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Abstract—Precipitation forecasts provide both a crucial ser-
vice for the general populace and a challenging forecasting
problem due to the complex, multi-scale interactions required
for precipitation formation. The Center for the Analysis
and Prediction of Storms (CAPS) Storm Scale Ensemble
Forecast (SSEF) system is a promising method of providing
high resolution forecasts of the intensity and uncertainty
in precipitation forecasts. The SSEF incorporates multiple
models with multiple parameterization scheme combinations
and produces forecasts every 4 km over the continental US.
The SSEF precipitation forecasts exhibit significant negative
biases and placement errors. In order to correct these issues,
multiple machine learning algorithms have been applied to the
SSEF precipitation forecasts to correct the forecasts using the
NSSL National Mosaic and Multisensor QPE (NMQ) grid as
verification. The 2010 runs of the SSEF were used for training
and verification. Two levels of post-processing are performed.
In the first, probabilities of any precipitation are determined
and used to find optimal thresholds for the precipitation areas.
Then, three types of forecasts are produced in those areas.
First, the probability of the 1-hour accumulated precipitation
exceeding a threshold is predicted with random forests, lo-
gistic regression, and multivariate adaptive regression splines
(MARS). Second, deterministic forecasts based on a correction
from the ensemble mean are made with linear regression,
random forests, and MARS. Third, fixed probability interval
forecasts are made with quantile regressions and quantile
regression forests. Models are generated from points sampled
from the western, central, and eastern sections of the domain.
Verification statistics and case study results show improvements
in the reliability and skill of the forecasts compared to the
original ensemble while controlling for the over-prediction of
the precipitation areas and without sacrificing smaller scale
details from the model runs.

I. INTRODUCTION

Precipitation forecasts are among the most challenging
in meteorology due to the wide variability of precipitation
over small areas, the dependence of precipitation amounts
on factors at a wide range of scales, and the mixed discrete-
continuous probability distribution of precipitation [1], [2],
[3]. The precipitation forecasting problem can be divided
into three primary questions: where is it going to rain,
when is it going to rain, and how much rain will occur?
The answers to all three of those questions depend on the
availability of precipitation ingredients and the placement
and timing of the storms that can take advantage of those in-

gredients. Although light and moderate rain is often viewed
as a mere annoyance for many people, heavy rains in short
time periods can lead to flash floods that present risks to
lives and property [3]. Improving the prediction of heavy
precipitation events in particular is crucial for anticipating
those events.

Numerical Weather Prediction (NWP) models are now be-
ing run experimentally and regularly at 1 to 4 km horizontal
grid spacing, or storm scale, allowing for the formation of
individual convective cells without the need of a separate
scheme to determine if conditions are favorable for convec-
tion. This feature allows for a better representation of storm
processes, but it adds additional uncertainty in placement
and timing of precipitation compared to models with larger
grid spacing. An ensemble of storm scale NWP models
can provide estimates of that uncertainty, but statistical post
processing is needed to account for model biases and to
increase reliability. The quality and design of the post-
processing is constrained by many factors, including sample
size, composition, variables used, number of points requiring
a forecast, and predicted variable format.

This thesis evaluates multiple approaches to post-
processing storm-scale ensemble precipitation forecasts with
machine learning and statistical algorithms. The algorithms
are designed to produce the following products: probabilities
of exceeding a given threshold, deterministic precipitation
forecasts, and a intervals of precipitation amounts give a
fixed probability range. They are trained using aggregations
of the raw ensemble precipitation predictions as well as
other relevant variables. Our approach has improved pre-
cipitation quantity forecasts, provided better estimates of
the uncertainty, and better defined the area covered by the
precipitation forecasts.

Lessons from previous studies on ensemble post-
processing of precipitation forecasts provided guidance on
our approach to post-processing a storm scale ensemble.
Model Output Statistics (MOS; [4], [5]) produced prob-
ability of precipitation forecasts from deterministic NWP
models using multivariate linear regression to select the most
relevant variables from the model and to fit a function.
Variables selected in the original MOS equations included
primarily precipitation and precipitable water. The MOS



approach was extended to ensemble NWP forecasts with the
use of a linear regression fit to a Gamma distribution [6].
Extensive work on creating the best ensemble precipitation
forecasts in terms of both areal coverage and magnitude
was done in [2] and found that using the ensemble mean
for areal coverage and probability matching the precipi-
tation magnitudes produced the best forecast out of the
techniques tried. Bremnes [1] produced fixed probability
interval forecasts with a quantile regression and found that
training the post-processing algorithms on statistics about
the ensemble forecast performed better than training on all
ensemble members. Further ensemble post-processing work
was done in [7] and [8] by combining the logistic regression
approach with extensive reforecast runs of the GFS ensemble
to produce skilled short term and extended probability of
precipitation forecasts. Bayesian Model Averaging (BMA)
[9], a weighted average of the probability distribution func-
tions for bias-corrected ensemble member forecasts, has also
been applied to precipitation forecasts [10] with a Gamma
distribution in place of the Gaussian distribution. BMA can
produce probabilistic, deterministic, and interval forecasts.
Both BMA and Bremnes also use a separate algorithm
to predict probability of precipitation in addition to the
precipitation amount. Our approach builds on these previous
approaches by incorporating a range of model variables,
using ensemble statistics instead of individual members,
and utilizing non-parametric algorithms. In addition, our
approach is applied to a much higher resolution model
than was used in any previous study, incorporates a radar-
mosaic for grid- instead of station-based verification, and
uses advanced ensemble machine learning techniques.

II. DATA AND METHODS

A. Ensemble Specification

The post-processing algorithms for this project are be-
ing applied to the Center for the Analysis and Prediction
of Storms (CAPS) 2010 Storm Scale Ensemble Forecast
(SSEF) system [11], [12]. The 2010 SSEF is composed
of 26 separate model runs from the Weather Research and
Forecasting (WRF) Advanced Research WRF and Non-
hydrostatic Mesoscale Model and the Advanced Regional
Prediction System. Each model is run with different com-
binations of microphysics schemes, land surface models,
and planetary boundary layer schemes. The SSEF ran every
weekday at 0000 UTC in conjunction with the 2010 Na-
tional Oceanic and Atmospheric Administration/Hazardous
Weather Testbed Spring Experiment [13], which ran from 3
May to 18 June. The SSEF provides hourly model output
over the continental United States at 4 km horizontal resolu-
tion out to 30 hours. Of the 26 models in the 2010 SSEF, the
14 models initialized from the Short Range Ensemble Fore-
cast system are included in the post-processing procedure
because they are the only models that combine perturbed
initial and boundary conditions with perturbed physics. The

Figure 1. Map of spatial histogram of sampled points within a 20 km
radius of each point. The domain sub grids are also shown and labeled.

12 models not included use the same initial conditions
from a control run, so they do not contribute additional
information about the spread and could bias the mean toward
the control run forecast. This dataset is also being used in
[14] where the Ensembled Continuous Bayesian Networks
(ECBN) algorithm is introduced. They compare performance
to the random forests presented here.

B. Verification Data

A storm scale verification dataset was paired with the
storm scale ensemble forecasts. The National Mosaic Multi-
Sensor QPE (NMQ) [15] derives precipitation estimates
from a 3-dimensional mosaic of the NEXRAD radar net-
work. The estimates are overlaid on a grid over the CONUS
with 1 km horizontal spacing. The original grid has been
interpolated to the same grid as the SSEF.

C. Data Selection and Aggregation

The relative performance of any machine learning algo-
rithm is conditioned on the distribution of its training data.
The sampling scheme for the SSEF is conditioned on the
constraints of relatively few ensemble runs over a short, ho-
mogenous time period with nearly 1 million grid points from
each time step. The short training period and large number
of grid points preclude training a single model at each grid
point, so a regional approach was used. The SSEF domain
was split into thirds, and points were stratified randomly
sampled from each subdomain in areas with quality radar
coverage. Grid 1 corresponds to the western third of the
domain, Grid 2 corresponds to the central third, and Grid
3 corresponds to the eastern third. Fig. 1 shows that most
of the continental US was sampled with the exception of
areas of the Rocky Mountains with poor radar coverage.
The sampling of areas within radar coverage is not uniform
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Figure 2. Histogram comparing the relative frequencies of the rainfall
distribution for grid 2 to the sampled rainfall distribution.

and does have a slight bias toward areas that received large
amounts of precipitation during the SSEF time period.

A comparison of the sampled rainfall distribution and the
full rainfall distribution are shown in Fig. 2. Undersampling
of the 0 precipitation points was necessary because of the
large number of no-precipitation events, which overwhelmed
the signal from the actual precipitation events. The upper
bins were oversampled since the heavy precipitation events
were very rare and would not be handled well by the ma-
chine learning algorithms otherwise. The random sampling
of grid points helps reduce the chance of sampling multiple
grid points from the same storm without explicitly filtering
parts of the domain as in [8]. Relevant model variables
(Table I) at each sampled grid point were also extracted
from each ensemble member. These variables were selected
to capture additional information about the mesoscale and
synoptic conditions in each model. An additional variable
called the Radar Quality Index (RQI) was sampled at each
point to determine the trustworthiness of the verification data
at that point. Only points with RQI greater than 0 were
included in the training data.

Multiple ways of aggregating the ensemble variables were
tested. For the probabilistic forecasts, ensemble variables
were grouped into mean and standard deviation. The mean
and standard deviation capture information about the pre-
dicted changes in a variable and the spread in those predic-
tions. For the regression and quantile forecasts, the 5th, 50th
and 95th percentiles of each variable were extracted. This
format also provides information about the median forecast
and spread while also sampling the range of forecast values
and weakening the influence of outliers.

D. Machine Learning Algorithms

Machine learning algorithms utilizing different ap-
proaches and assumptions were trained on the probabilistic
and quantile datasets. For the probabilistic domain, logistic
regressions were used as the baseline algorithm. Logistic

Table I
THE NAMES AND DESCRIPTIONS OF MODEL VARIABLES SAMPLED FROM

THE SSEF RUNS. CAPE IS CONVECTIVE AVAILABLE POTENTIAL
ENERGY, AND CIN IS CONVECTIVE INHIBITION.

Variable Description
accppt 1-hour accumulated precipitation
cmpref Composite reflectivity

dewp2m 2 m dew point temperature
refmax 1-hour maximum reflectivity
mspres Mean sea level pressure
sbcape Surface-based CAPE
sbcins Surface-based CIN

pwat Precipitable water
temp2m 2 m air temperature
tmp700 700 mb temperature

u700 700 mb east-west wind
v700 700 mb north-south wind

hgt700 700 mb height
v500 500 mb north-south wind

wupmax 1-hour max upward vertical velocity
wdnmax 1-hour max downward vertical velocity

regressions are linear regression models fitted to a logit
curve that ranges from 0 to 1. Logistic regressions were
trained from the raw ensemble probability and with stepwise
selection of variables.

Multivariate adaptive regression splines (MARS; [16])
were also applied to the problem. MARS have a form
similar to multiple linear regression but with an added
layer of complexity. Each term consists of a hinge function,
which contains two intersecting linear functions. Linear
combinations of these hinge functions produce a piecewise
linear regression that can approximate complex functions
with a relatively compact model. MARS performs variable
selection using forward selection and backward elimination.
For computational timing purpose, the maximum number
of variables was limited to 15. This project uses the open-
source earth1 library as its MARS implementation.

Random forests [17] consist of an ensemble of classifica-
tion and regression trees with two key modifications. First,
the training data are bootstrap resampled with replacement
for each tree in the ensemble. Then only a small random
subset of the total number of variables are evaluated for
splitting at each node in each tree. The final prediction from
the forest is the mean of the predicted values from all the
trees. Random forests can produce both probabilistic and
regression predictions through this method. Since the tree-
building process selects a subset of variables for each tree,
a technique called variable importance [17] can be used to
rank the relevance of the variables.

In addition to producing a single probability or quan-
tity, two methods can produce fixed probability intervals.
Quantile regressions [18] estimate the median and other

1http://www.milbo.users.sonic.net/earth/



quantiles by minimizing the absolute error. They also handle
non-Gaussian error distributions better. Quantile regression
forests [19] are a variation of random forests that use the
distribution of values at the selected leaf node of each tree
in the forest to estimate specified quantiles.

E. Model Training and Evaluation

The training and evaluation procedure for the post pro-
cessing algorithms used an approach that maximized the
available training and testing data for the algorithms without
compromising the independence of either set. Each machine
learning algorithm was trained and evaluated using leave-
one-model-run-out cross validation. The post-processing
occurred in a two-step process. First, each probabilistic
algorithm is trained to predict the probability of 1-hour
precipitation exceeding 0.25 mm (0.01 in). This prediction is
used to estimate the area where any precipitation will occur.
This forecast can be treated as a probability of precipitation
forecast or it can be thresholded to provide rain and no-
rain areas. Second, another set of algorithms is trained on
the conditional probability of 1-hour precipitation exceeding
6.54 mm (0.25 in) given that precipitation is occurred at that
point. This precipitation threshold was chosen because it is a
moderate amount of rain for the period and matches current
SSEF forecast products, allowing for easier comparisons.
The conditional algorithm is trained on only points where
some rain occurred, so it implicitly assumes that the rain/no-
rain classifier is perfect.

Evaluation techniques depended on the type of forecast.
The Brier Skill Score (BSS) [20] is one method used to
evaluate probabilistic forecasts. The Brier Skill Score can
be decomposed into three terms [21], as shown in Eq. 1:

BSS =

1

N

K∑
k=1

nk(ok − o)2 − 1

N

K∑
k=1

nk(pk − ok)
2

o(1− o)
(1)

N is the number of forecasts, K is the number of probability
bins, nk is the number of forecasts in each probability
bin, ok is the observed relative frequency for each bin,
o is the climatological frequency, and pk is the forecast
probability for a particular bin k. The first term describes
the resolution of the forecast probability, which should be
maximized and increases as the observed relative frequency
differs more from climatology. The second term describes
the reliability of the forecast probability, which should be
minimized and decreases with smaller differences between
the forecast probability and observed relative frequency. The
third term is the uncertainty, which is fixed for a given
dataset. Positive BSS indicates positive skill and vice versa.
The components of the BSS can be displayed graphically
with an attributes diagram [22], in which the observed
relative frequency of binned probability forecasts are plotted
against lines showing perfect reliability, no skill where

the reliability and resolution are equal, and no resolution
where the observed relative frequency and probability equal
climatology.

The Area Under the Receiver Operating Characteristic
(ROC) curve, or AUC [23] was another method used to
evaluate probabilistic forecasts. To calculate AUC, first, the
decision probability threshold is varied from 0 to 1 at
regular intervals. At each interval, a contingency table is
constructed by splitting the probabilities into two categories
at the decision threshold. From the contingency table, the
probability of detection (POD) and probability of false
detection (POFD) are calculated and plotted against each
other. This plot becomes the ROC curve. The AUC is the
area between the lower right side of the curve and the
curve itself. AUC above 0.5 has positive skill. AUC only
determines how well the forecast discriminates between two
categories, so it does not take the reliability of the forecast
into account.

Deterministic precipitation forecasts are based on the
difference from the ensemble mean forecast. This approach
produces a distribution closer to Gaussian than predicting
rainfall directly and allows the use of Gaussian linear
regression. The forecasts are verified with the root mean
squared error (RMSE). The RMSE is shown in Eq. 2:

RMSE =

√√√√ 1

P

P∑
p=1

(fp − op)
2 (2)

where P is the number of precipitation forecasts, fp is a
single precipitation forecast, and op is the matching observed
precipitation. RMSE places additional penalties on very
large errors and is more sensitive to outliers.

Forecasts of fixed probability intervals can be evaluated
based on the proportion of samples that fall within the
quantile intervals as well as the width of the quantiles.

III. RESULTS

A. Probability Forecasts

Probabilistic models were developed for each subdomain
to find the probability of 1-hour precipitation exceeding 6.54
mm or 0.25 inches. Due to space limitations, the discussion
of the verification will focus on Grid 2. The first part of
the process determines the probability of any precipitation
occurring. Fig. 3 shows the AUC for each algorithm tested.
Random forest consistently has the highest AUC and multi
logistic regression and MARS are only slightly worse.
The raw ensemble and the calibration logistic regression
are significantly worse but still have an AUC that would
be considered skilled. Verification scores for the threshold
exceedance predictions can be seen in Fig. 4. BSS and AUC
both drop severely from hours 1 to 4 before rising again be-
tween hours 5 and 10. Slight decreases in performance occur
from hours 10 through 25 with an increase in performance
again between hours 25 and 30. The decrease in BSS occurs
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Figure 3. Variation of AUC by hour for probability of precipitation
forecast algorithms in Grid 2. The shaded areas indicate the 95% bootstrap
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Figure 4. Variation of BSS and AUC by hour for the central US subdomain.
The shaded areas indicate the 95% bootstrap confidence intervals.

at a lower rate for the machine learning models compared
to the raw ensemble, and all machine learning models stay
above 0 for the whole period. MARS and Multi Logistic
Regression statistically significantly (α < 0.05) outperform
random forests and logistic regression in terms of BSS.

AUC shows a slightly different picture than BSS. There

Table II
VARIABLE IMPORTANCE STATISTICS FROM ALL 34 100-TREE RANDOM

FORESTS. M IS MEAN AND SD IS STANDARD DEVIATION.

Variable Z Mean SE
V 700 mb M 405.7 0.565 0.0014
V 500 mb M 337.2 0.552 0.0016

Temperature 700 mb M 318.2 0.553 0.0017
Precipitable Water M 304.6 0.553 0.0018

MSLP M 281.5 0.549 0.0020
Max + Vertical Velocity M 270.0 0.519 0.0019
Max - Vertical Velocity M 268.2 0.524 0.0020

U 700 mb M 267.7 0.545 0.0020
Height 700 mb M 266.2 0.546 0.0020

Max - Vertical Velocity SD 236.1 0.519 0.0022

is no significant difference in AUC among the multivariate
machine learning models. The calibration logistic regression
performs worse than the ensemble. The decrease in AUC for
the calibration logistic regression is likely due to the logistic
regression just increasing the probabilities of the samples
but not changing their order relative to each other as well as
decreasing the range of probabilities, so the resulting AUC
would decrease.

The calibration improvements from each model can be
seen in the attributes diagrams from Fig. 5. The raw en-
semble is under-predicting the probabilities that are less
than 50% and over-predicting those greater than 50%. The
calibration logistic regression model adjusts the 0 ensemble
probability to correspond with its observed relative fre-
quency near 20%. Since the calibration logistic regression
did not have any additional information about the samples
beyond the predicted precipitation, this simple transfor-
mation was the most it could manage. Random forests,
MARS, and multi logistic regression did have additional
variables they could select. In many cases, they increased the
probability for each sample compared to the raw ensemble,
resulting in both higher probabilities for more cases as seen
in the bin sizes in Fig. 5 and a wider spatial extent for
nonzero probabilities. The BSS was highest for MARS and
multiple logistic regression with both random forests having
slightly less skill. In this instance, MARS was better at
keeping the observed relative frequencies along the perfect
reliability line. Since random forests are a non-parametric
model, they are more sensitive to the distribution of the
training data set.

The top ten most important variables selected by the
random forest are shown in Table II. The top two variables
correspond with the upper air north-south wind, which is
maximized in areas where rain is more likely to occur. The
other important variable in the top 5 is mean precipitable wa-
ter, so where moisture is available for precipitation is more
important than where the ensemble actually produces pre-
cipitation. The vertical velocity variables are generally tied
to where convective updrafts and downdrafts are strongest,
which in effect are where the ensemble places convection.
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Figure 5. Attributes diagrams for each probabilistic model in grid 2. The data points are at the center of each 10% width bin. The values next to each
data point are the proportion of samples within each bin.

The ensemble mean and spread accumulated precipitation
forecasts are not among the most important variables be-
cause 1-hour precipitation forecasts are heavily dependent
on getting the location correct, and the precipitation is often
displaced in space and time.

B. Deterministic Forecasts

The ensemble information was also combined to make
a single deterministic 1-hour precipitation forecast for each
sample. Fig. 6 shows how the RMSEs of the deterministic
forecasts vary by hour. As with the probabilistic forecasts,
all of the machine learning models decrease the RMSE.
The random forest and MARS create the largest decrease
in RMSE, although the MARS model is more sensitive
to erroneous attribute values, as evidenced by the sharp
increases in hourly RMSE. The median prediction from
the quantile regression forest performed noticeably worse
than the random forest. This difference is likely due to the
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quantile regression forest underestimating the amplitude of



Table III
PERCENTAGE OF SAMPLES IN EACH INTERVAL SECTION.

Model <5 5-50 50-95 >95
Raw Ensemble 1.2 7.6 34.0 57.3

Quantile Reg. Forest 3.2 47.4 43.7 5.7
Quantile Reg. 5.2 44.7 45.0 5.1

extreme precipitation events since extreme values have less
effect on the median than the mean.

C. Interval Forecasts

Evaluation of the interval forecasts from the raw en-
semble, quantile regression, and quantile regression forest
involves checking that the percentage of samples in each
section of the interval match their fixed probability. As
seen in Table III, the observed precipitation totals tend
to fall above the interval entirely. The quantile regression
forest does bring over 80% of the samples within the 5-95
percentile interval, but most of the samples are in the 5-50
percentile interval, so the model exhibits negative skew. The
quantile regression, on the other hand, balances the intervals.

D. Case Study: 2010 May 19

Running the post-processing algorithms over the full do-
main on a particular day revealed how the machine learning
techniques improved their verification scores over the raw
ensemble. Each model was evaluated at 0000 UTC on
20 May 2010. At that time a line of discrete supercells
had formed in central Oklahoma with a widespread area
of stratiform rain extending across northern Kansas into
Missouri. The probabilistic predictions from the SSEF, multi
logistic regression, and 100 tree random forest are shown
Fig. 7, along with the observed precipitation. The SSEF
placed the highest probabilities of exceeding 6.35 mm of
precipitation in southern and central Kansas but gives very
low probabilities for the convection in central and southern
Oklahoma. No probabilities are given for the precipitation
in Missouri and very low probabilities are predicted for
the convection in Louisiana. The random forest shifts the
higher probabilities southward into Oklahoma and gives
some hint that the areas of heavy precipitation would be
more isolated. The probabilities in Louisiana are lower and
less smooth. The multi logistic regression does the best at
capturing the areal coverage of the convection and provides
smoother probabilities that still hint at the discrete nature
of the convection in Oklahoma. It is the only model that
produces any probability of precipitation in Missouri.

While the case study shown is only one time step of one
run, some conclusions can be made regarding the machine
learning algorithms. The combined probability of precipita-
tion and probability of precipitation exceedance algorithms
highlight the areas of greatest threat while constraining the
coverage of the probabilities. The multi logistic regression
does produce smoother probability contours compared to
random forest and maximizes at higher amounts in this

instance. While both algorithms handled the area of discrete
super cellular convection well, they did not produce high
probabilities in the area of stratiform rain. This weakness is
likely due to the choice of variables for the post-processing,
which are biased toward ingredients for convective precipi-
tation as opposed to stratiform.

IV. CONCLUSIONS

This study demonstrated that a storm scale ensemble
post-processing system based on ensemble machine learning
algorithms, radar mosaic verification, and ensemble vari-
able statistics can provide improved precipitation forecasts.
Multiple machine learning models of varying complexity
were applied to forecasts from the 2010 SSEF over the
continental US for the period from 3 May to 18 June 2010
and verified against a radar-derived precipitation mosaic.
Probabilistic, deterministic, and interval forecasts of 1-hour
precipitation accumulation were created with the different
models. Verification statistics showed that random forests,
multiple logistic regression, and MARS provided significant
improvements for probabilistic and continuous forecasts by
both increasing the range of precipitation and probabilistic
values predicted and by increasing the areal coverage of the
precipitation forecasts. Quantile regression forests produce
more accurate median forecasts than quantile regressions,
but quantile regressions are better at distributing their inter-
vals to capture the correct probability densities. The models
were applied to a single event to illustrate the geographic
variability of the forecasts and tendencies in the predictions.

The verification results and case study also showed that
post-processing can be beneficial beyond the larger spatial
and temporal scales that had been the focus of previous tech-
niques. By giving more weight to the ingredients for heavy
precipitation instead of the model precipitation forecasts,
the probabilistic machine learning algorithms accounted for
some of the spatial and temporal uncertainty inherent in
convective precipitation forecasts. Stratiform rain forecast
ingredients can be included in future datasets. Further im-
provements could be made by incorporating values describ-
ing the spatiotemporal variability of the ensemble.
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