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ABSTRACT6

Probabilistic quantitative precipitation forecasts challenge meteorologists due to the wide7

variability of precipitation amounts over small areas and their dependence on conditions at8

multiple spatial and temporal scales. Ensembles of convection-allowing numerical weather9

prediction models offer a way to produce improved precipitation forecasts and estimates10

of the forecast uncertainty. These models allow for the prediction of individual convective11

storms on the model grid, but they often displace the storms in space, time, and inten-12

sity, which results in added uncertainty. Machine learning methods can produce calibrated13

probabilistic forecasts from the raw ensemble data that correct for systemic biases in the14

ensemble precipitation forecast and incorporate additional uncertainty information from ag-15

gregations of the ensemble members and additional model variables. This study utilizes the16

2010 Center for the Analysis and Prediction of Storms Storm Scale Ensemble Forecast system17

and the National Severe Storms Laboratory National Mosaic and Multisensor Quantitative18

Precipitation Estimate as input data for training logistic regressions and random forests to19

produce a calibrated probabilistic quantitative precipitation forecast. The reliability and20

discrimination of the forecasts are compared through verification statistics and a case study.21
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1. Introduction22

Most flooding fatalities occur due to flash floods, in which waters rise and fall rapidly23

due to concentrated rainfall over a small area (Ashley and Ashley 2008). The first step24

to anticipating flash floods is quantitative forecasting of the amount, location, and tim-25

ing of precipitation. These quantitative precipitation forecasts are challenging due to the26

wide variability of precipitation amounts over small areas, the dependence of precipitation27

amounts on processes at a wide range of scales, and the dependence of extreme precipitation28

on any precipitation actually occurring (Bremnes 2004; Ebert 2001; Doswell et al. 1996).29

Recent advances in numerical modeling and machine learning are working to address these30

challenges.31

Numerical Weather Prediction (NWP) models are now being run experimentally at 4 km32

horizontal grid spacing, or storm scale, allowing for the formation of individual convective33

cells without a convective parameterization scheme. These models better represent storm34

processes and output hourly predictions, but they have the challenge of correctly placing35

and timing the precipitation compared to models with coarser grid spacing and temporal36

resolution. An ensemble of storm scale NWP models can provide improved estimates of un-37

certainty compared to coarser ensembles due to better sampling of the spatiotemporal errors38

associated with individual storms (Clark et al. 2009). As each ensemble member produces39

predictions of precipitation and precipitation ingredients, the question then becomes how40

best to combine those predictions into the most accurate and useful consensus guidance.41

The final product should highlight areas most likely to be impacted by heavy rain and42

also provide an uncertainty estimate for that impact. Probabilistic Quantitative Precipi-43
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tation Forecasts (PQPFs) incorporate both of these qualities. A good PQPF should have44

reliable probabilities, such that a 40% chance of rain verifies 40% of the time over a large45

sample (Murphy 1977). PQPFs should also discriminate between extreme and trace precipi-46

tation events consistently, so most extreme events occur with higher probabilities, and most47

trace precipitation events are associated with low probabilities. Since individual ensemble48

members may be biased in different situations, a simple count of the ensemble members that49

exceed a threshold will often result in unreliable forecasts that discriminate poorly. Incor-50

porating trends from past forecasts and additional information from other model variables51

can offset these biases and produce an enhanced PQPF.52

Ensemble weather prediction (Toth and Kalnay 1993; Tracton and Kalnay 1993; Molteni53

et al. 1996) has required various forms of statistical post-processing to produce accurate pre-54

cipitation forecasts and uncertainty estimates from the ensembles, but most previous studies55

used coarser ensembles and longer forecast windows for calibration. The rank histogram56

method (Hamill and Colucci 1997) showed that ensemble precipitation forecasts tended to57

be underdispersive. Linear regression calibration methods have shown some skill improve-58

ments in Hamill and Colucci (1998), Eckel and Walters (1998), Krishnamurti et al. (1999),59

and Ebert (2001). Hall et al. (1999), Koizumi (1999), and Yuan et al. (2007) applied neural60

networks to precipitation forecasts and found increases in performance over linear regression.61

Logistic regression, a transform of a linear regression to fit an S-shaped curve ranging from 062

to 1, has shown more promise, as in Applequist et al. (2002), which tested linear regression,63

logistic regression, neural networks, and genetic algorithms on 24-hour PQPF and found64

that logistic regression consistently outperformed the other methods. Hamill et al. (2004,65

2008) also utilized the logistic regression with an extended training period for added skill.66
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Storm scale ensemble precipitation forecasts have been post-processed with smoothing67

algorithms that produce reliable probabilities within longer forecast windows. Clark and68

Coauthors (2011) applied smoothing algorithms at different spatial scales to the SSEF pre-69

cipitation forecasts and compared verification scores. Johnson and Wang (2012) compared70

the skill of multiple calibration methods on neighborhood and object-based probabilistic71

forecasts from the 2009 SSEF. Marsh et al. (2012) applied a Gaussian kernel density es-72

timation function to the NSSL 4 km Weather Research and Forecasting (WRF) to derive73

probabilities from deterministic forecasts. These methods are helpful for predicting larger74

scale events but smooth out the threats from extreme precipitation in individual convective75

cells. Gagne II et al. (2012) took the first step in examining how multiple machine learning76

approaches performed in producing probabilistic, deterministic, and quantile precipitation77

forecasts over the central United States at individual grid points.78

The purpose of this paper is to analyze PQPF predictions produced by multiple machine79

learning techniques incorporating data from the Center for the Analysis and Prediction of80

Storms (CAPS) 2010 Storm Scale Ensemble Forecast (SSEF) system (Xue et al. 2011; Kong81

et al. 2011). In addition to the choice of algorithm, some variations in the algorithm setups82

are also examined. The strengths and weaknesses of the machine learning algorithms are83

shown through the analysis of verification statistics, variables chosen by the machine learning84

models, and a case study. This paper expands on the work presented in Gagne II et al. (2012)85

by including statistics for the eastern US, a larger training set more representative of the86

precipitation probabilities, a different case study day with comparisons of multiple runs,87

multiple precipitation thresholds, and more physical justification for the performance of the88

machine learning algorithms.89
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2. Data90

a. Ensemble Data91

The Center for the Analysis and Prediction of Storms (CAPS) 2010 Storm Scale Ensem-92

ble Forecast (SSEF) system (Xue et al. 2011; Kong et al. 2011) provides the input data for93

the machine learning algorithms. The 2010 SSEF consists of 19 individual model members94

from the WRF Advanced Research WRF (ARW), 5 members from the WRF Nonhydrostatic95

Mesoscale Model (NMM), and 2 members from the CAPS Advanced Research Prediction96

System (ARPS; Xue et al. 2000, 2001, 2003). Each member has a varied combination of97

microphysics schemes, land surface models, and planetary boundary layer schemes. The98

SSEF ran every weekday at 0000 UTC in support of the 2010 National Oceanic and Atmo-99

spheric Administration/Hazardous Weather Testbed Spring Experiment (Clark et al. 2012),100

which ran from May 3 to June 18, for a total of 34 runs. The SSEF provides hourly model101

output over the contiguous United States at 4 km horizontal grid spacing out to 30 hours.102

Of the 26 members, the 14 members included initial condition perturbations derived from103

the National Centers for Environmental Prediction Short Range Ensemble Forecast (SREF;104

Du et al. 2006) members, and only they are included in our post-processing procedure. The105

12 other members used the same control initial conditions although with different physics106

options and models; designed to examine forecast sensitivities to physics parameterizations,107

they do not contain the full set of initial conditions and model uncertainties and are therefore108

excluded from our study.109
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b. Verification Data110

A radar-based verification dataset was used as the verifying observations for the SSEF.111

The National Mosaic and Multi-Sensor QPE (NMQ; Vasiloff et al. 2007) derives precipitation112

estimates from the reflectivity data of the NEXRAD radar network. The estimates are made113

on a grid with 1 km horizontal spacing over the continental US (CONUS). The original grid114

has been bi-linearly interpolated to the same grid as the SSEF.115

c. Data Selection and Aggregation116

The relative performance of any machine learning algorithm is conditioned on the dis-117

tribution of its training data. The sampling scheme for the SSEF is conditioned on the118

constraints of 34 ensemble runs over a short, homogenous time period with 840,849 grid119

points from each of the 30 time steps. The short training period and large number of grid120

points preclude training a single model at each grid point, so a regional approach was used.121

The SSEF domain was split into thirds (280,283 points per time step), and points were122

selected with a uniform random sample from each subdomain in areas with quality radar123

coverage. The gridded Radar Quality Index (RQI; Zhang et al. 2011) was evaluated at each124

grid point to determine the trustworthiness of the verification data. Points with an RQI> 0125

were located within the useful range of a NEXRAD radar and included in the sampling.126

For points with precipitation values less than 0.25 mm, 0.04% were sampled, and for points127

with more precipitation, 0.4% were sampled. Grid 0 corresponds to the western third of128

the CONUS, Grid 1 corresponds to the central third, and Grid 2 corresponds to the eastern129

third. Fig. 1 shows that the north central section of the United States and the states south130
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of the Great Lakes were most heavily sampled. Grid 0 was excluded from post-processing131

due to the low frequency of heavy precipitation for most of the region.132

A comparison of the sampled rainfall distributions and the full rainfall distributions133

for each subgrid are shown in Fig. 2 and Table 1. Undersampling of the 0 and trace134

(below 0.25 mm) precipitation points was necessary because of the large number of no-135

precipitation events, which overwhelmed the signal from the actual precipitation events.136

The random sampling of grid points helps reduce the chance of sampling multiple grid137

points from the same storm without explicitly filtering subsets of the domain, which was138

performed by Hamill et al. (2008). Filtering grid points surrounding each sampled point is139

extremely computationally expensive because filtering requires multiple passes over the grid140

while random sampling only requires 1 grid reordering.141

Relevant model output variables, called predictors (Table 2), were also extracted from142

each ensemble member at each sampled point. These predictors captured additional infor-143

mation about the mesoscale and synoptic conditions in each model. The predictors from144

each ensemble member were then aggregated into 4 descriptive statistics for each predictor.145

The mean provided the most likely forecast value, and the standard deviation estimated the146

spread, and the minimum and maximum showed the extent of the forecasted values.147
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3. Methods148

a. Machine Learning Methods149

1) Logistic Regression150

One of the goals of this study is to compare the skill of more advanced machine learning151

methods with more traditional statistical methods. Logistic regression was used as the152

baseline statistical method. Logistic regressions are linear regression models in which a logit153

transformation is applied to the data so that the predicted values will range between 0 and 1.154

Two formulations of logistic regression were used: simple and multiple. The first formulation155

uses the ensemble mean precipitation forecast as expressed in Eqn. 1:156

p(R ≥ t|x1) =
1

1 + e−(β0+β1x1)
(1)157

in which R is the precipitation amount, t is the threshold, x1 is the ensemble mean pre-158

cipitation forecast, β0 is the intercept term, and β1 is the weight given to the ensemble159

mean precipitation forecast. Observed precipitation with an amount greater than or equal160

to the chosen threshold is assigned a probability of 1, and precipitation amounts below the161

threshold are assigned a probability of 0. The β coefficients are estimated by iteratively162

maximizing the log-likelihood of the transformed training data. This formulation will adjust163

the probability of the ensemble forecast based on systematic biases in the mean but will not164

change the areal coverage of the precipitation forecasts. The second formulation incorpo-165

rates multiple variables with stepwise variable selection similar to standard Model Output166
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Statistics (Glahn and Lowry 1972) approaches (Eqn. 2):167

p(R ≥ t|x1, x2, ...xn) =
1

1 + exp

[
−

(
β0 +

N∑
n=1

βnxn

)] (2)168

in which x1 through xn are the predictors chosen from Table 2 and β1 through βn are the169

weights for those predictors. The terms are determined through a forward selection process170

that finds the set of up to 15 terms that minimize the Akaike Information Criterion (Akaike171

1974), which rewards goodness of fit but penalizes for large numbers of terms. This approach172

does produce the best fit regression model given the available parameters, but the searching173

process can take extensive time given the large dimensionality of the training set. The glm174

(generalized linear model) and step (stepwise variable selection) functions in the R statistical175

package are used to generate the logistic regressions. A more detailed description of logistic176

regression and the fitting process can be found in James et al. (2013).177

2) Random Forest178

An non-parametric, nonlinear alternative to linear regression is the classification and re-179

gression decision tree (Breiman 1984). Decision trees recursively partition a multidimensional180

dataset into successively smaller subdomains by selecting variables and decision thresholds181

that maximize a dissimilarity metric. At each node in the tree, every predictor is evaluated182

with the dissimilarity metric, and the predictor and threshold with the highest metric value183

are selected as the splitting criteria for that node. After enough partitions, each subdomain184

is similar enough that the prediction can be approximated with a single value. The primary185

9



advantages of decision trees are that they can be human-readable and perform variable se-186

lection as part of the model growing process. The disadvantages lie in the brittleness of the187

trees. Trees can undergo significant structural shifts due to small variations in the training188

data, which results in large error variance.189

Random forests (Breiman 2001) consist of an ensemble of classification and regression190

trees (Breiman 1984) with two key modifications. First, the training data cases are bootstrap191

resampled with replacement for each tree in the ensemble. Second, a random subset of the192

predictors are selected for evaluation at each node. The final prediction from the forest is193

the mean of the predicted probabilities from each tree. Random forests can produce both194

probabilistic and regression predictions through this method. The random forest method195

contains a few advantages that often lead to performance increases over traditional regres-196

sion methods. The averaging of the results from multiple trees produces a smoother range197

of values than individual decision trees while also reducing the sensitivity of the model pre-198

dictions to minor differences in the training set (Strobl et al. 2008). The random selection of199

predictors within the tree-building process allows for less optimal predictors to be included200

in the model and increases the likelihood of the discovery of interaction effects among pre-201

dictors that would be missed by the stepwise selection method used in logistic regression202

(Strobl et al. 2008). Random forests have been shown to improve predictive performance203

on multiple problem domains in meteorology, including storm classification (Gagne II et al.204

2009), aviation turbulence (Williams 2013), and wind energy forecasting (Kusiak and Verma205

2011). For this project, we used the R randomForest library, which implements the original206

approach (Breiman 2001). For the parameter settings, we chose to use 100 trees, a minimum207

node size of 20, and the default values for all other parameters. A more detailed description208
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of random forest can be found in James et al. (2013).209

In addition to gains in performance, the random forest can also be used to rank the210

importance of each input variable (Breiman 2001). Variable importance is computed by211

first calculating the accuracy of each tree in the forest on classifying the cases that were not212

selected for training, known as the out-of-bag cases. Within the out-of-bag cases, the values213

of each variable are randomly rearranged, or permuted, and those cases are then re-evaluated214

by each tree. The mean variable importance score is then the difference in prediction accuracy215

on the out-of-bag cases averaged over all trees. Variable importance scores can vary randomly216

among forests trained on the same dataset, so the variable importance scores from each of217

the 34 forests trained for cross-validation were averaged together for a more robust ranking.218

b. Evaluation Methods219

Two scores were used to assess the probabilistic forecasts. The Brier Skill Score (BSS)220

(BSS; Brier 1950) is one method used to evaluate probabilistic forecasts. The Brier Skill221

Score can be decomposed into three terms (Murphy 1973), as shown in Eq. 3:222

BSS =

1

N

K∑
k=1

nk(ok − o)2 −
1

N

K∑
k=1

nk(pk − ok)2

o(1− o)
(3)223

N is the number of forecasts, K is the number of probability bins, nk is the number of224

forecasts in each probability bin, ok is the observed relative frequency for each bin, o is the225

climatological frequency, and pk is the forecast probability for a particular bin k. The first226

term in the numerator describes the resolution of the forecast probability, which should be227
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maximized and increases as the observed relative frequency differs more from climatology.228

The second term in the numerator describes the reliability of the forecast probability, which229

should be minimized and decreases with smaller differences between the forecast probability230

and observed relative frequency. The denominator term is the uncertainty, which is based231

on the climatological probability of precipitation and cannot be reduced through calibration.232

BSS increases with skill from 0. The components of the BSS can be displayed graphically233

with an attributes diagram (Wilks 2011), in which the observed relative frequency of binned234

probability forecasts are plotted against lines showing perfect reliability, no skill where the235

reliability and resolution are equal, and no resolution where the observed relative frequency236

and probability equal climatology.237

The Area Under the Relative Operating Characteristic (ROC) curve, or AUC (Mason238

1982) evaluates how well a probabilistic forecast correctly identifies heavy precipitation239

events compared to identifying the events based on random chance. To calculate AUC,240

first, the decision probability threshold is varied from 0 to 1 in equal steps. At each step, a241

contingency table is constructed by splitting the probabilities into two categories with the242

decision threshold (Table 3). Using Table 3, the following scores can be computed (Table 4).243

Probability of detection (POD) is the ratio of hits to the total number of observed events.244

The False Alarm Ratio (FAR) accounts for the number of false alarms compared to total yes245

forecasts. The Probability of False Detection (POFD) is the ratio of false alarms to total no246

forecasts. The Equitable Threat Score (ETS) is the skill score officially used to assess the247

skill of 24 hour precipitation forecasts, and is sensitive to the climatological base rate of the248

validation data. The Peirce Skill Score (PSS) is another skill score that is insensitive to the249

climatological base rate but is sensitive to hedging by over forecasting rare events (Doswell250
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et al. 1990). The bias ratio compares determines if false alarms or misses are more prevalent.251

From the contingency table, the POD and POFD are calculated and plotted against each252

other, forming a ROC curve. The AUC is the area between the right and bottom sides of the253

plot and the curve itself. AUC with values above 0.5 has positive skill. AUC only determines254

how well the forecast discriminates between two categories, so it does not take the reliability255

of the forecast into account.256

The ROC curve also can be used to determine an “optimal” decision threshold to convert257

a probabilistic forecast to a deterministic forecast. As the decision probability increases, the258

POD decreases from 1 to 0 while 1-POFD increases from 0 to 1. At some decision threshold,259

POD and 1-POFD should be equal. At this optimal threshold (OT), the user has an equal260

chance of correctly detecting rain events and no-rain events. This point occurs where the261

ROC curve is farthest from the positive diagonal “no-skill” line. In addition, the vertical262

distance between the ROC curve and the positive diagonal is the Peirce Skill Score (PSS;263

Peirce 1884; Hansen and Kuipers 1965) since PSS=POD−POFD (Manzato 2007). Since the264

PSS can be calculated from the contingency table at each decision threshold, finding the265

maximum PSS also finds the OT. The performance of the threshold choice can be validated266

by treating the predictions as a binary classification problem and using the binary verification267

statistics derived from the contingency table (Table 4).268

c. Experimental Procedure269

Each model was trained and evaluated using a leave-one-day-out cross validation pro-270

cedure. For the 34 daily model runs in the training set, each machine learning model was271

13



trained on 33 days and tested on 1. Separate models were trained for each 6 hour forecast272

period and each subgrid to better capture the trends in the weather and ensemble dispersive-273

ness. Models were primarily trained at two thresholds, 0.25 mm h−1 and 6.35 mm h−1. The274

0.25 mm h−1 threshold models were used to determine if rain was to occur at a point or not,275

and the 6.35 mm h−1 models were trained and evaluated only on the conditions that either276

rain occurred or the ensemble mean precipitation forecast predicted rain. Deterministic rain277

forecasts were derived from the 0.25 mm h−1 models with the ROC curve optimal threshold278

technique to evaluate any biases in the areal forecasts. Additional models were trained at279

the 2.54 and 12.70 mm h−1 thresholds to evaluate the skill in predicting lighter and heavier280

precipitation, but only the 6.35 mm h−1 models were physically evaluated with variable im-281

portance and the case study. The 0.25, 2.54, 6.35, and 12.70 mm h−1 were chosen because282

they correspond to the 0.01, 0.1, 0.25, and 0.5 in h−1 thresholds, respectively, that are used283

for determining trace and heavy precipitation amounts. The probabilities shown in the case284

study are the joint probabilities of precipitation greater than or equal to 6.35 and 0.25 mm285

h−1. They were calculated by multiplying the conditional probability of precipitation greater286

than or equal to 6.35 mm h−1 with the probability of precipitation greater than or equal to287

0.25 mm h−1.288
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4. Results289

a. Deterministic Rain Model Evaluation290

Evaluation of the deterministic forecasts of precipitation location shows that the multiple291

logistic regression and random forest do add skill compared to the uncalibrated ensemble292

probability and the simple logistic regression. Fig. 3 shows only slight variations in the opti-293

mal threshold with forecast hour and that the thresholds for each machine learning algorithm294

are similar. The low threshold for the raw ensemble indicates that the best precipitation cov-295

erage is found when any ensemble member forecasts rain. PSS and ETS show similar hourly296

trends, but PSS is higher than ETS since ETS tends to maximize at a higher probability297

threshold. The multi-predictor machine learning algorithms (random forest and multiple298

logistic regression) provide the most improvement for the first 15 hours of the forecast with299

only a slight improvement for the afternoon and evening. The improvement comes from300

an increased POD without also increasing the FAR. Similar results are seen in grid 2 in301

terms of thresholds and score values, and the multi-predictor algorithms are able to provide302

consistent improvement over all forecast hour (Fig. 4). Similar results to these are found in303

the SSEF verification from Kong et al. (2011) although the ETS is lower in that paper due304

to that study verifying against all grid points, including points with no radar coverage.305
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b. Probabilistic Threshold Exceedance Model Evaluation306

1) Evaluation over All Forecast Hours307

The attributes diagrams for the raw ensemble and machine learning algorithms show308

how the forecasts were altered to improve their calibration and skill. Fig. 5 contains the309

attributes diagrams for the ensemble and algorithms applied to grids 1 and 2 at the 6.35 mm310

h−1 threshold for all forecast hours. The raw ensemble in both domains tends to be over-311

confident with probabilistic forecasts above climatology and under confident with forecasts312

below climatology, resulting in a negative BSS. In spatial terms, the ensemble probabilities313

are too high for areas where it forecasts heavy rain, and it is missing some areas where rain314

actually occurred. The simple logistic regression improves the ensemble forecast by rescaling315

the probabilities based on the ensemble mean rain amount. In grid 1 and grid 2 this gener-316

ally results in all of the probabilities being scaled closer to the climatological probability to317

address the general overconfidence of the ensemble. This scaling brings the observed relative318

frequencies above climatology into the positive skill zone, but they are still overconfident.319

The multiple logistic regression and random forest incorporate additional ensemble vari-320

ables to add more information to the probability estimates. This does result in a large321

improvement in BSS over the simple logistic regression. The multiple logistic regression322

performs the best in grid 1 because it produces nearly perfect reliability between 0 and 50%323

while maintaining positive skill from 60 to 90%. The random forest also places its forecasts324

close to the perfect reliability line but slightly further away than the stepwise logistic re-325

gression, and the forecast probabilities do not exceed 70%, so the random forest has a lower326

maximum resolution than the multiple logistic regression.327
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In grid 2, the BSS for all three models decreases. The observed relative frequency for328

the random forest lies just above the no skill line and then increases above 50%, which may329

be a due to chance from the low sample size in the higher percentage range. The multiple330

logistic regression performs better with the lower probability forecasts but has negative skill331

with the higher probabilities. The weaker performance may be due to having fewer heavy332

rain events in grid 2 during the study time period.333

The ROC curves show that the multiple-predictor machine learning algorithms enhance334

the discrimination abilities of the ensemble. The raw ensemble in both subgrids has slightly335

positive skill in terms of AUC (Fig. 6). At the optimal PSS threshold, the raw ensemble336

detects only 67% of heavy rain events (POD) in grid 1, and 86% of its positive forecasts are337

false alarms (FAR). In grid 2, the detection ability is worse with a 66% POD and a 91%338

FAR. The Bias scores greater than 1 indicate a larger proportion of false alarms than misses.339

Since the simple logistic regression rescales the predictions over a smaller probability range,340

it has a slightly lower AUC than the raw ensemble. Its optimal threshold is higher than the341

raw ensemble, so it has a correspondingly lower POD, POFD, and FAR. It also has a smaller342

bias score at the optimal threshold. The multiple logistic regression and random forest have343

a much larger AUC and POD and similar FAR compared to the raw ensemble. The multiple344

logistic regression and random forest have very similar scores with only slight differences in345

the POFD, FAR, and bias. The same relationships hold in grid 2 except that there is a346

slightly larger difference in the scores of the multiple logistic regression and random forest.347

The overall scores are also slightly lower for grid 2, which is likely due to the lower frequency348

of convective precipitation events in the training data.349
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2) Evaluation by Forecast Hour350

Comparisons of BSS and AUC by hour and by sub-grid show additional trends in the351

probability of precipitation forecasts. The raw ensemble consistently has the worst BSS (Fig.352

7). For all models, the best performance occurs at forecast hour 1 then decreases sharply at353

hour 2 before stabilizing. This initial decrease is likely due to the radar data assimilation354

placing the storms in the same place initially and then having the individual storms diverge355

from the predicted storm motions. There is a slight increase in performance between hours356

6 and 12 for grid 2. This increase may be due to the diurnal cycle of convection resulting in357

larger storm clusters during this time period, or it may be due to the model fully spinning358

up. There is another major decrease in performance in grid 1 between hours 12 and 24.359

This time period is when the greatest uncertainty exists due to convective initiation and360

the tendency for initial convection to be isolated. The multiple logistic regression and the361

random forest do not have any statistically significant (α < 0.05) differences in their AUC362

and BSS. The biggest departure from the ensemble mean in terms of AUC occurred in the363

18 to 24 hour range for both grids, which corresponds with peak convective activity. The364

simple logistic regression did still improve on the ensemble forecast in terms of reliability365

but not to the same extent as the multiple-predictor models, and it made the AUC worse.366

The temporal trends in the BSS match those found in the 2009 SSEF by Johnson and Wang367

(2012). The multiple-predictor methods appeared to produce similar increases in BSS to the368

single predictor neighborhood and object-based methods.369
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c. Evaluation of Multiple Precipitation Thresholds370

Machine learning models were trained at 3 precipitation thresholds (2.54, 6.35, and 12.70371

mm h−1) in order to evaluate how skill varies with precipitation intensity. Fig. 8 shows the372

random forest BSS by hour for the three precipitation thresholds. All three follow the same373

diurnal patterns, but the 2.54 mm h−1 forecasts have consistently much higher skill than374

the other thresholds. While the 2.54 and 6.35 mm h−1 show skill for all forecast hours, the375

12.70 mm h−1 forecasts do not show any skill from 14 to 26 hours. The decreasing skill with376

threshold size is likely due to the smaller heavy precipitation areas and spatial and timing377

errors in placement of convection in the ensembles. Similar results were found for the other378

machine learning methods (not shown).379

d. Variable Importance380

Variable importance scores were calculated and averaged over each random forest and381

sub-grid to determine if the random forests were choosing relevant variables and how the382

choice of variables was affected by region. Variable importance is indicative of how random-383

izing the values of each variable affects the random forest performance. It accounts for how384

often a variable is used in the model, the depth of the variable in the tree, and the num-385

ber of cases that transit through the branch containing that variable, but the importance386

score cannot be decomposed into those factors. The top 8 variable importance scores for the387

random forests trained on each 6-hour period in Grid 1 are shown in Table 5. In the first388

6 hours, all of the top 5 variables are aggregations of the hour precipitation or precipitable389

water with the rest being hour max upward wind. In this time period, the ensemble members390
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are very similar, so there is great overlap among the precipitation regions. By hours 7-12,391

the max upward wind becomes more dominant in the rankings, although the precipitation392

max and standard deviation are still found among the top 5 variables. Vertical velocities393

become the most common feature in hours 13 through 18 with only precipitable water and394

specific humidity contributing moisture information. For hours 19 through 30, the standard395

deviation of Surface-Based CAPE appears, which is likely associated with the presence of396

nearby boundaries.397

The grid 2 variable importances highlight the greater importance of moisture and lower398

importance of vertical velocities in the Eastern United States. The predicted precipitation is399

again only important in hours 1 through 12, but the precipitable water and specific humidity400

show high importance through the entire forecast period. Upward and Downward winds are401

in the rankings for each time period, but they tend to be on toward the bottom of the top402

8. Surface-Based CAPE is also important in the latter hours of the forecasts, but the mean403

and max are selected instead of the standard deviation.404

e. Case Study: 13 May 2010405

The case of 13 May 2010 illustrates the spatial characteristics, strengths, and weaknesses406

of the precipitation forecasts from the SSEF and the machine learning methods. Since the407

SSEF is run through forecast hour 30, the last six forecast hours of one run overlap with the408

first six hours of the next run. This overlap allows for the comparison of two runs on the same409

observations and illustrates the effects of lead time on the forecast probabilities. Fig. 9 shows410

the distribution of the observed 1-hour precipitation at 02 UTC on May 13. The bulk of the411
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precipitation originates from a broken line of discrete supercell thunderstorms positioned412

along a stationary front stretching from northern Oklahoma into northern Missouri with413

additional storms in Iowa and ahead of the dry line in Oklahoma and Texas. Additional414

precipitation is falling in Virginia from a mesoscale convective system. A comparison of415

the 2-hour and 26-hour dew point and temperature SSEF forecasts (Fig. 10) shows major416

differences in the placement and strength of the fronts and dry line. The cold front is further417

north and more diffuse in the 26 hour forecast while the dry line is further east, moving from418

the central Texas panhandle to western Oklahoma. The differences in the placement of the419

surface boundaries also affect the placement of the precipitation areas in both forecasts.420

Comparisons of the raw ensemble probabilities and the simple logistic regression (Fig. 11)421

show the effects of calibrating the probabilities only on precipitation. All of the precipitation422

probabilities shown are generated by multiplying the conditional PQPF of greater than423

6.35 mm h−1 with the probability of precipitation, which removed spurious low conditional424

probabilities of precipitation. In the 2 hour forecast, there is little dispersion among the425

ensemble members, so there is very high confidence in the raw ensemble. In this case though,426

the high confidence areas are displaced west from the actual heavy precipitation regions,427

resulting in some missed precipitation areas. The simple logistic regression corrects for428

this overconfidence by lowering the SSEF probabilities. The area with a greater than 10%429

probability is noticeably smaller and approximates the area occupied by the observed rain430

areas. Since it rescales the probabilities, it does not translate the predicted rain areas,431

resulting in more misses. At 26 hours, the raw ensemble probabilities are lower and spread432

over a wider area, indicating greater ensemble dispersion. The probabilities in Oklahoma433

and Kansas are shifted further east due to the positioning of the surface boundaries. In this434
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case, it results in the observed precipitation being captured better than they were in the 2435

hour forecast with fewer misses but more false alarms. The simple logistic regression again436

reduces the probabilities and the area covered by them so that it does not have significantly437

more false alarms than at 2 hours, but it misses some precipitation that was captured by the438

raw ensemble. Of the machine learning methods, the simple logistic is best for accurately439

depicting areal coverage, but it overcorrected in terms of downscaling the raw probabilities.440

The results from the multiple-predictor methods show the advantages of incorporating441

additional predictors. In Fig. 12, the multiple logistic regression is compared with the442

random forest at 2 and 26 hours. In the 2 hour forecasts, both the multiple logistic regression443

and random forest expand their probabilities over a wider area and shift them slightly east444

compared to the raw ensemble, enabling them to capture the heavy precipitation fully.445

The random forest also captures the precipitation areas north of the cold front better than446

the logistic regression, which may weight SBCAPE too highly and not handle cold sector447

precipitation as well. At 26 hours, the areas increase and the probabilities are generally448

lower. Both algorithms capture nearly all precipitation areas, but they also produce more449

false alarms. Precipitation did extend through central Texas into Mexico ahead of the dry450

line, but none of that precipitation was heavy. The multiple logistic regression highlighted451

that precipitation as well as ahead of the dry line. Unlike the 2 hour forecast, it did cover the452

precipitation north of the front in Iowa. The random forest covered all of the precipitation453

areas in the Plains and seemed to handle the east coast precipitation coverage better.454

The extended probability areas of the random forest and multiple logistic regression can455

be explained by examining some of the variables deemed important by the random forest.456

In Fig. 13, the Hour Max Upward Wind, SBCAPE, Precipitable Water, and 850 mb Specific457
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Humidity are shown. The Hour Max Upward Wind was the most important variable for458

the 25-30 hour random forest (Table 5), and its spatial distribution closely matches that459

of the random forest, including the positive areas in southwest Texas. It also supports the460

precipitation north of the cold front in Iowa. The SBCAPE was highest in central Texas461

in the area where both machine learning models placed probabilities but no heavy rain462

occurred. The machine learning algorithms were able to account for situations in which463

high CAPE and no precipitation did not occur together by not assigning probabilities in the464

Gulf of Mexico. Precipitable water and 850 mb specific humidity were also high over a wide465

area and are generally correlated well with precipitation but occur over a much larger area466

than the actual precipitation. By weighting these variables together, the multi-predictor467

algorithms were able to grow the forecasted area to include points at which the mix of468

ingredients was favorable for precipitation.469

5. Discussion470

The results of the machine-learning post-processing of storm scale ensemble precipita-471

tion forecasts displayed not only improvements to the forecasts but also limitations of the472

ensemble, the algorithms, and grid-point-based framework. First, the post-processing model473

performance is constrained by the information available from the ensemble. If most of the474

ensemble members are predicting precipitation in the wrong place or not at all, and the475

environmental conditions are also displaced, then the machine learning algorithm will not476

be able to provide much additional skill. Second, the machine learning model will only make477

predictions based on the range of cases it has previously seen. For higher rain thresholds, the478
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algorithms will need more independent samples in order to make skilled predictions. Third,479

the grid-point framework does not fully account for the spatial information and error in the480

ensemble. The spatial error could be incorporated further by smoothing the verification grid481

with a neighborhood filter (Ebert 2009) or warping the ensemble forecast to more closely482

match the observed precipitation (Gilleland et al. 2010) and then training. Machine learn-483

ing algorithms could also be used to improve the calibration from object-based frameworks484

(Johnson and Wang 2012) and could incorporate information from the additional predictors485

within the bounds of the objects.486

6. Conclusions487

Multiple machine learning algorithms were applied to the 2010 CAPS Storm Scale Ensem-488

ble Forecast (SSEF) system in order to improve the calibration and skill of its probabilistic489

heavy precipitation forecasts. Two types of machine learning methods were compared over490

a period from May 3 through June 18 with both verification statistics and a case study.491

Verification statistics showed that all of the machine learning methods improved the cali-492

bration of the SSEF precipitation forecasts but only the multiple-predictor methods were493

able to calibrate the models better and discriminate more skillfully between light and heavy494

precipitation cases. Hourly performance varied with diurnal storm cycles and the increasing495

dispersiveness of the ensemble members. Comparisons of the rankings of predictors indi-496

cated that the ensemble predicted precipitation was only important for the first 12 hours497

of the model runs. After that period, the upward wind and atmospheric moisture variables498

became better indicators of the placement of precipitation. The case study showed that the499
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multiple-predictor machine learning methods could shift the probability maxima to better500

match the actual precipitation areas, but they would also produce more false alarm areas501

in the process. For shorter-term forecasts, the false corrections were made without a sig-502

nificant increase in the false alarm area. Calibrating the probabilities with only ensemble503

rainfall predictions results in predicted areas that are too small and still displaced from504

the observed precipitation. The multiple-predictor machine learning algorithms did prove505

especially beneficial in that situation. Ultimately, machine learning techniques can provide506

an enhancement to precipitation forecasts by consistently maximizing the potential of the507

available information.508

Acknowledgments.509

Special thanks go to my Master’s committee members Fanyou Kong and Michael Rich-510

man. Zac Flamig provided assistance with the NMQ data. CAPS SSEF forecasts were511

supported by a grant (NWSPO-2010-201696) from the NOAA Collaborative Science, Tech-512

nology, and Applied Research (CSTAR) Program and the forecasts were produced at the513

National Institute for Computational Science (http://www.nics.tennessee.edu/). Scientists514

at CAPS, including Fanyou Kong, Kevin Thomas, Yunheng Wang, and Keith Brewster con-515

tributed to the design and production of the CAPS ensemble forecasts. This study was516

funded by the NSF Graduate Research Fellowship under Grant 2011099434 and by NSF517

grant AGS-0802888. The editor, Michael Baldwin, and the two anonymous reviewers pro-518

vided very helpful feedback that strengthened the quality of the paper.519

25



520

REFERENCES521

Akaike, H., 1974: A new look at the statistical model identification. IEEE Transactions on522

Automatic Control, 19, 716–723.523

Applequist, S., G. E. Gahrs, R. L. Pfeffer, and X. Niu, 2002: Comparison of methodologies524

for probabilistic quantitative precipitation forecasting. Wea. Forecasting, 17, 783–799.525

Ashley, S. T. and W. S. Ashley, 2008: Flood fatalities in the united states. J. Appl. Meteorol.,526

47, 805–818.527

Breiman, L., 1984: Classification and regression trees. Wadsworth International Group, 358528

pp.529

Breiman, L., 2001: Random forests. Mach. Learn., 45, 5 – 32.530

Bremnes, J. B., 2004: Probabilistic forecasts of precipitation in terms of quantiles using531

NWP model output. Mon. Wea. Rev., 132, 338–347.532

Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea.533

Rev., 78, 1–3.534

Clark, A. J. and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of535

ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139,536

1410–1418.537

26



Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation538

forecast skill between small convection-allowing and large convection-parameterizing en-539

sembles. Wea. Forecasting, 24, 1121–1140.540

Clark, A. J., S. J. Weiss, J. S. Kain, and Coauthors, 2012: An overview of the 2010 hazardous541

weather testbed experimental forecast program spring experiment. Bull. Amer. Meteor.542

Soc., 93, 55–74.543

Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An544

ingredients-based methodology. Weather and Forecasting, 11, 560–581.545

Doswell, C. A., R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in546

rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576–585.547

Du, J., J. McQueen, G. DiMego, Z. Toth, D. Jovic, B. Zhou, and H. Chuang, 2006:548

New dimension of NCEP short-range ensemble forecasting (SREF) system: Inclusion549

of wrf members. Preprint, WMO Expert Team Meeting on Ensemble Prediction System,550

Exeter, United Kingdom, WMO, 5, URL http://www.emc.ncep.noaa.gov/mmb/SREF/551

reference.html.552

Ebert, E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution553

of precipitation. Mon. Wea. Rev., 129, 2461–2480.554

Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts.555

Weather and Forecasting, 24 (6), 1498–1510.556

Eckel, F. A. and M. K. Walters, 1998: Calibrated probabilistic quantitative precipitation557

forecasts based on the MRF ensemble. Wea. Forecasting, 13, 1132–1147.558

27



Gagne II, D. J., A. McGovern, and J. Brotzge, 2009: Classification of convective areas using559

decision trees. Journal of Atmospheric and Oceanic Technology, 26 (7), 1341–1353.560

Gagne II, D. J., A. McGovern, and M. Xue, 2012: Machine learning enhancement of storm561

scale ensemble precipitation forecasts. Proceedings of the Conference on Intelligent Data562

Understanding (CIDU), Boulder, CO, IEEE-CIS, 39–46.563

Gilleland, E., et al., 2010: Spatial forecast verification: image warping. Tech. Rep.564

NCAR/TN-482+STR, NCAR.565

Glahn, H. R. and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective566

weather forecasts. J. Appl. Meteor., 11, 1203–1211.567

Hall, T., H. E. Brooks, and C. A. Doswell, 1999: Precipitation forecasting using a neural568

network. Wea. Forecasting, 14, 338–345.569

Hamill, T. M. and S. J. Colucci, 1997: Verification of Eta-RSM short-range ensemble fore-570

casts. Mon. Wea. Rev., 125, 1312–1327.571

Hamill, T. M. and S. J. Colucci, 1998: Evaluation of Eta-RSM ensemble probabilistic pre-572

cipitation forecasts. Mon. Wea. Rev., 126, 711–724.573

Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration574

using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev.,575

136, 2620–2632.576

Hamill, T. M., J. S. Whitaker, and X. Wei, 2004: Ensemble reforecasting: Improving577

28



medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 1434–578

1447.579

Hansen, A. W. and W. J. A. Kuipers, 1965: On the relationship between the frequency of580

rain and various meteorological parameters. Meded. Verhand., 81, 2–15.581

James, G., D. Witten, T. Hastie, and R. Tibshirani, 2013: An Introduction to Statistical582

Learning with Applications in R. Springer, 430 pp.583

Johnson, A. and X. Wang, 2012: Verification and calibration of neighborhood and object-584

based probabilistic precipitation forecasts from a multimodel convection-allowing ensem-585

ble. Mon. Wea. Rev., 140, 3054–3077.586

Koizumi, K., 1999: An objective method to modify numerical model forecasts with newly587

given weather data using an artificial neural network. Wea. Forecasting, 14, 109–118.588

Kong, F., et al., 2011: Evaluation of CAPS multi-model storm-scale ensemble forecast for589

the NOAA HWT 2010 spring experiment. 24th Conf. Wea. Forecasting/20th Conf. Num.590

Wea. Pred., Seattle, WA, Amer. Meteor. Soc., Paper 457.591

Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. E.592

Williford, S. Gadgil, and S. Surendran, 1999: Improved weather and seasonal climate593

forecasts from multimodel superensemble. Science, 285, 1548–1550.594

Kusiak, A. and A. Verma, 2011: Prediction of status patterns of wind turbines: A data-595

mining approach. J. Sol. Energy Eng., 133, doi:10.1115/1.4003 188.596

29



Manzato, A., 2007: A note on the maximum Peirce skill score. Wea. Forecasting, 22, 1148–597

1154.598

Marsh, P. T., J. S. Kain, V. Lakshmanan, A. J. Clark, N. Hitchens, and J. Hardy, 2012:599

A method for calibrating deterministic forecasts of rare events. Wea. Forecasting, 27,600

531–538.601

Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30,602

291–303.603

Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble604

prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–605

119.606

Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12,607

595–600.608

Murphy, A. H., 1977: The value of climatological, categorical, and probabilistic forecasts in609

the cost-loss ratio situation. Mon. Wea. Rev., 105, 803–816.610

Peirce, C. S., 1884: The numerical measure of the success of predictions. Science, 4, 453–454.611

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, 2008: Conditional612

variable importance for random forests. BMC Bioinformatics, 9 (1), 307, doi:10.1186/613

1471-2105-9-307, URL http://www.biomedcentral.com/1471-2105/9/307.614

Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturba-615

tions. Bull. Amer. Meteor. Soc., 74, 2317–2330.616

30



Tracton, M. S. and E. Kalnay, 1993: Operational ensemble prediction at the National Me-617

teorological Center: Practical aspects. Wea. Forecasting, 8, 379–398.618

Vasiloff, S., et al., 2007: Improving QPE and very short term QPF: An initiative for a619

community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 1899–1911.620

Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3d ed., Academic Press,621

676 pp.622

Williams, J. K., 2013: Using random forests to diagnose aviation turbulence. Mach. Learn.,623

doi:10.1007/s10 994–013–5346–7.624

Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System625

(ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction model. Part626

I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193.627

Xue, M., D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced628

Regional Prediction System (ARPS), storm-scale numerical weather prediction and data629

assimilation. Meteor. Atmos. Phys., 82, 139–170.630

Xue, M., et al., 2001: The Advanced Regional Prediction System (ARPS) - A multiscale631

nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and632

applications. Meteor. Atmos. Phys., 76, 134–165.633

Xue, M., et al., 2011: CAPS realtime storm scale ensemble and high resolution forecasts for634

the NOAA hazardous weather testbed 2010 spring experiment. 24th Conf. Wea. Forecast-635

ing/20th Conf. Num. Wea. Pred., Seattle, WA, Amer. Meteor. Soc., PAPER 9A.2.636

31



Yuan, H., X. Gao, S. L. Mullen, S. Sorooshian, J. Du, and H. H. Juang, 2007: Calibration637

of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea.638

Forecasting, 22, 1287–1303.639

Zhang, J., Y. Qi, K. Howard, C. Langston, and B. Kaney, 2011: Radar quality index (RQI)—640

a combined measure of beam blockage and vpr effects in a national network. Proc. Eighth641

Int. Symp. on Weather Radar and Hydrology, Exeter, United Kingdom, Royal Meteoro-642

logical Society.643

32



List of Tables644

1 Frequencies of total and sampled grid points for the different precipitation645

thresholds. 34646

2 The names and descriptions of model predictors sampled from the SSEF runs.647

CAPE is Convective Available Potential Energy, and CIN is Convective Inhi-648

bition. 35649

3 An example binary contingency table for whether or not rain is forecast. 36650

4 The scores calculated from the binary contingency table for use with the651

optimal threshold predictions. 37652

5 Top 8 variable importance scores for the random forests trained over 6-hourly653

periods in Grid 1. 38654

6 Top 8 variable importance scores for the random forests trained over 6-hourly655

periods in Grid 2. 39656

33



Table 1. Frequencies of total and sampled grid points for the different precipitation thresh-
olds.

Grid 0-0.25 mm 0.25-6 mm 6 mm
Grid 1 Total 218,052,271 13,062,623 1,884,725

Grid 1 Sampled 86,704 51,802 7,490
Grid 2 Total 194,343,572 10,923,189 1,137,694

Grid 2 Sampled 77,210 4,3218 4,497
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Table 2. The names and descriptions of model predictors sampled from the SSEF runs.
CAPE is Convective Available Potential Energy, and CIN is Convective Inhibition.

Variable Levels

Hour Precipitation Surface
Surface-Based CAPE Surface

Surface-Based CIN Surface
Dewpoint 2 m
Pressure Mean Sea Level

Composite Radar Reflectivity Column Maximum
Precipitable Water Column Sum

Height 700 mb
U-Wind 700 mb
V-Wind 700 mb, 500 mb

Specific Humidity 850 mb, 700 mb, 500 mb
Temperature 2 m, 850 mb, 700 mb, 500 mb

Hour Max Reflectivity Column and Time Maximum
Hour Max Upward Wind Column and Time Maximum

Hour Max Downward Wind Column and Time Maximum
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Table 3. An example binary contingency table for whether or not rain is forecast.
Observed

Yes No

Forecast
Yes a (hit) b (false alarm)
No c (miss) d (true negative)
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Table 4. The scores calculated from the binary contingency table for use with the optimal
threshold predictions.

Score Formula

POD
a

a+ c

FAR
b

a+ b

POFD
b

b+ d

ETS
a− arandom

a+ b+ c− arandom

arandom
(a+ c)(a+ b)

a+ b+ c+ d

PSS
a

a+ c
− b

b+ d

Bias
a+ b

a+ c
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Table 5. Top 8 variable importance scores for the random forests trained over 6-hourly
periods in Grid 1.

Variable Mean Variable Mean

Grid 1 Hours 1-6 Grid 1 Hours 7-12

Hour Precipitation SD 0.0118 Hour Max Upward Wind Mean 0.0129
Precipitable Water Mean 0.0107 Hour Max Upward Wind Max 0.0126
Hour Precipitation Mean 0.0105 Hour Max Upward Wind SD 0.0113
Precipitable Water Max 0.0103 Hour Precipitation SD 0.0105
Hour Precipitation Max 0.0096 Hour Precipitation Max 0.0088

Hour Max Upward Wind Mean 0.0088 Hour Max Downward Wind SD 0.0087
Hour Max Upward Wind Max 0.0088 Hour Max Downward Wind Min 0.0084

Hour Max Upward Wind SD 0.0081 Specific Humidity 700 mb Max 0.0076

Grid 1 Hours 13-18 Grid 1 Hours 19-24

Hour Max Upward Wind Mean 0.0096 Hour Max Downward Wind Min 0.0114
Hour Max Downward Wind SD 0.0088 Surface-Based CAPE SD 0.0112

Hour Max Downward Wind Mean 0.0086 Hour Max Downward Wind Mean 0.0110
Hour Max Downward Wind Min 0.0084 Hour Max Downward Wind SD 0.0105

Hour Max Upward Wind SD 0.0071 Specific Humidity 850 mb Mean 0.0092
Precipitable Water Max 0.0070 Temperature 700 mb Min 0.0089

Specific Humidity 700 mb Max 0.0069 Hour Max Upward Wind Mean 0.0088
Hour Max Upward Wind Max 0.0062 Hour Max Upward Wind Max 0.0084

Grid 1 Hours 25-30

Hour Max Upward Wind Mean 0.0123
Hour Max Downward Wind Mean 0.0119

Hour Max Upward Wind SD 0.0112
Hour Max Upward Wind Max 0.0108

Hour Max Downward Wind SD 0.0105
Hour Max Downward Wind Min 0.0104
Specific Humidity 850 mb Mean 0.0078

Surface-Based CAPE SD 0.0077
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Table 6. Top 8 variable importance scores for the random forests trained over 6-hourly
periods in Grid 2.

Variable Mean Variable Mean

Grid 2 Hours 1-6 Grid 2 Hours 7-12

Hour Precipitation Mean 0.0116 Precipitable Water Mean 0.0111
Precipitable Water Mean 0.0114 Precipitable Water Min 0.0085

Precipitable Water Min 0.0104 Precipitable Water Max 0.0079
Precipitable Water Max 0.0097 Hour Max Upward Wind Mean 0.0077

Hour Max Upward Wind Mean 0.0094 Hour Max Upward Wind SD 0.0066
Hour Max Reflectivity Mean 0.0091 Hour Precipitation Mean 0.0065

Hour Max Upward Wind Max 0.0082 Hour Precipitation SD 0.0062
Hour Precipitation Max 0.0080 Hour Max Upward Wind Max 0.0062

Grid 2 Hours 13-18 Grid 2 Hours 19-24

Precipitable Water Mean 0.0077 Specific Humidity 850 mb Mean 0.0162
Hour Max Upward Wind Mean 0.0075 Specific Humidity 850 mb Max 0.0128

Specific Humidity 850 mb Mean 0.0065 Hour Max Upward Wind Mean 0.0110
Precipitable Water Min 0.0065 Surface-Based CAPE Max 0.0106
Precipitable Water Max 0.0056 Surface-Based CAPE Mean 0.0103

Temperature 700 mb Mean 0.0056 Hour Max Upward Wind SD 0.0101
Hour Max Upward Wind Max 0.0055 Hour Max Downward Wind Mean 0.0098

Temperature 500 mb Min 0.0054 Hour Max Upward Wind Max 0.0090

Grid 2 Hours 25-30

Specific Humidity 850 mb Mean 0.0114
Hour Max Upward Wind Mean 0.0094

Precipitable Water Mean 0.0084
Specific Humidity 850 mb Max 0.0083

Hour Precipitation SD 0.0072
Hour Max Upward Wind Max 0.0071

Hour Max Downward Wind Mean 0.0070
Surface-Based CAPE Max 0.0069

39



List of Figures657

1 Map of the number of grid points sampled within a 400 km2 box spatially658

averaged with a 300 km radius median filter. The domain sub grids are also659

shown and labeled. 42660

2 Histogram comparing the relative frequencies of the full precipitation distri-661

bution for the each subgrid to the sampled rainfall distributions. 43662

3 For a precipitation threshold of 0.25 mm h−1, the optimal probability thresh-663

olds (OT) and binary verification statistics calculated at the OT for the SSEF664

and each machine learning model in grid 1. 44665

4 For a precipitation threshold of 0.25 mm h−1, the optimal probability thresh-666

olds (OT) and binary verification statistics calculated at the OT for the SSEF667

and each machine learning model in grid 2. 45668

5 Attributes diagrams for the raw ensemble and each machine learning model.669

The solid line with circles is the reliability curve, which indicates the observed670

relative frequency of rain events above the 6.35 mm threshold for each prob-671

ability bin. The dot-dashed line with triangles shows the relative frequency672

of all forecasts that fall in each probability bin. If a point on the reliability673

curve falls in the gray area, it contributes positively to the BSS. The horizon-674

tal and vertical dashed lines are located at the climatological frequency for a675

particular sub grid. The diagonal dashed line indicates perfect reliability. 46676

6 Relative Operating Characteristic (ROC) curves for the raw ensemble and677

each machine learning model. The diagonal lines indicate PSS. 47678

40



7 BSS and AUC comparisons by hour. 48679

8 Evaluation of random forests trained with 3 precipitation thresholds at each680

forecast hour. Brier Skill Score (BSS) is the evaluation metric. 49681

9 Observed 1-hour precipitation on 13 May 2010 at 02 UTC. 50682

10 Filled contours of 2 m dew point and 2 m temperature for the 2-hour and683

26-hour SSEF forecasts valid on 13 May 2010 at 0200 UTC. 51684

11 The 2-hour (left) and 26-hour (right) forecasts of the SSEF ensemble proba-685

bility (top) and the simple logistic regression (bottom). The green contours686

indicate the observed areas of 1-hour precipitation greater than 6.35 mm h−1. 52687

12 The 2-hour (left) and 26-hour (right) forecasts of the multiple logistic regres-688

sion (top) and the random forest (bottom). The green contours indicate the689

observed areas of 1-hour precipitation greater than 6.35 mm h−1. 53690

13 Maps of the SSEF 26-hour forecasts of predictors considered important by the691

random forest model. 54692

41



Grid 0 Grid 1 Grid 2

Training Data Sample Frequency 300 km Radius Median Filter

0 4 8 12 16 20 24

Fig. 1. Map of the number of grid points sampled within a 400 km2 box spatially averaged
with a 300 km radius median filter. The domain sub grids are also shown and labeled.
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Fig. 2. Histogram comparing the relative frequencies of the full precipitation distribution
for the each subgrid to the sampled rainfall distributions.
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Fig. 3. For a precipitation threshold of 0.25 mm h−1, the optimal probability thresholds
(OT) and binary verification statistics calculated at the OT for the SSEF and each machine
learning model in grid 1.
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Fig. 4. For a precipitation threshold of 0.25 mm h−1, the optimal probability thresholds
(OT) and binary verification statistics calculated at the OT for the SSEF and each machine
learning model in grid 2.

45



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
O

b
se

rv
e
d
 F

re
q
u
e
n
cy

BSS: 0.082

Multiple Logistic Grid 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BSS: 0.074

Random Forest Grid 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BSS: 0.042

Simple Logistic Grid 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
b
se

rv
e
d
 F

re
q
u
e
n
cy

BSS: -0.071

Raw Ensemble Grid 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BSS: -0.240

Raw Ensemble Grid 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Forecast Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
b
se

rv
e
d
 F

re
q
u
e
n
cy

BSS: 0.052

Multiple Logistic Grid 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Forecast Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BSS: 0.044

Random Forest Grid 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Forecast Probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BSS: 0.016

Simple Logistic Grid 2

Fig. 5. Attributes diagrams for the raw ensemble and each machine learning model. The
solid line with circles is the reliability curve, which indicates the observed relative frequency
of rain events above the 6.35 mm threshold for each probability bin. The dot-dashed line
with triangles shows the relative frequency of all forecasts that fall in each probability bin.
If a point on the reliability curve falls in the gray area, it contributes positively to the BSS.
The horizontal and vertical dashed lines are located at the climatological frequency for a
particular sub grid. The diagonal dashed line indicates perfect reliability.
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Fig. 6. Relative Operating Characteristic (ROC) curves for the raw ensemble and each
machine learning model. The diagonal lines indicate PSS.
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Fig. 7. BSS and AUC comparisons by hour.
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Fig. 8. Evaluation of random forests trained with 3 precipitation thresholds at each forecast
hour. Brier Skill Score (BSS) is the evaluation metric.
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Fig. 9. Observed 1-hour precipitation on 13 May 2010 at 02 UTC.
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Fig. 10. Filled contours of 2 m dew point and 2 m temperature for the 2-hour and 26-hour
SSEF forecasts valid on 13 May 2010 at 0200 UTC.
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Fig. 11. The 2-hour (left) and 26-hour (right) forecasts of the SSEF ensemble probability
(top) and the simple logistic regression (bottom). The green contours indicate the observed
areas of 1-hour precipitation greater than 6.35 mm h−1.
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Fig. 12. The 2-hour (left) and 26-hour (right) forecasts of the multiple logistic regression
(top) and the random forest (bottom). The green contours indicate the observed areas of
1-hour precipitation greater than 6.35 mm h−1.
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Fig. 13. Maps of the SSEF 26-hour forecasts of predictors considered important by the
random forest model.

54


