for radar data, and

the removal of anomalous propagation returns.

In the ARPS 3DVAR, cross correlations among state

variables are not included in the background error co-

varianceB; a certain degree of balance between analysis

variables is realized by incorporating weak constraints in

the cost function as the Jc(x) term in (1). In this study,

a constraint is imposed on the analyzed wind compo-

nents based on the anelastic mass continuity equation,

such that

JC 5
1

2
lc(›ru/›x1 ›ry/›y1 ›rw/›z)2 , (4)

where r is the mean air density at a given horizontal

level and the weighting coefficient lC, controls the rel-

ative importance of this penalty term in the cost func-

tion. The value of lC 5 5.03 1024 is used for the current

application. This value determines the relative impor-

tance of the mass continuity equation constraint and its
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optimal value is determined through many numerical

experiments in a trial-and-error fashion (Gao et al. 1999;

Sun and Crook 2001). Gao et al. (1999, 2004) found that

this constraint is effective in producing suitable analy-

ses of vertical velocity, as it builds up the relationship

among the three wind components. As pointed out in

Gao et al. (1999), using the mass continuity equation as

a weak instead of a strong constraint avoids the error

accumulation associated with the explicit vertical in-

tegration of the mass continuity equation, as is often

used in conventional dual-Doppler wind synthesis schemes.

Thus, thunderstorm updrafts can be more accurately

analyzed and the analysis is less sensitive to the lower

and upper boundary conditions than occur when a mass

continuity equation is used as a strong constraint. The

use of the weak mass continuity constraint links the

three components of the wind field by the 3DVAR

method in response to the assimilation of the radial

velocity observations.

To effectively precondition the minimization prob-

lem, we follow Courtier et al. (1994) and Courtier (1997)

and define an alternative control variable v, such that

B1/2v5 (x2 xb). This allows the cost function to be

changed into an incremental form, such that

Jinc(v)5
1

2
vTv1

1

2
(HCv2 d)TR21(HCv2 d)1Jc(v) ,

(5)

where H is the linearized version of H and d[ yo 2
H(xb). The gradient and Hessian of Jinc can also be de-

rived, with the former obtained by differentiating (5)

with respect to v, yielding

$Jinc 5 (I1CTHTR21HC)v2CTHTR21d1$Jc(v) ,

(6)

where I is the identity matrix. The Hessian then follows

as

=2Jinc 5 I1CTHTR21HC1=2Jc(v) . (7)

From (7), it is clear that the preconditioning prevents the

smallest eigenvalue from becoming close to zero. This

potentially could improve the convergence of minimi-

zation algorithms and allows the variational problem to

be solved more efficiently.

The matrix C defined in (5) can be broken down as

C5DFL , (8)

where D is a diagonal matrix consisting of the standard

deviation of background errors and L is a scaling factor.

The matrix F is the square root of a matrix with diagonal

elements equal to one and off diagonal elements equal

to the background error correlation coefficients. How-

ever, the matrix F is too large to be used directly in the

minimization calculations. Instead, it is modeled by

a spatial recursive filter (Purser et al. 2003), which to first

order is defined by

Yi 5aYi211 (12a)Xi for i5 1, . . . , n

Zi 5aZi111 (12a)Yi for i5 n, . . . , 1 , (9)

whereXi is the initial value at grid point i, Yi is the value

after filtering for i51 to n,Zi is the initial value after one

pass of the filter in each direction, and a is the filter

coefficient given by the following formulation (Lorenc

1992):

a5 11E2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(E1 2)

p

E5 2ND2/4L2 , (10)

where L is the horizontal correlation scale, D is the

horizontal grid spacing, and N is the number of filter

passes to be applied. This is a first-order recursive filter,

applied in both directions to ensure zero phase change.

Multipass filters (N greater than unity) are built up by

repeated application of (9) and (10). In this study, two

passes of the recursive filter are used (N 5 2). The first

pass uses L 5 12 km and is followed by a second pass

using L 5 4 km to provide an improved representation

of the convective-scale features within the analysis. Xie

et al. (2005, 2011) proved theoretically that the mul-

tiple-passes approach with a recursive filter is superior

to the conventional single-pass 3DVARmethod. Zhang

et al. (2009) designed a successive localization approach

as part of a similar strategy for an ensemble Kalman filter

technique to assimilate dense radar observations that

contain information about the state of the atmosphere at

a wide range of scales in a hurricane-related study.

As discussed earlier, reflectivity data are not used di-

rectly in the ARPS 3DVAR data assimilation system.

Reflectivity observations instead are interpolated to the

analysis grid from the observed radar reflectivity using

themethod developed in Zhang et al. (2005). For real-time

NWPapplications, theARPS3DVARhas often beenused

together with a cloud analysis scheme to analyze the hy-

drometeor variables and to adjust in-cloud temperature

andmoisture fields (Brewster et al. 2005;Hu et al. 2006a,b).

The cloud analysis is not necessary for the current appli-

cation because our focus is on the internal circulation

structures, including updrafts within thunderstorms.

Gao and Stensrud (2012) present a method for directly

assimilating reflectivity using (1) in a convective-scale,
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cycled 3DVAR simulation with hydrometeor classi-

fication in a reflectivity observation operator. In this

approach, a modified forward operator for radar re-

flectivity is developed that uses a background tem-

perature field from a numerical weather prediction

model for hydrometeor classification. The analysis

vector x in (1) is expanded to include rainwater, snow,

and hail. A diagnostic pressure equation derived from

the modified ARPS momentum equations also can be

used as an additional weak constraint in the 3DVAR

scheme, providing a coupling between the wind com-

ponents and the thermodynamic variables (Ge et al.

2012). Numerical experiments in Ge et al. (2012) show

that the use of new equation constraints can speed up

the spinup of precipitation during the intermittent

data assimilation process and improve the follow-on

forecasts in terms of the general evolution of storm

cells and mesocyclone rotation. However, in the cur-

rent study, for simplicity and computational speed,

only the mass continuity constraint is included and only

radar radial velocity data are assimilated. The more ad-

vanced features of the 3DVAR program will be in-

tegrated into our real-time applications in the future.

3. Input data and procedure description

The main concern in setting up the 3DVAR model to

run in real time for testing and evaluation within the

HWT is latency—the time delay between when the

WSR-88D observations arrive and the 3DVAR analysis

is available. If the time delay is too long, then forecasters

will largely ignore the analyses as thunderstorms evolve

quickly. However, a second concern is the analysis do-

main size. The challenge is to choose domains large

enough to contain the principal features of meteoro-

logical interest while maintaining an efficient computa-

tional advantage so that the analyses can be produced

fast enough to be of use in operations. Thus, for the

currently available computing power, the analysis do-

main size is limited to allow for a time delay of 4min or

less. With continued improvements in computational

power and code efficiency, this time delay could be de-

creased significantly. The domain selected has 2003 200

horizontal grid points with a 1-km grid spacing. In the

vertical direction, 31 terrain-following vertical layers are

used, with nonlinear stretching via a hyperbolic tangent

function, thus yielding an average vertical grid spacing

of 400m. To allow for forecasters within the HWT to

evaluate the 3DVAR products in various severe weather

scenarios, four separate sets of 200 km3 200 km 3DVAR

analyses within four different domains are provided at

any given time and updated with new observations every

5min.

A two-dimensional (2D) composite reflectivity prod-

uct covering the 48 contiguous United States from the

WDSS-II real-time system (Lakshmanan et al. 2007b) at

the National Severe Storm Laboratory (NSSL) is used

to identify the four locations (latitude, longitude) at risk

for severe storms. The quality control attempts to re-

move nonmeteorological echoes due to radar artifacts,

test patterns, anomalous propagation (Lakshmanan et al.

2007a), biological targets (Lakshmanan et al. 2010), and

persistent clutter (Lakshmanan et al. 2012). These four

locations are chosen based upon where the values of ra-

dar reflectivity are the largest from the most current 2D

reflectivity product, and are updated every 30min based

upon the most recent 5-min 2D composite reflectivity

field. To make sure that the four analysis domains have

little overlap, the selection of the second largest value of

reflectivity is required to be at least 100km away from the

location of the first largest value of reflectivity; the same

requirement is applied successively in the selection of the

other two domains, such that all identified locations are at

least 100km from one another. The identified four loca-

tions are then used as the centers for the four 3DVAR

analysis domains. Because of limitations of computer re-

sources, we want to select locations where severe weather

events are most likely to happen. The idea of developing

a weather-adaptive numerical model and observation

system was discussed in Droegemeier et al. (2005).

Once the analysis domains are selected, the next step

is to include the necessary background data. Terrain

data are interpolated onto the selected analysis do-

mains. The latest available NCEP operational NAM

(Janjic et al. 2003) analysis and forecasts are obtained

and interpolated onto the 3DVAR domains using lin-

ear interpolation in time and quadratic interpolation in

space. The NAM model is a regional mesoscale fore-

cast system based on the WRF common modeling in-

frastructure, currently running with 12-km horizontal

grid spacing and 60 vertical layers. New NAM fore-

casts are produced every 6 h from 0000, 0600, 1200, and

1800 UTC, with forecast output available every 3 h out

to 84 h. The most recent NAM forecast cycle is used to

provide the background data for the 3DVAR.

The third step is to determine how many operational

WSR-88Ds contain relevant data within each of the four

selected domains. To ensure maximum data coverage,

a larger domain of 500 km 3 500 km with the same

center location is used to determine which WSR-88Ds

are needed in the 3DVAR analysis. Observations from

the selected WSR-88D locations are then obtained in

real time in their raw data format from Integrated Ro-

bust Assured Data Services (IRADS) of the University

of Oklahoma with a data latency of about 10–20 s from

the end of the volume scan. The necessary quality control
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steps, including velocity dealiasing and ground clutter

removal, are performed on the observations from each

radar individually. After the quality control is completed,

a three-dimensional interpolation scheme with a second-

order local polynomial function fitting of the radar data

onto the analysis grids is performed (Daley 1992).

The 3DVAR analysis is then completed using both

the background field obtained from the NAM and the

interpolated and quality-controlled WSR-88D data us-

ing a quasi-Newton descent algorithm to solve (1) follow-

ing Liu and Nocedal (1989). Once the analysis is complete,

postprocessing occurs, which includes identifying the

positions of supercells, and obtaining two-dimensional

composite vertical vorticity and vertical velocity tracks,

as well as various other fields from the analyses.

The complete 3DVAR real-time system procedure is

shown schematically in Fig. 2 and is performed every

5min using a local computer with 128 processors (each

domain with 32 processors) and Message Passing In-

terface (MPI) supported computational capacity (Gropp

et al. 1999). The MPI implementation of the 3DVAR

utilizes a domain-decomposition scheme that is com-

monly used with NWP models. The analysis domain is

evenly divided into patches in both the west–east and

south–north directions. The cost function is computed

separately over each patch in parallel, and then the

summation is collected. The arrays that are used to hold

the analysis variables in the computer memory are ex-

tended with one extra grid in each horizontal direction

for handling the linear interpolations of variables from

the model grid space to the observation space. With

this implementation the computation order of the cost

function is inevitably changed. Considering the com-

puter representation error for a floating point number, it

is impossible to obtain the identical analysis as results

from a serial program. The differences, however, are

very small and practically insignificant for storm analysis

applications. Furthermore, the representation error can

be reduced by increasing the number of representation

digits (e.g., using double precision floating numbers).

One of the difficult parts of the parallelization is de-

signing an efficient parallel algorithm for the recursive

filter operations. A simple parallel scheme that advances

the recursive filter patch by patch in each horizontal

direction is used in the 3DVAR scheme. This scheme

achieves a moderate level of parallelization with a sim-

ple and straightforward code implementation. Fortu-

nately, the computation of recursive filters only accounts

for a small amount of the whole analysis so the impact

to the total parallel performance by using such a simple

scheme is not significant. On average, each analysis is

finished in about 4min or less and typically three or four

radars are included. As an initial application, the focus is

on the 3D wind analyses and wind-derived variables,

such as vertical velocity and vorticity. In the future, with

available enhancements to the 3DVAR and the use of

additional nonradar observations, other model vari-

ables, such as potential temperature, and humidity and

hydrometeor fields, could also be provided.

4. Some preliminary results

The reliability and accuracy of the ARPS 3DVAR

system for severe thunderstorm analysis have been

FIG. 2. Flowchart showing the weather-adaptive 3DVAR system.
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illustrated by a number of numerical experiments with

both simulated and real data cases (e.g., Gao et al.

1999, 2002, 2004; Hu et al. 2006b; Ge et al. 2010, 2012;

Stensrud and Gao 2010; Schenkman et al. 2011; Zhao

et al. 2012). Examples of successful applications of the

system include real-time low-level wind analyses (Gao

et al. 2010) and initializing high-resolution real-time

severe weather forecasts (Brewster et al. 2010) using

radar data from the Engineering Research Center for

Collaborative Adaptive Sensing of the Atmosphere

(CASA) IP1 network supported by National Science

Foundation (McLaughlin et al. 2009). The system also

has been used since 2008 to provide initial conditions for

very high-resolution (1–4-km grid spacing) deterministic

and ensemble WRF model runs that assimilate WSR-

88D radar data over a continental U.S. domain in sup-

port of the HWTExperimental Forecast Program (EFP;

Xue et al. 2008). The HWT/EFP is focused on the use of

computer models of the atmosphere to improve pre-

dictions of hazardous and convective weather events

from a few hours to a week in advance.

To assess the potential usefulness of the weather-

adaptive real-time analysis system based on the ARPS

3DVAR to warning operations, it was informally tested

and evaluated by forecasters who participated in an-

other HWT program—the Experimental Warning Pro-

gram (EWP) in 2010. The 3DVAR system was run

intermittently from 15April to 15 June during the spring

of 2010. During this time period, over a dozen severe

weather events were successfully and automatically iden-

tified and analyzed by the 3DVAR system. For all these

cases, the storm automatic positioning system performed

very well. In general, strong circulation patterns and

vertical velocities associated with severe weather events

were all successfully analyzed and identified. These

analyses not only collocated quite well with synthe-

sized reflectivity fields from multiple radars, but also

agreedwell with archived StormPrediction Center (SPC)

storm reports, which provide data about severe weather

events including tornadoes, hailstorms, and strong wind

events. The performance of the system, including the

automatic storm positioning capability, on four tornadic

supercell cases observed during this time period is ex-

amined below.

a. The 20 April tornadic supercell storm in the Texas
Panhandle

The first case is a tornadic supercell that occurred on

20–21 April 2010 over the Texas Panhandle. A single

supercell was observed over a 4-h period from 2200UTC

20 April to 0200 UTC 21 April. At least two tornadoes,

large hail, and strong winds were reported during the

lifetime of the storm (Fig. 3a). Radial velocity observa-

tions from several nearbyWSR-88Ds, including those at

Amarillo (KAMA) and Lubbock (KLBB) in Texas, and

Cannon Air Force Base (AFB), New Mexico (KFDX),

were incorporated into the 3DVAR analyses (Fig. 3b).

The supercell storm started near the New Mexico–

Texas state line. During the first 2 h, the circulation in

the stormwas not very strong, but themesocyclonewithin

the supercell intensified just prior to 0000 UTC 21April.

Near 0004 UTC the first weak tornado was reported,

after which the storm continued to develop and grew

in intensity. The automated floating 3DVAR domain

followed the evolution of this storm very closely. The

analyzed horizontal winds, vertical vorticity, and the

FIG. 3. Texas Panhandle tornadic storm event on 20 Apr 2010. (a) The storm report from SPC and (b) the illustration of the 3DVAR

analysis domain. The inner domain of 200 km 3 200km is used for 3DVAR analysis. The outer domain of 500 km 3 500 km is used to

identify WSD-88D radars to be used. WSD-88D radars used are KAMA, KFDX, and KLBB.
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FIG. 4. The synthesized reflectivity (color shaded, dBZ), horizontal wind fields (vectors, m s21), and vertical vorticity (contour interval is

2 3 1023 s21) at 3 km AGL using data from WSR-88D radars shown in Fig. 3b, at (a) 0035, (b) 0040, (c) 0045, (d) 0050, (e) 0055, and

(f) 0100 UTC 20–21 Apr 2010 near Umbarger, TX.Maroon line denotes location of cross sections in Fig. 5. Black box in (a) is the zoom-in

area for Fig. 6.
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interpolated radar reflectivity at 3 km AGL suggest that

the storm was at peak intensity from 0030 to 0100 UTC

21 April (Fig. 4). During this half-hour period, a strong

closed circulation pattern was evident at 3 kmAGLwith

maximum vertical vorticity above 0.01 s21 at almost all

times. The strong mesocyclone (indicated by the vertical

vorticity) was approximately collocated with the re-

flectivity core, and extended through about 10 km in

height at both 0045 and 0050UTC (Fig. 5). A weak-echo

region (WER) was also evident near the center of the

storm below 4km AGL (Figs. 5a and 5c) and low-level

storm inflowwas clearly shown.A second tornado touched

down near 0047 UTC (SPC storm reports; Fig. 3a). A

gradual occlusion of the hook echo and wind fields oc-

curred from 0035 to 0100 UTC (Figs. 6a–f), and it ap-

pears that the second tornado touched down in the

middle of this occlusion process (from 0045 to 0055 UTC).

During this period, this storm also produced large hail

according to SPC storm reports (Fig. 3a).

b. The 25 May tornadic supercell storm in west
Kansas

The second case is a tornadic supercell that took place

on 25 May 2010 near Gove, Kansas. Two supercells

developed over a 3-h period and produced over a dozen

tornadoes (Fig. 7a). Several nearby WSR-88Ds, in-

cluding Goodland, Kansas (KGLD); Hastings, Ne-

braska (KUEX); Vance AFB, Oklahoma (KVNX); and

Dodge City, Kansas (KDDC), were automatically iden-

tified by the 3DVAR domain selection system, and ob-

servations from these radars were used in the 3DVAR

analyses (Fig. 7b).

The 3DVAR system captured the evolution of two

supercell storms from 0100 to 0130UTC 26May. During

this half-hour period, a hook echo for the strongest

storm cell in the center of the analysis domain is seen in

the reflectivity field at 3 km AGL (Figs. 8a–f). This cell,

along with the weaker, rotating-storm cell to the south-

west, moved slowly from west to east across the center

of the analysis domain. The wind analyses at 3 km AGL

indicate a very strong midlevel cyclonic circulation with

vertical vorticity .0.01 s21 within the central, stronger

storm that persisted and was collocated with the re-

flectivity hook echo throughout the period. The meso-

cyclone maintained its strength with a vertical extent

consistently about 10 km deep AGL (not shown). The

storm produced large hail throughout the analysis pe-

riod and tornadoes were reported at 0106, 0114, and

FIG. 5. (a),(b) Vertical vorticity (black contours), (c),(d) wind vectors, and (a)–(d) reflectivity (color shaded) along a vertical slice

indicated in Fig. 4, at (left) 0045 and (right) 0050 UTC 20 Apr 2010 near Umbarger. Between these two time levels, a tornado touched

down.
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FIG. 6. The synthesized reflectivity (color shaded, dBZ) and horizontal wind fields (vectors, m s21), at 1.5 kmAGL

zoomed in from the box in Fig. 4a, at (a) 0035, (b) 0040, (c) 0045, (d) 0050, (e) 0055, and (f) 0100UTC 20–21Apr 2010

near Umbarger.
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0128 UTC in Gove, Kansas (SPC storm reports; Fig. 7a);

the timing of the events agrees quite well with the

presence of the strong mesocyclone embedded in this

supercell.

c. The 31 May tornadic supercell storm in Colorado
and the Oklahoma panhandle

The third case examined is a tornadic supercell event

that occurred along the Colorado and Oklahoma border

on 1 June 2010 (Fig. 9a). Four nearby WSR-88Ds, in-

cluding KAMA; Pueblo, Colorado (KPUX); KGLD;

and KDDC, were selected by the 3DVAR system and

used in the analyses (Fig. 9b). However, all four of these

WSR-88Ds are located farther away from the storm

center than seen in previous cases (Fig. 9). As indicated

in Fig. 1, the midlevel coverage from the WSR-88D

network is not as complete across the Oklahoma pan-

handle and the low-level coverage over the domain is

nonexistent. However, important storm structures in the

middle and upper levels were still detected within the

3DVAR analyses (Figs. 10 and 11). A strong midlevel

mesocyclone was evident with maximum vertical vor-

ticity greater than 0.01 s21 maintained throughout the

0100–0125 UTC period (Figs. 10a–f). The analysis at

1 km AGL shows no sign of a severe storm, which is

expected because there are no radar observations at this

low level. Vertical slices through the center of the storm

indicate that there were no radar echoes below 2km

AGL, though a strong, narrow mesocyclone is embed-

ded in the reflectivity core above 2 km AGL (Figs. 11a

and 11b) and the updraft core matches quite well with

the reflectivity observations in the middle and upper

parts of the storm (Figs. 11c and 11d). During this time

period, several tornadoes were observed near Campo,

Colorado, and reported to last for at least several min-

utes (Fig. 9a). This case shows that mesocyclones asso-

ciated with tornadoes can still be detected in a 3DVAR

analysis using data from the WSR-88D radar network

even when the low-level radar coverage is not very good.

d. The 10 June tornadic supercell storm in Denver,
Colorado

The final case is a tornadic supercell event that took

place near Denver, Colorado, on 11 June 2010 (Fig. 12a).

Observations from four WSR-88D radars, including

Denver, Colorado (KFTG); Cheyenne,Wyoming (KCYS);

KGLD; and KPUX, were identified and used in the

3DVAR analyses (Fig. 12b). The two supercell storms

that produced tornadoes were located in close proximity

to KFTG. There were several storm clusters that prop-

agated from west to east within the analysis domain,

with the distribution of convective available potential

energy (CAPE) generally increasing from west to east

(Fig. 13). With strong easterly inflow, both storms were

ingesting environmental air with CAPE in excess of

2000 J kg21, with a tongue of higher CAPE air flowing

into the southern storm. This ease of visualization of

environmental and storm information overlaid with

each other is one benefit of this 3DVAR approach. Two

major supercells near the center of the analysis domain

moved slowly eastward during the analysis period from

0100 to 0145 UTC. The northern storm produced the

first tornado, but weakened by 0130 UTC while propa-

gating to the east. The southern storm cell intensified

throughout the period as it moved east and produced

three tornadoes at 0010, 0120, and 0146 UTC (Fig. 12a).

The mesocylone within the southern primary reflectivity

core was even narrower and more concentrated than is

FIG. 7. As in Fig. 3, but for 25 May 2010 KS tornadic storm event. WSD-88D radars used are KGLD, KUEX, KDDC, and KVNX.
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FIG. 8. As in Fig. 4, but for the Gove, KS, tornadic supercell event, using data from radars shown in Fig. 7, at (a) 0100, (b) 0105, (c) 0110,

(d) 0115, (e) 0120, and (f) 0125 UTC 26 May 2010.
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seen in the previous cases with a deeper vertical extent

of nearly 15 km (Figs. 14a and 14b). Associated with the

mesocyclone and reflectivity core, a strong narrow up-

draft core was also embedded in this southern supercell

(Figs. 14c and 14d). A downdraft was also evident on

both the upwind and downwind flanks of the supercell’s

updraft, which agrees with classic supercell conceptual

models (Ray and Wagner 1976; Lemon and Doswell

1979). These downdrafts occur outside of the reflectivity

region and their strengths may be influenced by the

background fields provided by the NAM forecasts sub-

ject to mass continuity constraint. A reflectivity over-

hang and a weak-echo region associated with strong

rotational inflow were also captured by the analyses

(Fig. 14).

5. Summary and concluding remarks

Doppler radar is a fundamental tool for severe storm

monitoring and nowcasting activities. Forecasters ex-

amine real-time WSR-88D observations and radar al-

gorithm products, and use their considerable experience

and situational awareness to issue severe stormwarnings

that help protect the public from hazardous weather

events. However, there are situations for which even the

best forecasters find it challenging to make a quick and

sound judgment based on the information from a mul-

titude of sources. To take more complete advantage of

the full information content from the current WSR-88D

radar network and high-resolution NCEP operational

model analysis and forecast products, we developed

a weather-adaptive 3DVAR analysis system for severe

weather detection. The focus of this 3DVAR system is

the detection of mesocyclones at middle atmospheric

levels between 3 and 5 km AGL.

This radar-based analysis system has been adapted

from the 3DVAR method originally developed for ini-

tializing the ARPS forecast model for storm-scale pre-

dictions, and is shown to have the potential to provide

improved information for making severe weather warn-

ing decisions. Some key features of the system include

1) incorporating radar observations from multiple WSR-

88DswithNCEP forecast products as a background state,

2) the ability to automatically detect and analyze severe

local hazardous weather events at 1-km horizontal res-

olution every 5min in real time based on the current

weather situation, and 3) the identification of strong

midlevel circulations embedded in thunderstorms. While

designed for real-time testing, the analysis system also

can be run offline. This enables, for example, the study

of a specific area in greater detail or the investigation

of the evolution and lifetime of certain kinds of severe

weather not analyzed by this system previously.

The potential usefulness of this system has been de-

monstrated by examining the 3DVAR analyses of super-

cells from four real-data cases during spring 2010. For

cases in which the WSR-88Ds are located close to the

storms, including the 20 April Texas Panhandle and the

10 June Denver tornadic supercells, the 3DVAR anal-

yses contain detailed storm structures, including meso-

cyclones as indicated by strong midlevel vertical vorticity

that were qualitatively verified by reports of either ob-

served tornadoes, large hail, or strong damaging winds.

Even for cases in which the WSR-88Ds are located

FIG. 9. As in Fig. 3, but for the Campo, CO, tornadic storm event on 31 May 2010. WSD-88D radars used are KGLD, KPUX, KDDC,

and KAMA.
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FIG. 10. As in Fig. 4, but for a tornadic supercell event near the boundary of CO andOKusing data from radars shown in Fig. 9, at (a) 0100,

(b) 0105, (c) 0110, (d) 01115, (e) 0120, and (f) 0125 UTC 1 Jun 2010. Maroon line denotes location of cross sections in Fig. 11.
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farther away from the storms, such as the 31 May 2010

Oklahoma panhandle tornadic storm, the middle and

upper-level mesocyclones, with associated strong verti-

cal velocity, still can be identified. This study represents

the first step in the assessment of this type of analysis

approach for use in severe weather warnings. Thoughwe

have demonstrated the usefulness of this type of high-

resolution analysis with four tornadic thunderstorms,

this system cannot resolve tornadoes directly. However,

the detection of midlevel mesocyclones can help fore-

casters increase their confidence in issuing severe

weather warnings.

In both the 2011 and 2012 HWT EWP spring experi-

ments, this weather-adaptive 3DVAR system has been

improved, and the analyses tested and evaluated by

National Weather Service forecasters who participated

in HWT EWP program. General positive feedbacks

were obtained from the forecasters. For example, one

forecaster pointed out that the 3DVAR ‘‘highlighted

the most intense areas of the storm and provided in-

formation on cycling mesocyclones,’’ while another

stated that ‘‘it is helpful when the forecaster is sitting

on the fence’’ if there is a need to issue a severe

weather warning. More results and feedbacks from

FIG. 11. As in Fig. 5, for a tornadic supercell event near the boundary of CO and OK, valid at (left) 0100 and (right)

0105 UTC 1 Jun 2010.

FIG. 12. As in Fig. 3, but for the Denver tornadic storm event on 10 Jun 2010. WSD-88D radars used are KGLD,

KFTG, KPUX, and KCYS.
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FIG. 13. As in Fig. 4, but for a tornadic supercell event near Denver using data from radars shown in Fig. 12, at (a) 0100, (b) 0105,

(c) 0110, (d) 0115, (e) 0130, and (f) 0145 UTC 10 Jun 2010. Purple contours are for CAPE (contour interval is 300 J kg21). Maroon line

denotes location of cross sections in Fig. 14.
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the forecasters will be reported upon in follow-up

publications.

Future work includes assimilating additional datasets

into this implementation of the 3DVAR system, such

as observations from surface mesonets, and the testing

of the enhancements to the 3DVAR system to allow

for additional equation constraints (e.g., a pressure di-

agnostic equation) and the direct assimilation of radar

reflectivity observations to provide information on hy-

drometeor types and amounts (Gao and Stensrud 2012).

The new system may have greater utility to forecasters

than currently available systems. For radar quality con-

trol, ongoing work involves incorporating the WDSS-II

radar reflectivity quality control (Lakshmanan et al.

2010, 2012), velocity dealiasing (Jing andWiener 1993),

and virtual volume algorithms (Lynn and Lakshmanan

2002) into the 3DVAR radar data preprocessing

program.
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