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ABSTRACT

Led by NOAA’s Storm Prediction Center and National Severe Storms Laboratory, annual spring

forecasting experiments (SFEs) in the Hazardous Weather Testbed test and evaluate cutting-edge

technologies and concepts for improving severe weather prediction through intensive real-time fore-

casting and evaluation activities. Experimental forecast guidance is provided through collaborations with

several U.S. government and academic institutions, as well as theMet Office. The purpose of this article is

to summarize activities, insights, and preliminary findings from recent SFEs, emphasizing SFE 2015.

Several innovative aspects of recent experiments are discussed, including the 1) use of convection-

allowing model (CAM) ensembles with advanced ensemble data assimilation, 2) generation of severe

weather outlooks valid at time periods shorter than those issued operationally (e.g., 1–4 h), 3) use of

CAMs to issue outlooks beyond the day 1 period, 4) increased interaction through software allowing

participants to create individual severe weather outlooks, and 5) tests of newly developed storm-

attribute-based diagnostics for predicting tornadoes and hail size. Additionally, plans for future exper-

iments will be discussed, including the creation of a Community Leveraged Unified Ensemble (CLUE)

system, which will test various strategies for CAM ensemble design using carefully designed sets of en-

semble members contributed by different agencies to drive evidence-based decision-making for near-

future operational systems.

1. Introduction

Annual spring forecasting experiments (SFEs) con-

ducted in the National Oceanic and Atmospheric Ad-

ministration’s (NOAA) Hazardous Weather Testbed

(HWT) provide opportunities for testing new tools and

techniques in forecasting severe thunderstorms. Jointly

run by the National Severe Storms Laboratory (NSSL)

and the Storm Prediction Center (SPC), SFEs

provide a two-way research-to-operations/operations-

to-research pathway for enhanced understanding and

problem-solving regarding severe thunderstorm fore-

casting. The real-time SFE takes place during the

spring severe weather season, providing realistic op-

erational pressure for participants as each day

presents a unique set of conditions regarding severe

weather potential.

Formal SFEs began in 2000; Kain et al. (2003) em-

phasize that collaboration is the crux of the SFEs,
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noting that ‘‘the interaction between forecasters and

numerical modelers was the most rewarding part of

(the) Spring Program.’’ This collaboration has created

greater forecaster understanding of numerical models

and greater researcher understanding of operational

challenges (Kain et al. 2003). Clark et al. (2012a) fur-

ther emphasize the SFE’s collaborative aspects, de-

tailing the extension of severe thunderstorm forecasts

issued during SFE 2010 to aviation and heavy-

precipitation interests.

While SFEs involve real-time forecasting, daily

evaluation exercises are another key aspect of SFEs

(Clark et al. 2012a). Evaluating cutting-edge tech-

niques such as experimental severe weather guidance

derived from convection-allowing models (CAMs) al-

lows participants to grasp the strengths and weaknesses

of each technique and assess its readiness for opera-

tional adoption. Subjective evaluations illustrate the

impressions participants have, while objective evalua-

tions often take place after the SFEs, when time

permits a thorough examination of the large volume of

data (e.g., Johnson et al. 2013; Smith et al. 2014; Surcel

et al. 2014; Duda et al. 2014).

Since 2007, the Center for Analysis and Prediction of

Storms (CAPS) at the University of Oklahoma has

provided a real-time continental United States

(CONUS) forecast at 4-km grid spacing from a multi-

model storm-scale ensemble forecast (SSEF) system to

the SFE (Kong et al. 2015 and references therein). This

system was reduced to 3-km grid spacing for SFE 2015.

SFE 2015 also included five other unique CAM en-

sembles. Multiple organizations contributed numerical

weather prediction (NWP) forecasts, including the

Environmental Modeling Center (EMC), the Earth

Science Research Laboratory’s Global Systems Di-

vision (ESRL/GSD), NSSL, CAPS, the National Cen-

ter for Atmospheric Research (NCAR), and the 557th

Weather Wing [formerly the U.S. Air Force Weather

Agency (AFWA)]. Experimental deterministic guid-

ance was also featured during SFE 2015, particularly

three versions of the Unified Model (UM; Davies et al.

2005) from theMetOffice and theModel for Prediction

Across Scales (MPAS; Skamarock et al. 2012)

from NCAR.

SFE 2015 pursued a number of goals consistent with

the visions of both the Forecasting a Continuum of

Environmental Threats (FACETs; Rothfusz et al.

2014) and Warn-on-Forecast (WoF; Stensrud et al.

2009) initiatives. These programs aim to generate

probabilistic hazard information (PHI), to go beyond

the current binary paradigm of products such as

watches, warnings, and advisories. Under a probabi-

listic paradigm, forecasters can give users more

specific, understandable information that they can

assess to take action based on their individual needs.

Developing probabilistic guidance to support this new

paradigm requires cooperation between the opera-

tional forecasting and research communities, making

the SFEs optimal for exploration of probabilistic

forecasts. SFE 2015’s goals fall into two categories

consistent with the visions of FACETs and WoF:

1) operational product and service improvements and

2) applied science activities. The operational product

and service improvements goals focused on model

guidance–driven forecast generation by participants,

while applied science activities focused on the evaluation

of new forecasting tools and forecast types, including

new numerical guidance and postprocessing tech-

niques. Numerical guidance characterization sup-

ported both types of goals by determining how to

incorporate guidance into the forecasts and evaluating

model output fields such as simulated reflectivity and

hail-size estimates.

Introduced in SFE 2014 and continued in SFE 2015

is the incorporation of individual participant forecasts,

essentially forming an ‘‘ensemble’’ of participant

forecasts (Coniglio et al. 2014). Prior SFEs solely is-

sued group forecasts, reaching a consensus on the

placement of the day’s probability contours. While

group discussion and consensus forming remained an

integral part of the day 1 full period forecasting pro-

cess, individuals then created higher time frequency

forecasts. These forecasts tested the feasibility of op-

erationally issuing more forecasts, each covering a

shorter time window, and the subsequent increase in

forecaster workload. Individuals’ forecasts also

illustrated a variety of forecasting approaches, with

differing reliance on observations, model guidance,

and prior forecaster experience.

Also new to SFE 2015 are the evaluation capabilities

of participants using laptops with Internet connectivity.

Previously, evaluations were also consensus based.

However, laptop usage enabled approximately five in-

dependent forecaster ratings per day for each evalua-

tion. Although the SFE leaders had documented

previous experiments’ discussions, enabling individuals

to comment on products provided a more complete

record of opinions, suggestions, and reflections on each

product’s operational potential than in previous

experiments.

This paper provides a broad overview of SFE 2015

and its innovations, which advance the two-way re-

search-to-operations/operations-to-research pathway

inherent to SFEs. Section 2a of this paper describes

the NWP systems utilized throughout SFE 2015, and

section 2b elaborates upon the daily activities of the
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SFE. Section 3 highlights preliminary results from the

SFE, including subjective and objective evaluations.

Finally, section 4 provides a summary and evaluation

of SFE 2015, along with plans and directions for

future SFEs.

2. Experiment description

a. Experimental numerical guidance

SFE 2015 focused on experimental probabilistic

forecast generation informed by a suite of experimen-

tal NWP forecasts. Four of the six experimental en-

sembles extended into the day 2 period, allowing for

exploration of longer-range CAM forecasts. All

models detailed below produced hourly maximum

fields (Kain et al. 2010) of explicit storm attributes such

as simulated reflectivity and updraft helicity (UH) for

forecasting and evaluation purposes.

1) NSSL-WRF AND NSSL-WRF ENSEMBLE

Since the fall of 2006, SPC forecasters have used output

from an experimental 4-km grid-spacing version of the

Advanced Research version of the WRF Model (WRF-

ARW; Skamarock et al. 2008) produced by the NSSL

(Kain et al. 2010). Currently, this model runs twice daily at

0000 and 1200 UTC over a full-CONUS domain, with

forecasts to 36h [Table 1, ensemble member cn (control)].

Nine additional 4-km WRF-ARW members are run at

0000 UTC to 36h by varying the initial conditions and

lateral boundary conditions of the control to compose the

10-member NSSL-WRF ensemble (Table 1; Gallo et al.

2016). These members use the 0000 UTC National

Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) analysis or the 3-h

Short-Range Ensemble Forecast (SREF; Du et al.

2014) system forecasts initialized at 2100 UTC for

their initial conditions and corresponding GFS or

SREF member forecasts as lateral boundary

conditions. The physics parameterizations among all

members are identical.

2) CAPS STORM-SCALE ENSEMBLE FORECAST

SYSTEMS

CAPS provided two ensembles to SFE 2015. The

20-member SSEF system included 12 members that

accounted for as many sources of forecast error as pos-

sible (e.g., initial conditions, boundary conditions, mul-

tiphysics; Table 2). These members were used to

generate probabilities of severe convective hazards. The

eight remaining members tested physics sensitivities.

WSR-88D data were used for data assimilation along

with available surface and upper-air observations em-

ploying the Advanced Regional Prediction System

(ARPS) three-dimensional variational data assimila-

tion (3DVAR)/cloud-analysis system (Xue et al. 2003;

Hu et al. 2006) to produce the control member. The

0000 UTC North American Mesoscale Forecast System

(NAM) model analysis on a 12-km grid was used as a

background for the analysis, and NAM forecasts pro-

vided boundary conditions. Perturbed members applied

initial condition and boundary condition perturbations

drawn from the SREF to the control analyses and

forecasts. The CAPS forecasts were run with 3-km grid

spacing and extended to 60h, supporting day 2 forecasts.

A separate 12-member ensemble of 60-h forecasts was

also produced on the same 3-km domain as the prior

SSEF system (Table 3) using XSEDE supercomputing

facilities (Towns et al. 2014). Rather than 3DVAR, the

ensemble Kalman filter (EnKF; Evensen 1994, 2003)

data assimilation (DA) method was used, specifically

the CAPS EnKF DA system (Xue et al. 2006; Wang

et al. 2013) that has been directly interfaced with the

WRF Model. Specifically, 40-member ensemble fore-

casts were launched from NAM analysis plus SREF

perturbations at 1800 UTC and run to 2300 UTC. The

configuration of this ensemble involved both initial

TABLE 1. NSSL-WRF ensemble specifications. All members use theWSM6 (Hong and Lim 2006), theMYJ (Mellor and Yamada 1982;

Janjić 1994, 2002) PBL scheme, and the Noah (Chen and Dudhia 2001) LSM. For radiation, all members use the RRTM (Mlawer et al.

1997; Iacono et al. 2008) longwave radiation and Dudhia (Dudhia 1989) shortwave radiation schemes.

Ensemble member No. of vertical levels Initial conditions Lateral boundary conditions Microphysics PBL

Cn 35 0000 UTC NAM 0000 UTC NAM WSM6 MYJ

2 35 0000 UTC GFS 0000 UTC GFS WSM6 MYJ

3 35 2100 UTC em_ctl 2100 UTC em_ctl WSM6 MYJ

4 35 2100 UTC nmb_ctl 2100 UTC nmb_ctl WSM6 MYJ

5 35 2100 UTC nmb_p1 2100 UTC nmb_p1 WSM6 MYJ

6 35 2100 UTC nmm_ctl 2100 UTC nmm_ctl WSM6 MYJ

7 35 2100 UTC nmm_n1 2100 UTC nmm_n1 WSM6 MYJ

8 35 2100 UTC nmm_p1 2100 UTC nmm_p1 WSM6 MYJ

9 35 2100 UTC nmb_n1 2100 UTC nmb_n1 WSM6 MYJ

10 35 2100 UTC nmb_p2 2100 UTC nmb_p2 WSM6 MYJ
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perturbations and mixed-physics options, to provide a

variety of inputs for the EnKF analysis. Each member

used theWRF single-moment 6-class (WSM6;Hong and

Lim 2006) microphysics scheme with different intercept

parameter settings for rain and graupel and the density

of graupel, and included relatively small random per-

turbations (0.5K for potential temperature and 5% for

relative humidity) with recursive filtering of approxi-

mately 20-km horizontal correlations scales. EnKF cy-

cling utilizing radar data was performed every 15min

from 2300 to 0000 UTC, using the 40-member ensemble

as background. In addition to radar data, only Meteo-

rological Assimilation Data Ingest System (MADIS;

Miller et al. 2005, 2007) surface observations, profiler, and

radiosondes were assimilated at 2300 and/or 0000 UTC.

A 12-member ensemble forecast to 60h followed, using

the last EnKF analyses at 0000 UTC (Table 3).

3) SPC STORM-SCALE ENSEMBLE OF

OPPORTUNITY

The Storm-Scale Ensemble of Opportunity (SSEO;

Jirak et al. 2012b) is a seven-member, multimodel,

TABLE 2. SSEF ensemble specifications. All members use RRTMG radiation schemes. Microphysics schemes used include Thompson

(Thompson et al. 2004), Predicted Particle Properties (P3; Morrison and Milbrandt 2015), Milbrandt and Yau (M–Y; Milbrandt and Yau

2005), andMorrison (Morrison and Pinto 2005, 2006). Member 18 uses microphysics with two-category ice; all other P3 members use one-

category ice. Planetary boundary layer schemes include Yonsei University (YSU; Hong et al. 2006), Thompson-modified YSU (YSU-T),

and MYNN (Nakanishi and Niino 2004, 2006). Member 16 (Thompson ICLOUD53) accounts for the subgrid-scale clouds in the

RRTMG radiation scheme based on research by G. Thompson. Italicized members compose the HWT baseline SSEF.

Ensemble member No. of vertical levels Initial conditions Lateral boundary conditions Microphysics PBL

cn 51 0000 UTC ARPSa 0000 UTC NAMf Thompson MYJ

c0 51 0000 UTC ARPSa 0000 UTC NAMf Thompson MYJ

m3 51 cn 1 nmmb-p2_pert 2100 UTC SREF nmmb-p2 P3 MYNN

m4 51 cn 1 nmmb-n2_pert 2100 UTC SREF nmmb-n2 M–Y YSU

m5 51 cn 1 nmm-p1_pert 2100 UTC SREF nmm-p1 Morrison MYNN

m6 51 cn 1 nmmb-n1_pert 2100 UTC SREF nmmb-n1 M–Y MYJ

m7 51 cn 1nmmb-p1_pert 2100 UTC SREF nmmb-p1 P3 YSU

m8 51 cn 1 em-n1_pert 2100 UTC SREF em-n1 P3 MYJ

m9 51 cn 1 em-p2_pert 2100 UTC SREF em-p2 M–Y MYNN

m10 51 cn 1 nmmb-n3_pert 2100 UTC SREF nmmb-n3 Morrison YSU

m11 51 cn 1 nmmb-p3_pert 2100 UTC SREF nmmb-p3 Thompson YSU

m12 51 cn 1 nmm-n3_pert 2100 UTC SREF nmm-n3 Thompson MYNN

m13 51 cn 1 nmm-p2_pert 2100 UTC SREF nmm-p2 Morrison MJ

m14 51 0000 UTC ARPSa 0000 UTC NAMf Thompson MYNN

m15 51 0000 UTC ARPSa 0000 UTC NAMf Thompson YSU-T

m16 51 0000 UTC ARPSa 0000 UTC NAMf Thompson ICLOUD53 YSU-T

m17 51 0000 UTC ARPSa 0000 UTC NAMf M–Y MYJ

m18 51 0000 UTC ARPSa 0000 UTC NAMf P3-cat2 MYJ

m19 51 0000 UTC ARPSa 0000 UTC NAMf P3 MYJ

m20 51 0000 UTC ARPSa 0000 UTC NAMf Morrison MYJ

TABLE 3. SSEF EnKF ensemble specifications.

Ensemble member No. of vertical levels Initial conditions Lateral boundary conditions Microphysics PBL

enkf_cn 51 enk_m1a 0000 UTC NAMf Thompson MYJ

enkf_m6 51 enk_m2a 2100 UTC SREF nmmb-n1 M–Y MYJ

enkf_m9 51 enk_m6a 2100 UTC SREF em-p2 M–Y MYNN

enkf_m10 51 enk_m8a 2100 UTC SREF nmmb-n3 Morrison YSU

enkf_m5 51 enk_m10a 2100 UTC SREF nmm-p1 Morrison MYNN

enkf_m4 51 enk_m12a 2100 UTC SREF nmmb-n2 M–Y YSU

enkf_m3 51 enk_m17a 2100 UTC SREF nmmb-p2 P3 MYNN

enkf_m8 51 enk_m23a 2100 UTC SREF em-n1 P3 MYJ

enkf_m7 51 enk_m26a 2100 UTC SREF nmmb-p1 P3 YSU

enkf_m12 51 enk_m37a 2100 UTC SREF nmm-n3 Thompson MYNN

enkf_m11 51 enk_m39a 2100 UTC SREF nmmb-p3 Thompson YSU

enkf_mn_thom 51 enfamean_thom 0000 UTC NAMf Thompson MYJ

enkf_mn_wsm6 51 enfamean_wdm6 0000 UTC NAMf WSM6 MYJ

enkf_3dvar_thom 51 3dvar_thom 0000 UTC NAMf Thompson MYJ

enkf_3dvar_wsm6 51 3dvar_wdm6 0000 UTC NAMf WSM6 MYJ
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multiphysics ensemble consisting of deterministic

CAMs that is available year-round to the SPC (Table 4).

Individual members include one model produced by

NSSL, and six members produced by EMC. The en-

semble has been utilized in SPC operations since 2011

as a practical alternative to a formal storm-scale en-

semble (Jirak et al. 2012b), which is planned for im-

plementation in the next few years (G. Dimego 2016,

personal communication). Forecasts are initialized from

the operational NAM with no additional data assimila-

tion and are generated twice daily to 36h, starting at

0000 and 1200 UTC. These members differ slightly in

their grid spacing (3.6–4.2 km), vertical levels, and

length, with 36-, 48-, and 60-h forecasts. Microphysics

schemes of the members include WSM6, Ferrier

(Ferrier 1994), and Ferrier–Aligo (Aligo et al. 2014).

4) U.S. AIR FORCE WEATHER AGENCY 4-KM

ENSEMBLE

The U.S. Air Force 557thWeatherWing at Offutt Air

Force Base (USAF), Nebraska, ran a real-time 10-

member, 4-km WRF-ARW model ensemble (AFWA;

Kuchera et al. 2014) over the CONUS for SFE 2015 to

60h (Table 5). Forecasts were initialized twice daily, at

0000 and 1200UTC, using 6- or 12-h forecasts from three

global models: the Met Office UM, the NCEP GFS, and

the Canadian Meteorological Center Global Environ-

mentalMultiscale (GEM)model.Membermicrophysics

and boundary layer parameterizations varied, and no

data assimilation was performed during initialization.

5) NCAR ENKF-BASED ENSEMBLE

In SFE 2015, NCAR provided a new 10-member,

3-km grid-spacing ensemble with a CONUS domain

(Schwartz et al. 2015). EnKF data assimilation occurred

every 6 h with 15-km grid spacing using the following

observational sources: the Aircraft Communications

Addressing and Reporting System (ACARS), MADIS

surface observations,METARs and radiosondes, NCEP

marine data (MARINE), Cooperative Institute for

Meteorological Satellite Studies (CIMSS) cloud-track

winds (Menzel 2001), and the Oklahoma Mesonet sta-

tions. From this mesoscale background, 10 downscaled

3-km forecasts were initialized daily at 0000 UTC using

consistent physics with the data assimilation system,

sans cumulus parameterization. The first 10 members of

the analysis were selected after random shuffling be-

tween analyses and, therefore, differed daily. Each se-

lection of 10 members was equally representative of the

ensemble mean analysis and perturbations, and unique

TABLE 4. SSEO specifications as of 12 Aug 2014.

Ensemble member

No. of vertical

levels Initial conditions

Lateral boundary

conditions Microphysics PBL Grid spacing (km)

NSSL WRF-ARW 35 NAM NAM WSM6 MYJ 4

EMC HRW WRF-ARW 40 RAP GFS WSM6 YSU 4.2

EMC HRW WRF-ARW;

12-h time lag

40 RAP GFS WSM6 YSU 4.2

EMC HRW NMMB 40 RAP GFS Ferrier updated MYJ 3.6

EMC HRW NMMB; 12-h

time lag

40 RAP GFS Ferrier updated MYJ 3.6

EMC CONUS WRF-NMM 35 NAM NAM Ferrier MYJ 4

EMC CONUS NAM NEST 60 NAM NAM Ferrier–Aligo MYJ 4

TABLE 5. AFWA ensemble specifications. Land initial conditions for each member are from the NASA Goddard Space Flight Center

Land Information System (LIS; Kumar et al. 2006, 2008). The PBL schemes include theBouLac approach (Bougeault and Lacarrère 1989)
and the updated asymmetric convective model (ACM2). Members use either the Noah or the Rapid Update Cycle (RUC; Smirnova et al.

1997, 2000, 2015) LSM. Microphysics schemes include the WRF double-moment microphysics (WDM6; Lim and Hong 2010) and the

WRF single-moment 5-class microphysics (WSM5; Hong et al. 2004).

Ensemble member No. of vertical levels Initial conditions Lateral boundary conditions Microphysics PBL

1 27 UM UM WSM5 YSU

2 27 GFS GFS Morrison BouLac

3 24 GEM GEM WDM6 YSU

4 21 GEM GEM Ferrier BouLac

5 21 UM UM WDM6 ACM2

6 24 GFS GFS Thompson ACM2

7 24 GEM GEM Morrison YSU

8 24 GFS GFS Ferrier YSU

9 27 UM UM Thompson ACM2

10 21 GFS GFS WSM5 ACM2
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lateral boundary condition perturbations were member

dependent but used random draws from global back-

ground error covariances. (Schwartz et al. 2014). Both

the data assimilation scheme and the forecasts used

Thompson microphysics (Thompson et al. 2008), the

Rapid Radiative Transfer Model (RRTM;Mlawer et al.

1997) for global climate models (RRTMG; Iacono et al.

2008), Mellor–Yamada–Janjić (MYJ; Mellor and

Yamada 1982; Janjić 1994, 2002) planetary boundary

layer (PBL) parameterization, and the Noah land sur-

face model (LSM) (Chen and Dudhia 2001). The anal-

ysis system contained 50 members of constant physics

that were continuously cycled using the ensemble ad-

justment Kalman filter (EAKF; Anderson 2001, 2003)

within NCAR’s Data Assimilation Research Testbed

(DART; Anderson et al. 2009) software. The analyses

provided initial conditions for the daily forecasts, which

were run to 48 h. Both the analyses and the forecasts had

40 vertical levels.

6) UKMET CONVECTION-ALLOWING MODEL

RUNS

The Met Office provided three nested, limited-area

high-resolution versions of the UM to SFE 2015: two at

2.2-km grid spacing and one at 1.1-km grid spacing. The

operational 2.2-km version incorporated the UM

specifications currently run in the Met Office’s opera-

tional 1.5-km grid length, U.K.-centered model

(McBeath et al. 2014; Mittermaier 2014). The opera-

tional 2.2-km version provided for SFE 2015 had 70

vertical levels across a domain ranging from just west of

the Rocky Mountains to the western border of Maine.

Initial and lateral boundary conditions were taken from

the 0000 UTC 17-km global version of the UM without

additional data assimilation, and forecasts extended

to 48 h.

A unique aspect of the UM models was the configu-

ration of the turbulence parameterization. The opera-

tional run used a 3D turbulent mixing scheme consisting

of a locally scale-dependent blending of Smagorinsky

(Smagorinsky 1963) and boundary layer mixing

schemes, wherein stochastic perturbations were made to

the low-level resolved-scale temperature field in condi-

tionally unstable regimes to encourage the transition

from subgrid- to resolved-scale flows (Clark et al. 2015).

This turbulent mixing scheme differs from that of WRF,

which utilizes 3D Smagorinsky turbulence closure to

determine eddy viscosities in the absence of a PBL

scheme (Skamarock et al. 2008). The operational 2.2-km

run had single-moment microphysics (Wilson and

Ballard 1999) and diagnosed partial cloudiness

assuming a triangular moisture distribution whose width

is a function of height only.

The parallel version of the 2.2-km UM used an ex-

perimental parameterization of partial cloudiness,

expanding upon the prognostic scheme used in the Met

Office global UM. The parallel scheme includes an ad-

ditional parameterization of subgridmoisture variability

linked to the boundary layer turbulence. This version

was also run to 48 h and was otherwise identical to the

operational 2.2-km version of the UM.

Finally, the 1.1-kmhorizontal resolutionUMcentered

on Oklahoma ran over a 1300km 3 1800km domain

nested within the 2.2-km model. The initial and lateral

boundary conditions were taken from hour 3 of the

0000 UTC 2.2-km run to reduce spinup time and run to

33h. The 1.1-km run was otherwise identical to the

2.2-km operational run, thereby testing the horizontal

resolution effects.

7) MODEL FOR PREDICTION ACROSS SCALES

Another new deterministic modeling system provided

to SFE 2015 was the MPAS, which produced daily

0000 UTC initialized forecasts at 3-km grid spacing over

the CONUS. Forecasts from MPAS extended to 120h

(5 days), allowing for a unique glimpse into the long-

range capabilities of convection-allowing models. The

MPAS horizontal mesh is based on spherical centroidal

Voronoi tessellations (SCVTs; Satoh et al. 2008), al-

lowing for quasi-uniform discretization of the sphere

and local refinement with smoothly varying mesh spac-

ing between regions with differing resolutions. The

smoothly varying mesh eliminates major problems re-

garding transitions between the differing resolutions of

nests (Skamarock et al. 2012). MPAS has 55 vertical

levels, and the ‘‘scale aware’’ physics allows for the

output of explicit storm attributes for those regions at

convection-allowing resolution. Physics parameteriza-

tions include the MYJ PBL scheme and the WSM6

microphysics.

8) PARALLEL OPERATIONAL CAMS

During SFE 2015, SPC had access to parallel versions

of NAM and the High-Resolution Rapid Refresh

(HRRR; Alexander et al. 2010), which contains im-

provements over the operational versions of these

models (Table 6). The parallel versions were candidates

for operational implementation byNCEP. Parallel high-

resolution window (HRW) WRF-ARW and Non-

hydrostatic Multiscale Model on the B grid (NMMB;

Janjić and Gall 2012) runs included slight changes such

as increasing the number of vertical levels from 40 to 50,

updating the WRF version used, and modifying the

microphysics scheme in the WRF-ARW to decrease the

amount of falling graupel. The parallel HRRR included

changes in the physics to improve an afternoon warm,
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dry bias in the operational HRRR that had resulted in

the overprediction of convective initiation (Alexander

et al. 2015). These changes included updating the mi-

crophysics to the Thompson–Eidhammer scheme

(Thompson and Eidhammer 2014) and modifying the

Mellor–Yamada–Nakanishi–Niino (MYNN) PBL

scheme. Changes to the NAM nest included reducing

the grid spacing to 3 km in the parallel version, as op-

posed to the 4-km operational version. The parent NAM

providing the boundary conditions was also updated.

b. Daily activities

SFE 2015 was conducted weekdays from 4 May

through 5 June 2015, excepting the Memorial Day hol-

iday on 25 May 2015, for a total of 24 days. Each day,

participants completed the same activities, separated

broadly into experimental forecasts and evaluations.

1) EXPERIMENTAL FORECASTS

Daily activities were split between two ‘‘desks,’’ led by

SPC forecasters. Each desk focused on different exper-

imental forecasts and evaluations, and participants ro-

tated through desks during the week to gain exposure to

all of the experimental products. Besides generating

forecasts, participants at each desk evaluated prior fore-

casts and experimental numerical guidance. Activities

took place at roughly the same time each day (Table 7)

and mainly occurred over regions of the United States

that had the greatest potential for severe weather

during a given day.

Participants at the ‘‘individual hazards’’ desk issued

daily probabilistic forecasts of severe hail, damaging

wind, and tornadoes within 25 mi (40km) of a point,

consistent with the SPC’s definition of a severe con-

vective hazard, valid from 1600 to 1200 UTC the fol-

lowing day. Meanwhile, participants at the ‘‘total

severe’’ desk forecasted the risk of any severe hazard

following the SPC’s operational day 2 convective

outlook format, valid over the day 1 time period.

Participants at both desks then refined their day 1

forecasts into higher temporal resolution forecasts, with

the individual hazards desk issuing hail, wind, and tor-

nado forecasts for two 4-h periods: 1800–2200 and 2200–

0200 UTC. Individual hazard forecasters could use

temporally disaggregated first-guess probabilities gen-

erated from the full-period hazard outlook to constrain

and scale the magnitude and spatial extent of the SSEO

neighborhood probabilities of proxy variables (i.e., UH

for tornadoes, updraft speed for hail, and 10-m wind

speed for wind), ensuring consistency among the 24- and

4-h forecasts (Jirak et al. 2012a).

At the total severe desk, probabilistic forecasts were

manually stratified by participants and the desk lead fore-

caster into 1-h periods valid starting at 1800–0000 UTC.

The 2100–0000 UTC forecasts were updated each after-

noon, with two additional hourly forecasts issued from

0100 to 0200 UTC and from 0200 to 0300 UTC. This

approach was first attempted in 2014 and was continued

in 2015. Reliability diagrams computed after the SFE

2014, when hourly forecasts were issued from 1800 to

0300UTC (Coniglio et al. 2014; Fig. 1), showed that when

verified on a 40-km grid (;20-km neighborhood), par-

ticipants and the desk lead forecaster issued reliable

hourly probabilistic forecasts, but overforecasted severe

weather when verified on a 20-km grid (;10-km neigh-

borhood). These hourly forecasts were verified by

gridding local storm reports (LSRs) and grid points of the

NSSL’s Multi-Radar/Multi-Sensor maximum estimated

size of hail (MESH; Witt et al. 1998)$ 29mm (following

Cintineo et al. 2012), aggregated over the nine hourly

periods initially forecast (Fig. 1a) and the six afternoon

update hours (Fig. 1b).

Hourly probabilistic forecasts were tested with the

goal of introducing probabilistic severe weather fore-

casts on time scales that are currently addressed only as

needed operationally (e.g., severe thunderstorm/tornado

watches). Breaking down a full-period outlook into

hourly probabilities also tested seamlessly merging

TABLE 6. Parallel operational (op) CAM specifications. Initial and lateral boundaries include the GFS and the Rapid Refresh (RAP)

model (Benjamin et al. 2016).

Model

No. of vertical

levels Initial conditions

Lateral boundary

conditions Microphysics PBL

ESRL/GSD HRRR (op) 51 RAP version 2 (v2) RAP v2 Modified Thompson MYNN

ESRL/GSD HRRR (parallel) 51 RAP v3 RAP v3 Thompson–Eidhammer Modified

MYNN

EMC HRW WRF-ARW (op) 40 RAP v3 GFS WSM6 YSU

EMC HRW WRF-ARW (parallel) 50 RAP v3 GFS Modified WSM6 YSU

EMC HRW WRF-NMMB (op) 40 RAP v3 GFS Ferrier updated MYJ

EMC HRW WRF-NMMB (parallel) 50 RAP v3 GFS Ferrier updated MYJ

EMC CONUS NAM Nest (op) 60 GFS NAM Ferrier–Aligo MYJ

EMC CONUS NAM Nest (parallel) 60 GFS NAM Ferrier–Aligo MYJ
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probabilistic severe weather outlooks to probabilistic

severe weather warnings, consistent with the visions of

FACETs (Rothfusz et al. 2014) and WoF (Stensrud

et al. 2009).

All participants individually generated the hourly

forecasts using a web-based PHI tool (Karstens et al.

2014, 2015) to draw hazard probability contours (Fig. 2).

Five laptops were available at each desk. If there were

more participants than laptops at a desk, some partici-

pants worked in pairs to generate forecasts. Individual

forecasts (Figs. 2a–e) were later compared with those

issued by the desk lead (Fig. 2f). Participants sub-

jectively evaluated the previous day’s short-term

forecast issued by the desk lead on a 1–10 scale, with 10

being the highest rating, compared to a ‘‘practically

perfect’’ forecast (Brooks et al. 1998; Hitchens et al.

2013), which is analogous to probabilities a forecaster

would issue with prior perfect knowledge of the LSR

distribution (Fig. 2g). While preliminary LSRs provided

the largest component of ground truth, MESH, watches,

warnings, and observed composite reflectivity were also

considered.

The individual hazard desk’s day 2 outlooks explored

the feasibility of issuing individual hazard forecasts be-

yond day 1, utilizing experimental extended CAM

guidance. Currently, individual hazard forecasts are

TABLE 7. Daily activity schedule during the SFE in local time [central daylight time (CDT)].

0800–0845 CDT: Evaluation of experimental forecasts and guidance

Subjective rating relative to radar evolution/characteristics, warnings, and preliminary reports, and objective verification using

preliminary reports and MESH

Individual hazards desk Total severe desk

d Day 1 and 2 full-period probabilistic forecasts of

tornado, wind, and hail

d Day 1 four-hour period forecasts and guidance for

tornado, wind, and hail

d Days 1–3 full-period probabilistic forecast of

total severe

d Day 1 one-hour period forecasts and guidance for

total severe

0845–1115 CDT: Day 1 convective outlook generation

Hand analysis of 1200 UTC upper-air maps and surface charts

d Day 1 full-period probabilistic forecasts of tornado,

wind, and hail valid 1600–1200 UTC over the

mesoscale area of interest

d Day 1 four-hour probabilistic forecasts of tornado,

wind, and hail valid 1800–2200 and 2200–0200 UTCa

d Day 1 full-period probabilistic forecast of total

severe valid 1600–1200 UTC over the mesoscale

area of interest

d Day 1 one-hour probabilistic forecasts of total

severe valid 1800–0000 UTCa

1115–1130 CDT: Break

Prepare for map discussion and discuss relationship/translation from probabilities to watch

1130–1200 CDT: Map discussion

Overview and discussion of today’s forecast challenges and products

Highlight interesting findings from previous days

1200–1300 CDT: Lunch

Brief EWP participants at 1245

1300–1400 CDT: Day 2 convective outlook generation

d Day 2 full-period probabilistic forecasts of

tornado, wind, and hail valid 1200–1200 UTC

over mesoscale area of interest

d Day 2 or 3 full-period probabilistic forecasts of

total severe valid 1200–1200 UTC over mesoscale

area of interest

1400–1500 CDT: Scientific evaluations

d Convection-allowing ensemble comparison

(reflectivity and hourly maximum fields): SSEO,

AFWA, NSSL, SSEF, SSEF EnKF, and NCAR

EnKF

d EMC parallel CAM comparison (reflectivity):

NAM nest, High-Resolution Window (HiResW),

and HRRR

d Met Office CAMs: vertical resolution

d SSEF 3DVar vs EnKF comparison: impact on first

few hours of control forecast

d Model forecasts of explicit hail size: HAILCAST

and Thompson

d MPAS

1500–1600 CDT: Short-term outlook

d Update 4-h probabilistic forecasts of tornado, wind,

and hail valid 2200–0200 UTCa

d Generate 1-h probabilistic forecasts of tornado

valid 2200–0200 UTC

d Update and generate 1-h probabilistic forecasts of

total severe valid 2100–0200 UTCa

a Forecast that is also made by participants using the PHI tool on laptops.
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limited to day 1 in SPC operations. The total severe desk

also generated day 2 forecasts, as is done operationally

by SPC, but informed by experimental CAM guidance.

Day 3 forecasts were occasionally issued by the total

severe desk, depending on time constraints and the an-

ticipated severity of day 3. MPAS often heavily in-

formed these extended forecasts, particularly because

two prior runs encompassed a day 3 outlook, allowing

consideration of run-to-run consistency.

The final forecasting activity of each day was an up-

date to the earlier, participant-drawn forecasts informed

by group discussion and updated data. Individual hazard

participants updated their 2200–0200 UTC period,

and the total severe participants updated their hourly

forecasts from 2100 to 0000 UTC. Total severe par-

ticipants also issued new hourly probabilities for

0000–0200 UTC.

While issuing forecasts, participants had access to

high temporal resolution satellite imagery. The 1-min

visible and infrared satellite imagery from GOES-14

was made available experimentally to participants

during SFE 2015 from 18 May to 11 June. This special

1-min imagery, known as Super Rapid Scan Operations

for GOES-R (SRSOR), helps to prepare users for the

very high temporal resolution sampling capability of the

GOES-R Advanced Baseline Imagery (Line et al. 2016).

SFE 2015 participants primarily utilized the 1-min satel-

lite imagery to identify and track boundaries, assess cu-

mulus cloud trends, and diagnose areas of convective

initiation.

2) EVALUATIONS

In addition to forecasting activities, each partici-

pant performed multiple evaluations of the previous

day’s forecasts and model guidance. Participants

rated the desk lead’s forecasts and numerical guid-

ance on a scale from 1 (very poor) to 10 (very good)

and commented on particular strengths and weak-

nesses. This evaluation subjectively assessed the skill

of the first-guess guidance and the human-generated

forecasts for all periods (i.e., each hourly forecast at

the total severe desk was assigned a rating). Model

evaluations focused on the accuracy of the forecasts in

predicting severe convective threats (including con-

siderations such as the mode and timing of convective

initiation) by comparing forecasts of hourly maximum

fields (i.e., UH) relative to LSRs, maximum MESH,

and radar observations across the previous day’s do-

main. For ensembles extending to the day 2 period,

participants compared day 2 guidance to day 1 guid-

ance, to examine if the ensembles improved with shorter

lead times.

New experimental fields were also evaluated, such as

hail guidance available in the WRF-ARW (Adams-

Selin et al. 2014), tornado probabilities generated from

the NSSL-WRF ensemble (Gallo et al. 2016), and pre-

convective, model-generated environmental soundings

from the UM and the NSSL-WRF. In SFE 2015, the

WRF-HAILCAST algorithm was implemented in the

CAPS ensembles to predict hail size (Adams-Selin and

FIG. 1. Reliability diagrams generated for SFE 2014 hourly probabilistic forecasts for (a) the nine initial hourly

forecasts and (b) the six afternoon updates. The black dashed line indicates perfect reliability, and the colored

numbers along the x axis correspond to the number of forecasts with at least one forecast of that probability

magnitude. [From Coniglio et al. (2014).]
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Ziegler 2016). This algorithm is amodified version of the

coupled cloud and hail model found in Brimelow et al.

(2002) and Jewell and Brimelow (2009), which forecasts

the maximum expected hail diameter at the surface

using a profile of nearby atmospheric temperature,

moisture, and winds. TheWRF-HAILCASTmodel uses

WRF-generated convective cloud and updraft attributes

coupled with a physical model of hail growth to de-

termine hail growth from five predetermined initial

embryo sizes. Another hail size diagnostic, derived di-

rectly from the microphysical parameterizations and

developed by G. Thompson (Skamarock et al. 2008),

was new to SFE 2015 and was output by the NCAR

ensemble.

During SFE 2015, probabilistic tornado forecasts were

generated from the NSSL-WRF ensemble using 2–5-km

UH $ 75m2 s22 as a proxy for tornadoes, with varying

environmental constraints on probability generation.

The environmental constraints required the probabili-

ties to reflect UH only at grid points where certain en-

vironmental criteria were met in the previous hour: lifted

condensation level , 1500m, ratio of surface-based CAPE

to most unstable CAPE $ 0.75 (Clark et al. 2012b), and

significant tornado parameter (STP) $ 1 (Thompson et al.

2003). Gallo et al. (2016) elaborate on the probability gen-

eration details. Tornado reports from the LSR database

were overlaid on the forecast probabilities for subjective

evaluation, which considered the entire CONUS.

FIG. 2. (a)–(e) Five participant forecasts, (f) one SPC forecaster forecast, and (g) the practically perfect forecast valid 2300 UTC

19 May–0000 UTC 20 May 2015. Probabilistic contours indicate the likelihood of any type of severe weather (tornado, wind, or hail)

during the forecast period. Overlaid red dots are tornado LSRs, green dots are hail LSRs, and dark green triangles are significant hail (hail

diameter $ 2 in.) LSRs.
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Introduced in SFE 2014 and enhanced in SFE 2015

were three-dimensional animations of CAM output

(Clyne et al. 2007). The 3D imageswere generated from a

600km 3 600km subdomain of the CAPS control fore-

cast chosen daily based on prior forecasts and 2D output

fields. Selected 3Danimations were shown to participants

during the daily weather briefing, allowing a deeper in-

vestigation of the processes that lead to potential severe

weather threats. These four-dimensional depictions

showed features such as local UH [calculated at each

volume rendered in the visualization; Brewster et al.

(2016)], near-surface radar reflectivity, and near-surface

wind vectors (Fig. 3). Deep columns of UH indicated

supercellular storms, while animation of the images

showed the longevity of such columns: long-lived UH

columns often indicated heightened tornado risk.

The experimental forecasts for individual severe hazards

were objectively evaluated in near–real time for SFE

2015, a continuation of efforts that had started in SFE 2014

(Melick et al. 2014). For the probabilistic hail forecasts,

side-by-side spatial plots and corresponding forecast veri-

fication metrics for both LSR and MESH were provided

daily, allowing participants to test the usefulness of alter-

native verifying data sources. For the current work, com-

parisons ofMESHandLSRobservational datasets for hail

verification were made using the area under the receiver

operating characteristic curve (ROC curve; Mason 1982),

estimated using a triangular approach, whichmeasures the

ability of a forecast to discriminate between events (i.e.,

hail occurrence) and nonevents (i.e., no hail occurrence).

ROC area values range from 0 to 1, with 1 indicating

perfect discrimination and 0.5 indicating no forecast skill.

The experimental, probabilistic hail forecasts for the day

1 and 2 full periods and the 4-h periods of 1800–2200 UTC

and 2200–0200 UTC were verified using practically per-

fect forecasts, formed from the LSRs by applying a two-

dimensional Gaussian smoother (Brooks et al. 2003) to

reports within 40km of a 40km 3 40km grid box. For

effective comparison against LSRs, similar practically

perfect forecasts for MESH were produced by applying

the same smoother to a separate set of derived severe hail

events created by determining if MESH $ 29mm

(Cintineo et al. 2012) at each grid point. To avoid in-

clusion of spurious hourly MESH tracks, the presence of

at least one cloud-to-ground lightning flash detected by

the National Lightning Detection Network (Cummins

et al. 1998) within a 40-km radius of influence (ROI) was

also required. A 40-km ROI neighborhood maximum

was then applied to the final analyses. These quality

control measures are similar in nature to those outlined in

Melick et al. (2014). The components of the POD and the

probability of false detection (POFD) were aggregated

FIG. 3. 3D visualization of forecasted storms valid at 0100 UTC 28 May 2015, looking to the northwest from

western OK and showing near-surface wind vectors (white), near-surface radar reflectivity (2D color-shaded field),

and UH (red, positive; blue, negative). County boundaries are in white and state boundaries are in yellow.

AUGUST 2017 GALLO ET AL . 1551



over the subdomains that had the highest severe weather

potential for the given day across the experiment. In

addition to the objective verification, participants com-

mented on using MESH compared to LSRs for verifying

probabilistic severe hail forecasts.

In addition to the evaluation of severe convective haz-

ards, objective evaluation of the ensemble mean quanti-

tative precipitation forecasts (QPFs) also took place

during SFE 2015. The ensemble means were computed

using the probability matching technique (Ebert 2001)

over a domain encompassing approximately the eastern

two-thirds of the CONUS. This technique assumes that

the best spatial representation of the precipitation field is

given by the ensemble mean, and that the best probability

density function of rain rates is given by the ensemble

member QPFs of all n ensemble members.

Objective evaluation of these mean fields used the

equitable threat score (ETS; Schaefer 1990) for four

QPF thresholds. This analysis encompassed five of the

six ensembles within the experiment. The ETSmeasures

the fraction of observed and/or forecast events that were

correctly predicted, adjusted for correct yes forecasts

associated with random chance. The ETS was calculated

using contingency table elements computed every 3 h

(from forecast hour 3 through forecast hour 36) from

each grid point in the ensemble mean analysis domain,

using NCEP Stage IV precipitation data as truth. Fore-

casts and observations were regridded to a common

4-km grid prior to evaluation. An ETS of 1 is perfect,

and a negative score represents no forecast skill. Proba-

bilities of exceeding each threshold were computed by

using the ratio of members that exceeded the specified

threshold to the total number of members. These fore-

castswere evaluated using theROCarea, with probability

thresholds ranging from 0.05 to 0.95 in increments of 0.05.

3. Preliminary findings and results

a. Evaluation of short-term severe forecasts

1) 1-H TOTAL SEVERE FORECASTS

Participants generally rated the hourly total severe

forecasts highly (Fig. 4), with the updated afternoon

forecasts garnering higher ratings than the corresponding

preliminary morning forecasts. These ratings encompass

all individual hourly forecast ratings and, therefore, in-

clude timing, placement, and magnitude errors. After-

noon updates allowed forecasters to shift both the

magnitude and the location of the probabilities, which

produced mixed subjective results in SFE 2015. As

stated by a 4 May participant: ‘‘21–22Z improved from

morning due to pulling the probabilities southward.

FIG. 4. Distribution of subjective ratings (1–10) for (left) the preliminary hourly experi-

mental forecasts (2100–0000 UTC) issued at 1600 UTC compared with (right) the final ex-

perimental forecasts (valid 2100–0000 UTC) issued at 2100 UTC. The boxes compose the IQR

of the distributions and the whiskers extend to the 10th and 90th percentiles. Outliers are

indicated by red plus symbols.
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However, an increase in probs was not appropriate.’’

Though generally the afternoon updates occurred closer

to the event, participants had difficulty forecasting on

days when the convective mode was not yet apparent:

‘‘Shorter lead time no help in anticipating messy storm

evolution.’’ (4 May). On other days, there was some

evidence that the convective mode was more apparent

by the time of update issuance: ‘‘Definitely an im-

provement from earlier. Convective mode was fore-

casted more accurately. . .’’ (7 May). According to

participants, the variability within the ensemble of par-

ticipant forecasts mostly came from varying probability

magnitudes, rather than varying locations. Some par-

ticipants mention the difficulty of calibrating themselves

to issue appropriate 1-h forecast probabilities as a po-

tential cause for the variability. Also, the afternoon

updates to the forecasts often narrowed the envelope of

participant forecasts, as ongoing convection often re-

moved the convective initiation forecast problem.

The mode forecasting problem was perhaps partially

illustrated by the widening of the interquartile range

(IQR) of the forecast ratings during the afternoon up-

dates (Fig. 4). Difficulty in convective mode forecasting

increases the ratings’ variability, as it is difficult to dis-

cern to the hour when and if individual supercells will

grow upscale into an organized mesoscale convective

system (MCS). SFE 2015 also encompassed many days

with complex, mixed-mode convection, leading to diffi-

culty of forecasting on an hourly basis. A 4 May par-

ticipant reflected: ‘‘There were also questions early

about whether or not convection would occur across the

entire frontal boundary, and this question did not seem

fully resolved by the afternoon update.’’ Ultimately,

overall afternoon forecast improvement was also sub-

jectively noted: ‘‘The afternoon updates were able to

trim false alarm areas and refine the major regions for

higher probabilities’’ (3 June).

2) 4-H INDIVIDUAL HAZARD FORECASTS

Participants rated the preliminary 4-h individual

hazard forecasts and the disaggregated first-guess haz-

ard probabilities for 1800–2200 and 2200–0200 UTC.

During the earlier period, experimental forecasts and

the first-guess guidance were often rated similarly,

with a median rating difference of 0 for tornadoes and

wind, and 11 for hail on a scale from 23 to 13 (Fig. 5).

While the evening period experimental forecasts im-

proved upon the earlier, first-guess guidance, most of

these ratings reflected marginal improvement (i.e., from

0 to 11). Participant comments also supported only

marginal improvement, partially as a result of having

relatively little updatedmodel information available: ‘‘It

was difficult to justify substantial updates to the

afternoon forecast given a modicum of new information

(i.e., the new information we had, small in nature com-

pared to the larger set of data from the 0000UTC cycle),

did not warrant changes’’ (26 May).

b. Comparison of convection-allowing ensembles

SFE 2015 provided the unique opportunity to com-

pare multiple CAM ensemble designs of varying com-

plexity. The 3-h ETS scores of QPF for each ensemble

across the experiment were positive, indicating that all

ensembles showed positive forecast skill at each

threshold and hour. The lowest QPF threshold (Fig. 6a)

overall had the highest ETS scores, with the SSEF

3DVAR performing better than all of the other en-

sembles at all forecast hours, though the difference

typically only showed significance for the first few hours,

and then again at approximately 24 h from initialization.

At the highest precipitation threshold (Fig. 6d), the ETS

score differences among the ensembles was largest in the

first 12 h of the forecast period and had essentially

vanished by forecast hour 18. The ROC areas at each

threshold (Fig. 7) show a similar trend at all pre-

cipitation thresholds, although the dominance of the

SSEF 3DVAR is less pronounced. Interestingly, how-

ever, these ROC area differences between the SSEF

3DVAR and the other ensembles were often significant,

particularly at the lower thresholds. At the 0.10-in.

(Fig. 7a) and 0.25-in. (Fig. 7b) exceedance thresholds, all

ensembles (with the exception of the NCAR ensemble

3-h forecast) maintain skillful ROC areas. At higher

thresholds the ensembles were less skillful, with the

NCAR and SSEF EnKF ensembles having ROC areas

less than 0.7 for most forecast hours when considering at

least 0.50 in. of precipitation (Fig. 7c) and only a handful

of forecast hours for each ensemble system having

skillful ROC areas at the 0.75-in. threshold (Fig. 7d).

EnKF-analyzed reflectivity was noted to be too low,

suggesting that there may have been an error in the

EnKF configuration. Additionally, differing ensemble

background and data assimilation may have affected the

score; for example, only limited sets of conventional

observations were assimilated in the SSEF EnKF com-

pared to other ensembles. ROC areas tended to de-

crease later in the forecast period at low thresholds and

had a slight decrease in the middle of the forecast period

at higher thresholds. Overall, the SSEF 3DVAR gen-

erally scored highest in the objective QPF metrics.

Subjectively, the participants’ ratings of the day 1

ensemble forecasts hourly maximum fields were again

rather similar between ensembles (Fig. 8), excepting

the SSEF EnKF, which was clearly the lowest-rated

ensemble. The top-performing ensembles had a mean

rating above six for the SFE, indicating that they
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provided useful severe weather guidance more often than

not. As one participant commented, ‘‘Mostly agreeing

forecasts which all did reasonably well. Some modest dis-

crimination based on amount of false alarm’’ (14 May). Of

the six CAM ensembles, the NSSL ensemble had a slightly

higher mean and median rating than the other ensembles,

which was significantly higher than the SSEF, SSEFEnKF,

and the AFWA ensembles, as determined by a paired-

sample t test. TheAFWAandNCARensembles had lower

mean ratings than the SSEO, NSSL, and SSEF, but the

difference did not reach the point of being considered sig-

nificant. The only other significant difference between the

mean ratings was that the SSEF EnKF was rated signifi-

cantly lower than theNSSL,AFWA,andSSEOensembles.

The day 2 period (forecast hours 36–60) was less

frequently objectively evaluated than the day 1 period

as a result of computational and data constraints, but

the preliminary subjective results provide some in-

sights. The AFWA and NCAR ensembles were more

likely to have day 2 forecasts rated similar to or better

than their day 1 ratings compared to the SSEF

3DVAR or the SSEF EnKF, as illustrated by the

AFWA ensemble on 21 May 2015 (Figs. 9a–g). For

this case, the day 1 forecasts (Figs. 9b–d) placed the

majority of the UH-based ensemble neighborhood

severe probabilities too far north and offshore, away

from the verifying LSRs, whereas the day 2 forecasts

(Figs. 9e–g) encompass all LSRs. However, specificity

of the day 2 probabilities was also occasionally prob-

lematic: ‘‘One issue with the longer range forecasts is

that areas seem more joined rather than separate,

which is reasonable (expected) but still makes it not as

good as the day 1’’ (3 June). Another participant

stated that ‘‘at least for this date the ensemble sets not

assimilating radar data do better from the Day 2

forecast over the Day 1 forecast. I’m guessing this

would be more likely for cases in which convection is

ongoing and the non-radar assimilating ensembles

FIG. 5. As in Fig. 4, but for the distribution of

subjective ratings (from 23 to 13) of the experi-

mental forecasts compared to the first-guess guid-

ance for tornado, hail, and wind during the (left)

1800–2200 and (right) 2200–0200UTC periods. (top)

The initial morning forecasts, and (bottom) the af-

ternoon update, which only took place for the 2200–

0200 UTC period.

1554 WEATHER AND FORECAST ING VOLUME 32



serve more utility as a medium 24–48 range forecast’’

(14 May). Overall, the extended CAM ensembles

provided useful day 2 severe weather guidance, al-

though poor depiction of day 1 convection can detract

from the day 2 forecasts.

c. Comparison and evaluation of
convection-allowing deterministic models

1) PARALLEL OPERATIONAL CAMS

The parallel versions of both the NAM nest and the

HRRR showed subjective improvements over the op-

erational versions, while the parallel and operational

NAM runs were given similar subjective ratings (not

shown). The parallel HRRR results showed a reduction

in the warm, dry, afternoon bias compared with the

operational HRRR, resulting in improved convective

initiation forecasts (e.g., Fig. 10). The parallel HRRR

became operational on 23 August 2016, displacing the

operational version used during the SFE 2015 time

frame, and the parallel NAM nest became operational

on 8 September 2015.

2) MET OFFICE UM

Participants compared the operational UM to the

NSSL-WRF daily in SFE 2015. In addition to the 12–

36-h forecasts, the 1–11-h forecasts were compared

between the modeling systems to test which system

better handled convective spinup. Out of 133 re-

sponses, 55% rated the UM better than the NSSL-

WRF, 23% rated the UM worse than the NSSL-WRF,

and 22% said that they were the same in the first 12 h of

the forecast. These percentages were roughly the same

when considering the 12–36-h period (132 total re-

sponses), with a slightly larger percentage (26% of re-

sponses) reporting that they were the same. Overall,

the parallel UM (122 responses) was generally worse

than (46%) or the same as (30%) the operational UM,

and the 1.1-km UM (104 responses) was typically the

same as (43%) or worse than (32%) the 2.2-km version.

Sounding comparisons between the NSSL-WRF and

the operational UM (Fig. 11) often showed striking

differences. Throughout SFE 2015, capping inversions

in the operational UM were consistently more sharply

defined than in the NSSL-WRF, more closely matching

the observational soundings and consistent with the

examples shown in Kain et al. (2017). Out of 89 total

participant responses, 60 expressed that the UM

soundings were better than the NSSL-WRF, while 19

felt the two were the same. Only 10 responses rated the

NSSL-WRF soundings better than the UM. The struc-

ture and sharpness of the strong capping inversions were

FIG. 6. ETS scores for 3-h ensemble probability-matchedmean fields at fourQPF exceedance thresholds: (a) 0.10,

(b) 0.25, (c) 0.50, and (d) 0.75 in. Different colored lines represent the different models, and colored stars indicate

a significant difference between the SSEF 3DVAR ensemble and the ensemble corresponding to that color.
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subjectively noted by participants as being much

better depicted in the UM than the NSSL-WRF:

‘‘UKMET is better. Depicts inversion temperature

profile perfectly. This is the biggest difference’’

(2 June). Although the UKMET has nearly double the

number of vertical levels of the NSSL-WRF, Kain

et al. (2017) state that merely increasing the vertical

resolution of the NSSL-WRF does not negate this

tendency.

3) MPAS

While no formal evaluation of the MPAS forecasts

took place, the guidance was examined on a daily basis

and used during the forecasting process. Two cases

FIG. 8. Distribution of subjective ratings (1–10) for the ensemble hourly maximum field

forecasts compared to LSRs for each ensemble. Mean subjective ratings are indicated by

a vertical line. The dashed line indicates the mean of both the SSEF (3DVAR) and the SSEO

subjective ratings.

FIG. 7. As in Fig. 6, but for ROC area scores.
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where useful convective-scale guidance to day 3 and

beyond are presented here, as a preliminary indication

of the usefulness of MPAS in forecasting severe con-

vection at longer time scales than most current

convection-allowing guidance. Both days provided

similar synoptic patterns conducive to a severe weather

outbreak across the southern plains, with the eventual

outcome heavily dependent on the presence of

FIG. 9. (a) As in Fig. 4, but for the distribution of subjective ratings (from23 to13) for the day 2 ensemble forecasts compared with the

day 1 forecasts, valid for the same time period. As an example, the AFWA (middle) day 1 and (bottom) day 2 forecasts of the (b),(e) 4-h

ensemble maximum UH, (c),(f) ensemble neighborhood probability of UH$ 25m2 s22, and (d),(g) ensemble neighborhood probability

of UH$ 100m2 s22 valid at 1800–2200 UTC 21May 2015. The severe reports during this 4-h period are plotted as letters in each panel (T

for tornado, W for wind, and A for hail).
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morning convection, related to the strength of the

capping inversion.

Several days in advance of 9 May 2015, the SPC day 3

convective outlook outlined an area across Oklahoma and

Kansas as having a moderate risk for severe storms. In

reality, during the latemorning of 9May, strong forcing for

ascent combined with a weak capping inversion led to

widespread convection and associated cloud cover across

much of western Oklahoma and Kansas, inhibiting after-

noon destabilization. The early convection led to minimal

CAPE (,1000Jkg21) across much of Oklahoma and

Kansas (Fig. 12a). Although severe storms did occur from

Texas into westernKansas, because of the early storms the

event as a whole ended up being less significant than what

some earlier model guidance had suggested. While

forecasting a synoptic-scale pattern favorable for wide-

spread severe weather 3 days in advance of 9 May, the

MPAS forecasts also indicated that widespread convection

would develop early in the day on 9 May. The impact of

this early convection manifested itself in reduced CAPE

simulated across Oklahoma and Kansas (Fig. 12c). Thus,

the scenario depicted by MPAS 3 days in advance was

consistent with what occurred.

The second case with a favorable synoptic pattern for

severe weather in which MPAS provided useful

extended-range guidance was on 16May 2015. Similar to

9 May, the extent and intensity of the severe weather

threat was uncertain, because it was not clear how much

early convection would inhibit heating and de-

stabilization in the warm sector. Despite a shallow layer

of clouds, a lack of widespread early convection allowed

enough destabilization (Fig. 12b) to support a significant

severe weather event and several long-lived tornadic su-

percells across the Texas Panhandle, Oklahoma, and

Missouri. The forecasts from MPAS 3 days in advance

were consistent with this scenario, maintaining CAPE

through early convection (Fig. 12d) and matching quite

well the observed range of CAPE values. Furthermore,

the MPAS forecasts depicted intense supercells forming

in the warm sector around 2100 UTC beginning with the

93-h, day 4 forecast (Fig. 13e) and continuing through the

day 3 (Fig. 13d), day 2 (Fig. 13c), and day 1 (Fig. 13b)

forecasts. The location of the storms was initially too far

east comparedwith observations (Fig. 13a). Additionally,

the timing of upscale growth was also well depicted as far

as 4 days in advance (Fig. 13k), clearly showing the squall

line over central Oklahoma at 0355 UTC (Fig. 13g). The

overall forecast scenario corresponded well to the ob-

servations, particularly regarding the mode and timing of

mode evolution and again would have provided useful

extended-range convective-scale guidance to forecasters.

d. Evaluation of new diagnostics

1) HAIL DIAGNOSTICS

Three days’ worth of WRF-HAILCAST results were

formally evaluated in SFE 2015, precluding robust con-

clusions. Compatibility issues resulted in the Thompson

method only being available in the NCAR ensemble, and

thus a direct comparison to the WRF-HAILCAST

FIG. 10. Simulated reflectivity forecasts valid at 0300 UTC 21 May 2015 from the (a) 1500 UTC operational HRRR, (b) 1500 UTC

parallel HRRR, and (c) observed reflectivity. Simulated reflectivity forecasts valid at 2200 UTC 14 May 2015 from the (d) 1500 UTC

operational HRRR, (e) parallel HRRR, and (f) observed reflectivity.
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implemented in the SSEF system was impossible. How-

ever, participants unanimously agreed that across the

three cases the hail size forecasts provided additional

useful information relative to more commonly used

hourly maximum fields such as UH, prompting the in-

clusion of the new hail diagnostics in future SFEs.

2) TORNADO DIAGNOSTICS

The distributions of subjective ratings assigned to the

24-h tornado probabilities by the individual participants

suggest that incorporating environmental information

results in an improved forecast over solely using UH

(Fig. 14). None of the environmental filters (LCL, CAPE,

STP, or combined) clearly stood out as the best method;

however, they all generally improved upon the UH-only

guidance. Participants often noted that the incorporation

of environmental information helped focus the area of

interest and reduce the number of false alarms. However,

they often felt that the probabilities were too high on a

given day to directly translate into the current operational

convective outlook categories (i.e., tornado probabilities

of 30% on a day that SPC forecasters would not

consider a ‘‘moderate’’ risk given the environment).

e. Hail verification comparisons

When participants evaluated MESH as verification

for probabilistic severe hail forecasts, rather than LSRs,

the responses were generally positive. A participant said

on 4 May: ‘‘Assuming that MESH is reasonably repre-

sentative of what actually occurred, it definitely helps fill

in areas between local storm reports.’’ Many partici-

pants commented that MESH provided verification in

low-population-density areas such as eastern Colorado

(Figs. 15a,b), where obtaining even a single report to

verify a warning may be difficult. Participants ‘‘liked the

spatial and temporal details much better’’ (7 May), and

noted that in these locations when reports did occur,

MESH often also diagnosed large hail (Figs. 15c,d).

However, participants were unsure of directly compar-

ing LSRs and MESH, stating: ‘‘Hard to say how well it

does in verifying when not comparing hail sizes in

MESH to actual LSR observed hail sizes. . . .’’ Ortega

et al. (2009) performed a concentrated verification of

MESH tracks, but a larger-scale verification database

does not yet exist. Wilson et al. (2009) found thatMESH

performs best at values greater than 19mm, which

would include all severe hail, although they advise

against using MESH alone as a form of synthetic veri-

fication; MESH has also been found to overforecast hail

size (Wilson et al. 2009; Cintineo et al. 2012). Cintineo

et al. (2012) find that Heidke skill scores are maximized

in a comparison of MESH with high-resolution ground-

truth reports of severe hail when a threshold of 29mm is

used. Further, Melick et al. (2014) have suggested that

FIG. 11. The 24-h forecast soundings valid 15 May 2015 for the OUN station from (a) the NSSL-WRF control member and (b) the

UKMET 2.2-km model. The observed sounding is plotted in purple in each panel.
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MESH tracks can be useful as an independent dataset to

supplement hail LSRs. Consequently, the positive re-

sponse from participants recommends an objective look

at MESH verification over the daily subdomains.

Objective verification of the experimental hail fore-

casts with practically perfect forecasts generated by

MESH (17 cases) and LSR (23 cases) at different pe-

riods via ROC area (Fig. 15e) showed that whether

MESH or LSR verified the forecasts best was dependent

on the time period examined. Looking at the full-period

day 1 forecasts, LSRs had a higher POD and approxi-

mately the same POFD as theMESH, leading to a larger

ROC area. Conversely, the day 2 full-period forecasts

show both higher POD and higher POFD when verified

using the MESH results, rather than the LSRs. The 4-h

outlooks generally performed better than the daily

outlooks in both verifications. This is particularly evi-

dent in the 2200–0200UTC time frame, when convective

initiation was less of a forecast problem. These results

suggest that the hail forecasts are typically able to dis-

tinguish the area of hail. However, ROC areas do not

take into consideration the reliability of the forecasts,

which was a large factor in participants’ subjective rat-

ings of the verification methods. Indeed, participants

noted that the higher ‘‘practically perfect’’ probabilities

were often generated using the MESH tracks (Fig. 15d)

compared with the LSRs (Fig. 15b): ‘‘Practically

perfect probabilities fromMESH seemed overestimated

FIG. 12. CAPE and CIN from SPC’s mesoanalysis valid at (a) 2100 UTC 9 May and (b) 2100 UTC 16 May 2015.

CAPE contour levels (red) are 100, 250, 500, and 1000 J kg21 and then are spaced every 1000 J kg21. Light blue

shading indicates CIN less than 225 J kg21, and dark blue shading indicates CIN less than 2100 J kg21. The 69-h

MPAS forecasts of CAPE and 0–6-km shear vectors beginning at 30 kt (where 1 kt5 0.51m s21), valid at (c) 2100UTC

9 May and (d) 2100 UTC 16 May 2015.
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FIG. 13. Composite reflectivity observations at (a) 2100UTC16Mayand (g) 0400UTC

17May 2015.MPAS (b) 21-, (c) 45-, (d) 69-, (e) 93-, and (f) 117-h composite reflectivity

forecasts valid at 2300 UTC 16 May 2015 and (h) 28-, (i) 52-, (j) 76-, and (k) 100-h

composite reflectivity forecasts valid at 0500 UTC 17 May 2015.
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compared to the report probabilities’’ (19 May). This

may be because participants are not used to seeing

MESH-derived practically perfect probabilities. How-

ever, these higher probabilities did not seem to dampen

the participants’ enthusiasm for using MESH as a veri-

fication metric. One participant on 27 May stated,

‘‘Even if a slight oververification [sic] given its con-

struction, the use of MESH for verification seems to be

an improvement on this day.’’

4. Summary and discussion

Overall, SFE 2015 succeeded in testing new forecast

products and modeling systems to address relevant is-

sues in predicting hazardous convective weather. The

sheer volume of daily numerical weather guidance ex-

amined throughout SFE 2015 was unprecedented, and

the real-time, operational nature of the experiment

emphasized the need for tools that forecasters can use to

summarize large volumes of information when fore-

casting severe convective weather. The innovative na-

ture of the experiment gave participants access to

cutting-edge, operationally relevant research from

multiple institutions, evaluating six CAM ensembles,

three deterministic Met Office CAMs, a deterministic

CAM with forecasts extending out to 5 days (MPAS),

parallel versions of current operational models, and new

diagnostic techniques for hail size and tornado occur-

rence. The experiment found that parallel versions of

the HRRR and the NAM nest improved upon the cur-

rent operational versions, providing strong evidence to

support implementation of the experimental parallel

modeling systems. Additionally, CAMs were found

useful when issuing day 2 forecasts, providing mode in-

sight for medium-range severe convective forecasts.

Day 2 forecasts occasionally rated more highly than the

corresponding day 1 forecasts, although participants

noted that day 2 forecasts started from ensembles as-

similating radar data can be affected if the day 1 con-

vection is poorly handled, essentially relying on them

as a medium-range forecast. The SFE also helped to

determine that applying environmental filters to explicit

UH diagnostics improved guidance for probabilistic

tornado forecasting compared to usingUHonly with the

NSSL-WRF ensemble.

Increased participant interaction was a key compo-

nent of SFE 2015. Using laptops in the experiment

allowed participants to submit individual, rather than

FIG. 14. Subjective ratings of 24-h tornado probabilities generated from the NSSL-WRF

ensemble requiring four different environmental criteria, along with UH$ 75m2 s22. Each set

of probabilities received 121 ratings total. [Adapted from Gallo et al. (2016).]
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FIG. 15. Individual hazard desk SPC forecaster’s hail forecasts from 2200 UTC 5 May to 0200 UTC 6 May 2015 (a),(c) verified against

practically perfect forecasts generated using (b) hail LSRs (green dots) and significant hail LSRs (dark green triangles) and (d) MESH

tracks. Full periods encompass 1600–1200 UTC the following day. The blue hatched area is indicative of severe hail ($2 in.). (e) ROC

curves showing the accumulated verification results for all of SFE 2015 using LSRs and MESH.
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group consensus, evaluations and allowed for person-

alized feedback. The usage of the PHI tool on individual

laptops allowed for more participant engagement, as

they drew their own short-term forecasts. These short-

term forecasts performed well objectively and sub-

jectively, suggesting that moving these products into

operations is feasible, fulfilling an operational product

and service improvement goal. These forecasts

benefited greatly from the availability of the CAM

guidance, particularly the hourly forecasts of total se-

vere. To make such reliable forecasts without CAM

guidance would have been difficult.

Annual SFEs in the HWT have a long history of

impacting National Weather Service operations, but

oftentimes one has to consider a multiyear period to

get a full measure of these impacts. For example, SFE

2010 contained one CAM ensemble provided by

CAPS, and was just beginning to evaluate hourly

maximum fields such as UH and simulated 1 km AGL

reflectivity. These fields tested in SFE 2010 are now

considered key output parameters in operational

CAMs and are used worldwide, showing how the SFEs

succeed in research-to-operations efforts. Since that

SFE, grid spacing has decreased, and the number and

availability of CAM ensembles has greatly increased.

SFE 2015 allowed its participants to study the behavior

of these ensembles, bolstering their knowledge of the

latest forecasting techniques. SFE 2015 also provided

researchers with knowledge of how the many NWP

guidance options provided to forecasters are per-

ceived, in addition to information about how compa-

rable these ensembles are at the height of the spring

convective season.

SFE 2015 highlighted areas requiring future study

through verification efforts in conjunction with the

NOAA applied science activities goals. Participant

comments on using MESH in addition to LSRs for hail

verification suggest that MESH tracks may be a good

future verification source, albeit after a larger compar-

ison database is compiled between MESH and LSRs.

The tendency of hail guidance to either overforecast

(WRF-HAILCAST) or underforecast (Thompson) hail

sizes, and the overforecasting tendency of the tornado

probabilities noted by participants, highlight that more

work is needed regarding individual hazard diagnostics.

Future work focusing on individual hazard diagnostics is

planned to compare the diagnostics between ensembles

and to current SPC forecasts for individual hazards. Fi-

nally, the striking difference between the Met Office

CAMs and the NSSL-WRF in representing strong ver-

tical gradients in temperature and moisture near cap-

ping inversions demonstrates that work is still needed to

hone the accuracy of the vertical profiles.

With SFE 2015 complete, future SFEs can build upon

the lessons learned therein. Surprisingly, though the six

ensembles in SFE 2015 were configured differently, the

ensembles’ performance according to both objective

and subjective measures was quite similar. This result

led to a focus in SFE 2016 on uncovering how differ-

ences in ensemble configuration affect model perfor-

mance with regard to severe convective weather using

the recently developed Community Leveraged Unified

Ensemble (CLUE; Clark et al. 2016). CLUE consisted

of 65 members provided by a number of institutions, all

of which had the same domain, grid spacing, and output

fields. These members were divided into a number of

subexperiments for directly comparing configuration

strategies (i.e., multicore versus single core, multiphysics

versus single physics, 3DVAR versus EnKF, ensemble

size sensitivity). By minimizing as many differences as

possible between the members, it is hoped that CLUE

will help inform key ensemble configuration decisions,

providing valuable guidance for operational CAM

ensemble design.
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