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ABSTRACT

Two approaches for accounting for errors in quantitative precipitation forecasts (QPFs) due to uncertainty

in the microphysics (MP) parameterization in a convection-allowing ensemble are examined. They include

mixedMP (MMP) composedmostly of double-moment schemes and perturbing parameters within theWeather

Research and Forecasting single-moment 6-class microphysics scheme (WSM6) MP scheme (PPMP). Thirty-

five cases of real-time storm-scale ensemble forecasts produced by the Center for Analysis and Prediction of

Storms during the NOAA Hazardous Weather Testbed 2011 Spring Experiment were examined.

The MMP ensemble had better fractions Brier scores (FBSs) for most lead times and thresholds, but the

PPMPensemble had better relative operating characteristic (ROC) scores for higher precipitation thresholds.

The pooled ensemble formed by randomly drawing five members from the MMP and PPMP ensembles was

no more skillful than the more accurate of the MMP and PPMP ensembles. Significant positive impact was

found when the two were combined to form a larger ensemble.

The QPF and the systematic behaviors of derived microphysical variables were also examined. The skill

of the QPF among different members depended on the thresholds, verification metrics, and forecast lead

times. The profiles of microphysics variables from the double-moment schemes containedmore variation in the

vertical than those from the single-moment members. Among the double-moment schemes, WDM6 produced

the smallest raindrops and very large number concentrations. Among the PPMP members, the behaviors were

found to be consistent with the prescribed intercept parameters. The perturbed intercept parameters used in the

PPMP ensemble fell within the range of values retrieved from the double-moment schemes.

1. Introduction

Numerical weather prediction (NWP) using an en-

semble of forecasts has become increasingly popular

since the early 1990s when such centers as the National

Centers for Environmental Prediction in the United

States and the European Centre for Medium-Range

Weather Forecasts began running global ensembles on

the synoptic scale for forecasts ranging up to 16 days

(e.g., Toth and Kalnay 1993; Molteni et al. 1996). The

purpose of using an ensemble instead of a single de-

terministic forecast was to account for the uncertainty in

the model forecasts.

Early work on ensemble forecasting first focused on

addressing the uncertainty in the initial conditions (Toth

and Kalnay 1993, 1997; Buizza and Palmer 1995; Molteni

et al. 1996; Houtekamer et al. 1996; Wang and Bishop

2003; Wang et al. 2004). However, not long afterward,

researchers began accounting for uncertainty in a forecast

due to model error as well (Du et al. 1997; Stensrud et al.

2000; Hou et al. 2001). Global- and regional-scale en-

semble modeling has since been extensively studied
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(Du et al. 1997; Wang and Bishop 2003; Palmer et al.

2005; Wei et al. 2008); techniques to appropriately gen-

erate initial condition perturbations and model per-

turbations have resulted in large-scale and mesoscale

ensembles that are increasingly skillful and statistically

reliable. In contrast, higher-resolution, convective-scale

ensemble forecasting remains in a relative infancy. Al-

though research related to convective-scale ensemble

prediction has increased in the last few years (e.g.,

Kong et al. 2006, 2007a,b; Xue et al. 2007; Mittermaier

2007; Clark et al. 2008, 2010; Schwartz et al. 2010; Vie

et al. 2011; Johnson et al. 2011a,b; Johnson and Wang

2012, 2013; Johnson et al. 2013, 2014; Ropnack et al. 2013;

Caron 2013), many questions addressing the optimal

design of convection-allowing model ensembles remain.

Furthermore, computer power has improved to the point

where limited-area simulations with resolutions on the

order of 1 km have become feasible, even for the conti-

nental U.S. domain (e.g., Xue et al. 2009; Xue et al. 2013;

Johnson et al. 2013). Therefore, experimental and semi-

operational models now run at these resolutions and can

resolve smaller-scale features. Perhaps the most actively

researched of all such features as it pertains to operational

NWP are those that produce precipitation. Specifically,

convective storms and mesoscale convective systems,

which are dominantly warm-season phenomena, are now

explicitly simulated without cumulus parameterization.

Warm-season quantitative precipitation forecast (QPF)

skill has historically been poor compared to that from the

cold season (Ralph et al. 2005). Additionally, growth rates

of forecast errors for convective scales can be highly

nonlinear (Hohenegger and Sch€ar 2007). Therefore, ex-

tensive research that optimizes convective-scale ensemble

model forecasting to improve warm-season probabilistic

quantitative precipitation forecasting is needed.

There are many ways to address model error in an

ensemble. One particular way is to represent error sto-

chastically (Buizza et al. 1999; Berner et al. 2009). An-

other way is by using multiple models and varied physics

options within a given model (e.g., Doblas-Reyes et al.

2000; Hou et al. 2001; Ebert 2001; Hagedorn et al. 2005;

Xue et al. 2007, 2008, 2009, 2011; Kong et al. 2007b, 2010,

2011, Candille 2009; Berner et al. 2011; Hacker et al.

2011; Charron et al. 2010; Johnson et al. 2011a,b; Johnson

and Wang 2012). Since convection is explicitly repre-

sented by microphysics parameterizations in high-

resolution NWP simulations, warm-season QPF can be

very sensitive to uncertainties in microphysics parameter-

izations. Earlier studies have investigated the sensitivity

of convective-scale features like supercell thunder-

storms and squall lines to the complexity of, and the

values of parameters used in, particle size distributions

in microphysics schemes (Gilmore et al. 2004; Snook and

Xue 2008; Tong and Xue 2008; Morrison et al. 2009;

Dawson et al. 2010; Putnam et al. 2013). Great sensitivity

of accumulated precipitation and cold pool size and in-

tensity to parameters that describe rain, graupel, and hail

size distributions has been found. It has also been found

that simulations using multimoment microphysics (MP)

schemes producemore realistic reflectivity structures and

more realistic stratiform precipitation regions in squall

lines. However, most of these studies were conducted

within an idealized and/or deterministic framework.

There are also a large number of studies (e.g., Eckel and

Mass 2005; Xue et al. 2009; Clark et al. 2008, 2009, 2010;

Schwartz et al. 2010; Hacker et al. 2011; Berner et al.

2011; Clark et al. 2011; Johnson et al. 2011a,b; Johnson

and Wang 2012, 2013) that account for model physics

uncertainty in an ensemble by varying the MP schemes.

However, the use of mixed microphysics in these studies

is usually embedded within other varied physics such as

convection, boundary layer, and radiation parameteri-

zations, thus masking the contribution of the varied mi-

crophysics to the total benefit of the ensemble.

In this studywe examine the use of variedmicrophysics

in a convection-allowing forecast within an ensemble and

real-data framework. Two approaches to addressing

model error from uncertainties in the microphysics are

tested. In one approach the values of some parameters

within a single MP scheme are varied. This way one can

address uncertainty by sampling the distribution of pos-

sible values of parameters significant to cloud and pre-

cipitation physics. The perturbed parameters in this study

include the intercept parameters for precipitation particle

size distributions (PSDs) and graupel density. The re-

sultant ensemble is hereinafter denoted as perturbed

parameter microphysics (PPMP). A single-moment MP

scheme is used for testing this approach. These parame-

ters were chosen based on earlier studies that examined

the uncertainty ranges of PSD-related parameters and

showed great sensitivities of modeled storm dynamics

and precipitation forecasts to these parameters (Gilmore

et al. 2004; Snook and Xue 2008; Tong and Xue 2008;

Jung et al. 2010; Yussouf and Stensrud 2012). In the

second approach separate MP parameterizations are

used. Not only can this approach address uncertainty in

parameter values, but it can also address uncertainty in

the microphysical processes within the parameterization

schemes. The resultant ensemble is hereinafter denoted

as mixed microphysics (MMP). Most of the MP pa-

rameterizations used in theMMP ensemble predict two

moments of at least one of the precipitating species.

Therefore, this experiment also enables an investigation

into whether an ensemble using various sophisticatedMP

parameterizations is superior to one using simpler and

more computationally efficient MP parameterizations
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with perturbed parameters. This research presents a

step in the investigation of how to best sample the mi-

crophysics errors in a convection-allowing ensemble for

warm-season QPF.

The purpose of this paper is twofold. One purpose is

to examine the effectiveness of different approaches to

accounting for model microphysics error in convective-

scale probabilistic QPF (PQPF) via conducting various

verifications. The mixed results from a comparison of

the MMP and PPMP ensembles as shown later motivate

investigation of the combination of the approaches; the

combination of the MMP and PPMP ensembles formed

a third ensemble, called the pooled ensemble. The sec-

ond purpose is to examine and compare the systematic

behaviors of the various microphysical variables over

a broad range of cases for theMP schemes that compose

the MMP and PPMP ensembles in convective-allowing

forecasts to facilitate ensemble design in the future.

2. Experimental setup

a. Model description

Version 3.2.1 of the Weather Research and Fore-

casting Model (WRF), with the Advanced Research

dynamic core (ARW; Skamarock et al. 2008), was used

as the NWP model. WRF-ARW was the primary NWP

model used in the Storm-Scale Ensemble Forecast sys-

tem (SSEF) conducted by the Center for Analysis and

Prediction of Storms and used in the National Oceanic

and Atmospheric Administration’s (NOAA) Hazardous

Weather Testbed (HWT) 2011 Spring Experiment (Kong

et al. 2011). The 2011 Spring Experiment extended from

lateApril to early June, which included 35 cases [generally

one case each weekday from 27 April to 10 June; Kong

et al. (2011)]. Forecasts were initialized at 0000 UTC

and ran for 36 h over the contiguousU.S. model domain

(see Fig. 1).

Ten members were designed to investigate which

approach to addressing model error due to microphysics

uncertainty results in a more skillful ensemble. All other

aspects of the model configuration, including initial and

lateral boundary conditions, as well as other physics pa-

rameterizations, were identical among the 10 members.

The members used six different MP schemes including

Thompson (Reisner et al. 1998; Thompson et al. 2008),

Ferrier (Ferrier et al. 2002, 2013; Ferrier 2013), Morrison

(Morrison et al. 2009), Milbrandt–Yau (MY; Morrison

and Milbrandt 2011), and WRF single-moment 6-class

microphysics scheme (WSM6; Hong and Lim 2006),

andWRF double-moment 6-class microphysics scheme

(WDM6; Lim and Hong 2010). Relevant characteristics

and parameters of the members and MP schemes are

given in Table 1, and a description of the differences

between the members is given in the appendix. The

MMP ensemble contained six members that used the

Thompson, Ferrier, MY, Morrison, WDM6, and WSM6

schemes. The PPMP ensemble contained five members,

each of which used theWSM6 scheme but with different

values of the rain and graupel intercept parameter of the

respective PSDs and different graupel densities. The

graupel density ranges between values typical of graupel

and hail, while the intercept parameters take values

within observed uncertain ranges [see discussions in Tong

and Xue (2008) on the uncertain ranges of values]. The

WSM6 scheme was a member of both ensembles. To

investigate whether a combination of the above two ap-

proaches to addressing microphysics error is superior to

FIG. 1. Model domain (circled ‘‘1’’) and verification domain (circled ‘‘2’’) used in this study.
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either approach alone, a third ensemble—the ‘‘pooled’’

ensemble—was composed of members from the PPMP

and MMP ensembles.

The initial conditions were generated by the Ad-

vanced Regional Prediction System’s three-dimensional

variational data assimilation and cloud analysis system

(Gao et al. 2004; Xue et al. 2003; Hu et al. 2006) using

0000UTCoperational 12-kmNorthAmericanMesoscale

Model (NAM) analyses as the background field. The data

assimilated include Weather Surveillance Radar-1988

Doppler radial velocity and reflectivity, surface pres-

sure, horizontal wind, temperature, and specific humidity

from the Oklahoma Mesonet, surface aviation observa-

tions, and wind profiler data. The boundary conditions

were provided by 12-kmNAMmodel forecasts initialized

at 0000 UTC. The Noah land surface model (Ek et al.

2003) and the Mellor–Yamada–Janji�c (MYJ) boundary

layer parameterization (Mellor and Yamada 1982; Janji�c

2002) were used for all 10 members.

b. Verification methodology

Verificationwas performed over a portion of themodel

domain containing the central and southern United

States (Fig. 1). This domain was chosen because the en-

vironment in this region during the late spring and early

summer supports organized and intense convection with

tight spatial gradients. Therefore, the verifications in this

region are a representative evaluation of the skill of

convective-scale warm-season QPF. A variety of veri-

fication metrics were used, including gridpoint-based,

contingency-table-based, and neighborhood-based met-

rics. Thesemetrics are introduced as they are encountered.

Probabilistic verification was computed using uncalibrated

model output. Therefore, probability of precipitation

(PoP) was computed as the proportion of members in

which a specified 1-h precipitation amount threshold1

was exceeded. PoP values across the verification do-

main constituted the PQPF verified in this study.

Verifying precipitation data were provided by the

National Mosaic and Multi-sensor quantitative pre-

cipitation estimation (QPE) project (NMQ) of the Na-

tional Severe Storms Laboratory (Zhang et al. 2011).

The output fields are available at a horizontal resolution

of 0.018. Rainfall rate estimates are produced every

2.5min and are integrated to produceQPEs for a variety

of accumulation intervals, including 1 h. The QPEs are

the result of a combination of radar-estimated rainfall

and rain-gauge measurements. The radar rainfall esti-

mates are calculated using a variety of Z–R relationships

applied to the hybrid scan reflectivity field (essentially,

the reflectivity at the lowest height above ground). Gauge

correction uses inverse-distance weighting with correc-

tions for gauge density and quality control measures to

ignore measurements from gauges with anomalously

large errors. The NMQ QPEs were regridded to the

verification domain using bilinear interpolation. Verifi-

cations were performed on 1-h accumulated precipitation

fields. The NMQQPEs have been used in earlier studies

to verify storm-scale precipitation forecasts (e.g., Johnson

and Wang 2012, 2013; Johnson et al. 2013, 2014).

The MMP, PPMP, and pooled ensembles contained

6, 5, and 10 members, respectively. Earlier studies have

shown that verification scores can be sensitive to en-

semble size (Richardson 2001). The purpose of the study

is to investigate different methods of accounting for mi-

crophysics scheme errors in a storm-scale ensemble. To

TABLE 1. Description of the 10 SSEF members used in this study. The first six members (in boldface) compose the MMP ensemble,

whereas the bottom five members (in italics) compose the PPMP ensemble.

Member name and scheme

(perturbation) No. of classesa Double-moment species N0r (m
24) N0g (m

24) rg (kgm
23) ar ag

Thompson 6 Rain, ice — Variable 400 0 0

Ferrier1b 3 — 8 3 106 — — — —

Morrison 6 Rain, graupel, snow, ice — — 400 0 0

Milbrandt–Yauc 7 All but vapor — — 400 2 0

WDM6 6 Rain, cloud water — 4 3 106 500 1 0

WSM6 (control) 6 — 8 3 106 4 3 106 500 0 0

WSM6 (M1) 6 — 8 3 106 4 3 104 913 0 0

WSM6 (M2) 6 — 8 3 107 4 3 106 500 0 0

WSM6 (M3) 6 — 8 3 105 4 3 102 913 0 0

WSM6 (M4) 6 — 8 3 105 4 3 103 913 0 0

aWater classes (species) include vapor, liquid cloud drops, frozen cloud ice particles, rain, snow, graupel, and hail. Hail was the least

common species included.
b The Ferrier1 scheme treats all condensate species as one.
c The Milbrandt–Yau scheme adds hail as a separate class with rh 5 900 kgm23 and ah 5 3.

1 The thresholds tested included 0.254, 2.54, 6.35, 12.7, and

25.4mm (0.01, 0.10, 0.25, 0.50, and 1.00 in.).
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minimize the impact of different ensemble sizes on this

purpose, a single ensemble size was used for verification.

Since the PPMP ensemble had the smallest size at five

members, five members were selected randomly from

each of the MMP and pooled ensembles to constitute

a resample. One hundred such resamples were obtained

for each of the MMP and pooled ensembles. The verifi-

cation scores were averaged over these resamples for the

MMP and pooled ensembles before being compared

with the scores from the PPMP ensemble. The choice of

100 resamples follows earlier studies using bootstrap

resampling techniques in statistical significance tests

(e.g., Wang and Bishop 2005). In addition, each five-

member resample from the pooled ensemble was se-

lected such that each resample is randomly composed of

either two or three members from the MMP and PPMP

ensembles to ensure each of the MMP and PPMP en-

sembles were equally represented in the resample of the

pooled ensemble.

3. Verification of quantitative precipitation
forecasts

a. Verification of individual members

The existence of particularly skillful or unskillful

members could impact the overall ensemble performance

(Ebert 2001). Therefore, individual members were first

verified. Figure 2 shows the average hourly precipitation

forecast errors. A periodic trend, featuring local maxima

around 0000 UTC (0- and 24-h forecasts), was observed.

This trend has been commonly observed in the SSEF in

the past (e.g., Clark et al. 2009; Johnson and Wang 2012)

and in other verification scores in this study. The relative

maxima around forecast hours 0 and 24 identify ‘‘con-

vection maxima,’’ or diurnal peaks in convective activity

around 0000 UTC, which correspond to 1900 or 2000

local time in the central and eastern United States. The

convection maximum around forecast hour 0 will here-

inafter be referred to as the first convection maximum,

while that around forecast hour 24 will be called the

second convectionmaximum. The convectionminima, on

the other hand, refer to the reduced convective activity

centered near forecast hours 12 and 36.

Significant variation among members accompanied

the mean precipitation errors in the first few forecast

hours (i.e., f012–f04) as each member adjusted from the

initial conditions that contained cloud and hydrome-

teors created by the cloud analysis with radar reflectivity

data assimilation (Fig. 2). At the first convection

maximum, the Thompson and MY schemes produced

too little precipitation whereas all other schemes pro-

duced too much. The overproduction was very large in

the WDM6, WSM6 (control), and WSM6-M1 schemes.

All members produced too little precipitation during

the convection minima. During the second convection

maximum large variation was found in the mean errors

as some members produced too much precipitation (all

from the PPMP ensemble) whereas others produced

too little. In particular, the WSM6-M3 and WSM6-M4

members had a larger positive bias in the f18–f24 pe-

riod while the MY scheme had a much larger negative

bias in the f18–f30 period.

The frequency biases (the ratio of the number of grid

points at which forecast precipitation exceeded a thresh-

old to the number of grid points at which precipitation

was observed to have exceeded that threshold) of the

WSM6-M3 and WSM6-M4 schemes were not apprecia-

bly higher than those of other members at f18–f24 for

lower thresholds (Fig. 3), but the frequency bias increased

significantly for the higher thresholds, indicating those

members overforecast heavy precipitation episodes. The

overall negative error for the MY scheme is consistent

with its frequency biases, which were almost exclusively

below 1.0, indicating a consistent trend to underforecast

precipitation at all thresholds. The increased variability in

frequency biases among the different schemes at high

thresholds is related to the counts in each cell of the 23 2

contingency table. It is rare for 12.7 or 25.4mm of pre-

cipitation to fall in 1 h, occurring only within the cores of

stronger thunderstorms. Therefore, the contingency table

has small numbers of hits, false alarms, andmisses at these

thresholds—a few thousandths of a percent of the total

number of grid points at which verification was per-

formed. Since frequency bias depends on the number of

hits, false alarms, and misses, seemingly large differences

in frequency bias can appear between different schemes.

FIG. 2. Domain- and case-average mean error of 1-h QPF for

individual members.

2We use f01 tomean forecast hour 1. This symbolismwill be used

throughout the remainder of the paper.
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Regarding equitable threat scores (ETS), a large de-

crease in skill from very high values within the first one

or two forecast hours was observed (Fig. 4). This higher

skill at early forecast hours can be attributed to the

initialization of preexisting convection within the initial

conditions from the assimilation of radar data (e.g., Xue

et al. 2008, 2013), the effects of which wore off quickly.

The benefits to assimilating radar data for very short-

range convective-scale QPF on the order of a few hours

have been observed in previous SSEF forecasts (e.g.,

Johnson and Wang 2012; Kong et al. 2011; Xue et al.

2008, 2009, 2011, 2013). ETS were very similar among

the members with a few exceptions; the Thompson and

Morrison schemes had higher ETS than the other mem-

bers for most forecast hours at the lightest threshold. The

improved performance of those schemes dwindled with

increasing threshold. No member appeared to perform

worse except for theWDM6 scheme around f30. ETS for

the PPMP members were tightly clustered, and no single

member stood out except for around f06, when the

WSM6-M3 andWSM6-M4 schemeswere slightly inferior

at moderate thresholds. ETS were highly variable at the

highest thresholds, owing to the decreased numbers of

hits, false alarms, and misses in the contingency table due

to limited samples.

Verification metrics based on gridpoint values such as

the ETS may give a misleading interpretation of the

skill of high-resolution precipitation forecasts due to the

small horizontal scale of features compared to the hori-

zontal scale of acceptable spatial errors (Baldwin et al.

FIG. 3. As in Fig. 2, but for frequency biases at the various thresholds indicated.
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2001). For that reason it is more appropriate to consider

neighborhood-based verification metrics. One such

measure of neighborhood-based verification is applied

to the Brier score and is referred to as the fractions Brier

score (FBS;Roberts and Lean 2008; Schwartz et al. 2010).

Despite being a probabilistic verification metric, the FBS

can be computed for deterministic forecasts by con-

structing probabilistic forecasts based on spatial neigh-

borhoods (Theis et al. 2005). A square neighborhood of

radius 48 km (12 grid points) was used for all verifications

in this study applied to a neighborhood (Johnson and

Wang 2012), including those for both deterministic and

ensemble forecasts. Thus, FBS is a mean square differ-

ence between the forecast PoP in a spatial neighborhood

and the proportion of observed precipitation events in

a neighborhood around a given point.A diurnal cycle was

present in the FBSs, and the highest FBSs (poorest per-

formance) occurred at the second convection maximum

for low thresholds and at the first convection maximum

for the highest thresholds (Fig. 5). The Thompson and

MY schemes were commonly the best for a given thresh-

old and forecast lead time. However, the WSM6-M3 and

WSM6-M4 schemes had better FBSs around the second

convection maximum at the 2.54-mm threshold. The

WDM6 scheme commonly had the worst FBSs around

the second convection maximum, except at the highest

threshold, indicating consistently poor performance of

that member around that time of forecast. Among the

PPMP members, the WSM6-M2 scheme typically had

the worst FBS around the convection maxima, while the

FIG. 4. As in Fig. 3, but for ETS.
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WSM6-M3 scheme frequently had the worst FBS away

from the convection maxima.

The area under the relative operating characteristic

curve (ROC; Mason 1982) for each member was com-

puted using neighborhood forecasts verified against

single-point observations. The ROC areas indicate that

the MY scheme was commonly the worst-performing

scheme, especially around the second convection max-

imum (Fig. 6). The Thompson and Morrison schemes

had larger (better) ROC areas for the lower thresholds,

but the WSM6-M3 and WSM6-M4 schemes had larger

areas at the highest thresholds and for later forecast

hours. For the lower thresholds the envelope of scores

from the MMP ensemble members tended to contain

those of the PPMP ensemble members, implying more

variability in skill within theMMP ensemble than within

the PPMP ensemble. At higher thresholds, however, the

ROC areas of the PPMP ensemble members tended to

be larger than most of those of the MMP ensemble

members.

The metrics discussed here indicate that members of

the MMP ensemble commonly underpredicted both the

amount and areal coverage of precipitation, especially

at high thresholds. In contrast, members of the PPMP

ensemble were generally less biased. However, these

PPMP members were also generally less skillful, with a

few exceptions. Superior skill was frequently noted with

the Thompson and Morrison schemes, in agreement

with Clark et al. (2012), and inferior performance was

commonly seen with the WDM6 scheme, although the

FIG. 5. As in Fig. 3, but for FBS.
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ordering of skill was somewhat a function of metric,

forecast lead time, and threshold. The WSM6 scheme

frequently ranked near the middle of all schemes and

near the middle of the WSM6 perturbation schemes.

b. Verification of the MMP, PPMP, and the pooled
ensembles

All of the following discussion refers to themean values

of verification scores from the five-member resamples

except where otherwise noted. The significance of the

difference was determined using the standard deviation

of the scores from the resamples, similar to the method

used inWang and Bishop (2005). Here, means differing

by three standard deviations or more are declared to

represent ensembles having statistically significantly

different skill. The larger value of the standard deviations

between the ensembles compared was used. After about

f04, the magnitude of the mean error of the ensembles

was around one order of magnitude less than the season-

average rain amounts per grid point, which ranged from

0.10 to 0.30mm (Fig. 7b). This was especially true during

f12–f27. For early and late forecast hours the errors were

about of the same order of magnitude as the average

precipitation amount at each grid point, which indicates

that the bias at these forecast hours could be significant.

The ensembles were biased low during f04–f18 and f24–

f36 (Fig. 7a). The bias was variable among different en-

sembles during f18–f25 and in the first 3 h of the forecast.

For the first 3 h the ensembles produced too much pre-

cipitation, with the PPMP ensemble producing the most

FIG. 6. As in Fig. 3, but for the area under the ROC curve.
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precipitation and the MMP ensemble being the least

positively biased. During f21–f23, the PPMP and MMP

ensembles had similar absolute biases, with the MMP

ensemble biased low and the PPMP ensemble biased

high. During f18–20 and f24–25, the PPMP ensemble

was less negatively biased than the MMP ensemble.

The exceptionally low bias of the MY scheme is the

leading cause of this low bias in the MMP ensemble, as

the remaining members of the MMP ensemble were less

biased during that period. The bias for the pooled en-

semble was, as expected, between that of the MMP and

PPMP ensembles. Around the second convection maxi-

mum the pooled ensemble had a nearly zero mean error.

The bias for the full 10-member pooled ensemble was

nearly identical to that of the resampled pooled ensem-

ble. The same was true for the full six-member MMP

ensemble compared to the resampled MMP ensemble.

The frequency biases were consistent with the mean

errors (not shown), regardless of precipitation accumu-

lation thresholds.

The reliability of the ensembles was evaluated through

examination of rank histograms (Hamill 2001). Easily

recognizable signatures that represent the dispersion and

bias characteristics of ensembles can be illustrated by

rank histograms. Note that to reduce the impact of the

ensemble size on evaluating the flatness of the rank his-

togram, resampled ensembles with an ensemble size of

five were used. The underdispersive nature of all en-

sembles is apparent (Fig. 8). The underdispersion was

generally worse during the first 10 forecast hours and

better around the second convection maximum. The left

skew of the histograms is consistent across all forecast

hours with varying degrees of magnitude. Also, while it

has been shown that a composite of signals may result in

rank histograms that give a misleading impression of the

reliability of an ensemble (Hamill 2001), rank histograms

computed from a few localized subsets and a scattered

subset of the domain (counts were obtained from grid

points widely separated in space) revealed the same sig-

natures as those using all data points. Therefore, the ag-

gregated signatures are unlikely to be the result of a

combination of high bias in some regions of the domain

and low bias in other regions. Although all ensembles are

underdispersive, a way of quantifying the extent of un-

derdispersion ext is by the proportion of values that fall

within the outer bins of the histogram normalized by the

proportion of values expected to be located in each rank

for a flat histogram (value in top-right corner of each

panel in Fig. 8). The values of ext indicate that the MMP

and PPMP ensembles were underdispersive to about the

same extent, although the value of ext indicates that the

MMP ensemble was slightly better than the PPMP en-

semble. The value of ext for the pooled ensemble is in

between that of MMP and PPMP. Note that in this study,

the ensemble examined only accounted for the micro-

physics scheme errors. Early work analyzing the SSEF

that included perturbations to represent other sources of

forecast errors has shown flatter histograms [cf. Fig. 8a of

Clark et al. (2009) and Fig. 15 of Xue et al. (2011)].

We now consider the neighborhood-based FBS. A di-

urnal cycle was observed with the FBSs. For the highest

two thresholds the highest (worst) scores occurred during

the first convection maximum, whereas for the remaining

thresholds the worst scores occurred around the second

convection maximum (Fig. 9). This behavior is identical

to that seen in the FBSs for the individual members

(section 3a). The best FBSs occurring at f01–f02 were

likely due to the improved initial conditions due to the

assimilation of radar data. At most thresholds and fore-

cast lead times theMMPensemble performed better than

the PPMP ensemble. The biggest exception was around

FIG. 7. (a) Domain- and case-average mean error of 1-h en-

semble mean QPF. Diamonds across the bottom indicate forecast

hours at which the difference between the MMP and PPMP en-

sembles was significant, with the color indicating which ensemble

was superior, whereas filled circles across the top indicate forecast

hours at which the difference between the MMP and pooled en-

sembles was significant. (b) Domain-average 1-h ensemble mean

QPF and observed QPF (black line).
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the second convectionmaximum for the 2.54- and 6.35-mm

thresholds, when the skill of the MMP ensemble was

equal to that of the PPMP ensemble. The FBSs of the

pooled ensemble were generally smaller than those of

the PPMP and nearly identical to those of the MMP

ensemble. The largest difference between theMMP and

pooled ensembles occurred around the convection max-

ima at the highest two thresholds where the MMP en-

semble had statistically significantly better FBSs than the

PPMP ensemble. The FBSs of the full 10-member pooled

ensemble were generally similar to those of the resampled

pooled ensemble. However, the full 10-member pooled

ensemble was generally better around the second con-

vection maximum for the lower thresholds, thus showing

the positive impact from using a larger ensemble during

periods of intense convective activity at longer lead times.

Probabilistic forecasts derived from spatial neigh-

borhoods are further evaluated by computing the areas

under ROC curves. Scores decreased only slightly with

increasing threshold and forecast hour (Fig. 10), and all

scores were greater than the no-skill value of 0.5. The

spread among resampled scores was small. This is prob-

ably due to the larger number of samples used to compute

scores for each neighborhood (several thousand for

neighborhood verification). At the lowest two thresholds

the MMP ensemble was generally more skillful than the

PPMP ensemble. At the highest two thresholds the

PPMP ensemble was more skillful than the MMP en-

semble. At the low thresholds the ROC area of the

pooled ensemble was nearly identical to that of theMMP

ensemble. At the high thresholds the ROC area of the

pooled ensemble was between that of the MMP and

PPMP ensembles with better scores than the MMP for

most lead times. These results are consistent with the

ROC area for the individual members (section 3a). The

ROC area for the full 10-member pooled ensemble was

larger than that for the other ensembles at all forecast

hours and precipitation thresholds, suggesting the posi-

tive impact of using a larger ensemble. This result is

consistent with the findings of Clark et al. (2011).

The ensemble verification presented here suggests

that the MMP ensemble was more skillful than the

PPMP ensemble according to FBSs for most lead times

and thresholds and less skillful than the PPMP at high

thresholds according to ROC areas. While this result

may seem contradictory, each metric assesses different

aspects of the ensemble PQPF. The FBS measures the

mean squared error of the neighborhood PQPF relative

to the neighborhood coverage of observed precipitation,

whereas the ROC measures the ability of the ensemble

to distinguish between ‘‘yes’’ and ‘‘no’’ forecasts for

precipitation exceeding a threshold. The pooled ensem-

ble did not outperform the MMP or PPMP ensemble

except for at a small number of thresholds, forecast hours,

and metrics.

The resampling allowed for an examination of the

impact of ensemble size on the quality of the forecasts.

Differences between the full six-member and the five-

member resampled MMP ensembles were generally

imperceptible. However, when differences were found,

it was generally the full six-memberMMP ensemble that

was superior. There were larger, more noticeable dif-

ferences between the full 10-member and 5-member

resampled pooled ensembles than between the full and

resampledMMP ensembles. The full 10-member pooled

ensemble was always better than the resampled pooled

ensemble.

FIG. 8. Rank histograms for 1-h QPF integrated over all forecast

hours for the (a) MMP, (b) PPMP, and (c) pooled ensembles. The

parameter ext, defined as the ratio of the proportion of values in the

extreme ranks to the proportion of values in the extreme ranks of

a flat histogram, is displayed at the top right of each panel. A rank

histogram of a perfectly dispersive ensemble is indicated by the

dotted black line in each panel.
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The preceding discussion implies that the relative skill

of using a combination of mixed MP schemes and per-

turbing parameters within a singleMP scheme to sample

themicrophysics errors can be dependent onmethods of

verification and the precipitation thresholds. Using a

combination of the two methods generally is no more

skillful than using either approach separately. Ensemble

size seems to have as large an impact on the quality of

the forecasts as the method used to construct the en-

sembles.

4. A comparison of the microphysical parameters

Microphysics parameters such as the intercept param-

eters for PSDs and particle density have been shown to

impact the simulation of convective systems. Specifically,

Gilmore et al. (2004), Snook and Xue (2008), Dawson

et al. (2010), and Morrison and Milbrandt (2011) have

shown that the dynamics and precipitation patterns in

supercells, in particular, are sensitive to the values of the

rain and hail intercept parameters, graupel and hail den-

sity, and the number of predictedmoments of the PSD for

precipitating species in bulk microphysics schemes. Mo-

tivated by these earlier studies, two methods to account

for microphysics scheme errors in convection-allowing

ensembles were tested within the Center for Analysis and

Prediction of Storms (CAPS) SSEF system in 2011. In the

PPMP ensemble, the rain and graupel intercept parame-

ters and the graupel densitywere perturbedwithin a single

microphysics scheme. Alternatively, the MMP ensem-

ble contained a variety of microphysics schemes. To

facilitate developing a strategy to optimally account for

FIG. 9. FBSs for 1-h ensemble mean QPF for the various thresholds indicated in the top right of each panel.

Significant differences are indicated as in Fig. 7.
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microphysics scheme errors in the ensemble, in addi-

tion to evaluating the ensembles using objective veri-

fication scores, we examined the systematic behaviors

of various microphysical variables from the PPMP and

MMP ensemble members. The following analysis is

meant to answer the following questions: How did the

prescribed intercept parameters for rain and graupel in

the WSM6 schemes compare to those retrieved from

the double-moment microphysics schemes? How dif-

ferent are the microphysics parameters between single

and double-moment schemes? How did the WDM6

and WSM6 schemes in particular compare?

Using the method discussed in the appendix, various

parameters in theseMP schemes were retrieved from the

forecast moments’ fields. Parameters were not retrieved

from the Ferrier1 scheme due to significant differ-

ences between that scheme and the others regarding the

treatment of the water species. Numerous additional as-

sumptions regarding the rain and graupel PSDs would be

required to retrieve parameters from the Ferrier1
scheme. Since the graupel intercept parameter is di-

agnosed from the mixing ratio internally in the Thomp-

son scheme, the graupel intercept parameter was not

retrieved from the Thompson scheme. We chose specif-

ically to examine the mean mass particle diameter, par-

ticle surface area, number concentration, mixing ratio,

and intercept parameter for the rain and graupel PSDs.

The former two parameters serve as proxies for the ten-

dencies for rain evaporation and cold pool formation

(Dawson et al. 2010), which can have a large impact on the

organization and lifetime of convective systems (Rotunno

et al. 1988; Snook and Xue 2008).

Vertical profiles of horizontally averaged microphys-

ical parameters for rain are shown in Fig. 11, while those

FIG. 10. As in Fig. 9, but for the area under the ROC curve.
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for graupel are shown in Fig. 12. We only consider rain

and graupel since the PPMP ensemble only perturbed

the parameters associated with these two species. The

average was computed over only those grid boxes at

which the mixing ratio exceeded 1026 kg kg21, a general

threshold used to distinguish precipitating from non-

precipitating grid boxes (the counts can be seen in Figs.

11f and 12f). The profiles were also averaged over all

forecast hours. For rain the discussion will focus gener-

ally below 3 km, a common height of the freezing level

during the experiment, where rainfall is the dominant

precipitation type. On the other hand, the discussion for

graupel will focus on the lowest 10 km.

As pointed out earlier, the prescribed values of in-

tercept parameters in the PPMP members were chosen

based on values reported in the literature (Snook and

Xue 2008; Tong and Xue 2008; Yussouf and Stensrud

2012). Figure 11d shows that the effective rain intercept

parameters sampled by the MMP members generally

laid in a similar range as those prescribed to the mem-

bers of the PPMP scheme, although that for the WDM6

scheme is anomalously high, and the 8 3 105m24 value

used for the PPMPmembers seems somewhat low.Other

microphysical variables such as raindrop size, total rain-

drop surface area, rain number concentration, andmixing

ratio sampled by the MMP members also in general

laid in the same range as those in the PPMP ensemble

(Fig. 11). The Morrison scheme was the only scheme to

give reliable results for the graupel intercept parameter

(Fig. 12d), and the values from that scheme line up nicely

FIG. 11. Vertical profiles of area-average microphysics parameters: (a) mean mass raindrop diameter (mm),

(b) raindrop surface area (m2), (c) rain number concentration (drops per cubicmeter), (d) normalized rain intercept

parameter (m24), (e) rain mixing ratio (kg kg21), and (f) number of grid points at which the rain mixing ratio

exceeded 1026 kg kg21.
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with the values from the unperturbed WSM6 scheme

(43 106m24) except for the vertical variation of nearly

three orders of magnitude. Except for the Morrison

scheme, which exhibited a different pattern of behavior

than the other schemes, theWSM6 schemes in the PPMP

ensemble tended to produce less of the various graupel

quantities examined, including surface area, number

concentration, and mixing ratio (Fig. 12). The Thompson

scheme produced the least graupel mixing ratio, however

(Fig. 12e). The normalized graupel intercept parameters

retrieved from theMorrison schememost closely resemble

those of the control value of 4 3 106m24 (Fig. 12d), sug-

gesting that the perturbed values of the graupel intercept

parameters may be too low.

Among the single-moment members that composed

the PPMP ensemble, the behavior was found to be con-

sistent with the prescribed intercept parameters. WSM6-

M2was designed to represent small raindrops. For a given

mixing ratio, mean drop size decreases with an increasing

intercept parameter. WSM6-M2 was the only scheme for

which the rain intercept parameter was perturbed high

compared to the control value (Table 1). While the rain

mixing ratios are not identical between the single-moment

members, differences of approximately one to two orders

ofmagnitude are required for this rule to be violated. That

was not the case at any level or time in this experiment

(Fig. 11e). Similarly, the larger raindrop sizes for WSM6-

M3 and WSM6-M4 compared to those of the WSM6-M2

and WSM6 (control) schemes are also consistent given

that the rain intercept parameters for WSM6-M3 and

WSM6-M4 are lower than they are for WSM6 (control)

and WSM6-M2. Given the similarity in mixing ratio, it is

also sensible that WSM6-M2 also had the largest number

concentration of rain and the largest total raindrop surface

area, while WSM6-M3 and WSM6-M4 had smaller num-

ber concentrations and surface areas. The vertical profiles

FIG. 12. As in Fig. 11, but for graupel.
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of rain number concentration and raindrop surface area

were very similar between pairs of members (e.g., M3

compared to M4 and control compared to M1) that used

the same set of intercept values because these parameters

are derived from the only free moment, the mixing ratio.

Slight differences in the mixing ratios correspond to

slight differences in these other retrieved parameters.

Similar arguments apply to the retrieved graupel vari-

ables. WSM6-M3 andWSM6-M4 were meant to contain

large hail-like particles. Therefore, it makes sense that

these schemes have the largest graupel (Fig. 12a), small-

est number concentration (Fig. 12c), and smallest surface

area (Fig. 12b). Similarly, WSM6 and WSM6-M2 con-

tained smaller and more numerous graupel particles.

Interestingly, the graupel mixing ratios above about 3 km

were ranked according to prescribed graupel intercept

parameters for the WSM6 schemes.

The profiles from the double-moment schemes con-

tained more variation in the vertical than those from the

single-moment scheme members (Figs. 11 and 12). This

behavior is likely the result of the ability of the double-

moment schemes to account for size sorting of rain and

graupel and other processes causing size distribution to

change, since they contain separate predictive equations

for the additional moment of number concentration

(see, e.g., Reisner et al. 1998; Milbrandt and Yau 2005;

Morrison et al. 2005; Lim and Hong 2010). The overall

increase in mean mass diameter of raindrops toward the

surface in the double-moment schemes is an indication

that smaller raindrops are evaporating during their de-

scent from the midlevels; some completely evaporate

before reaching the ground. This is consistent with the

decrease in the number concentration and surface area

toward the surface, although there is some anomalous

behavior seen in the Thompson scheme, where the num-

ber concentration and intercept parameter increase in the

lowest two to three model levels (Figs. 11c,d). The rain

mixing ratio generally decreases from a height of about

3km toward the ground. The general decrease supports

the notion that rain is evaporating in unsaturated down-

drafts or due to entrainment of unsaturated environmental

air. The graupel mixing ratio and number concentration

also decrease below about 3km (except for Thompson;

see Fig. 12e), as graupel melts below the freezing level.

The Morrison scheme is the only one that predicts the

number concentration for graupel and that gave reliable

results. In the Morrison scheme, only larger particles are

left below the freezing level as the smaller particles

completely melt (the lavender trace in Fig. 12a). Among

the double-moment schemes considered, WDM6 pro-

duced the smallest raindrops and very large rain number

concentrations compared to the other schemes. This be-

havior ofWDM6 has been noted andmodifications to the

scheme to reduce the number concentration are under

way by the scheme developers (K.-S. Lim 2012, personal

communication). The MY scheme tended to produce

larger raindrops and a larger rain surface area than did

the Morrison scheme. This is opposite of what was found

inMorrison andMilbrandt (2011) regarding comparisons

between those schemes. However, the versions of the

schemes used in that study are slightly different from

those used in this study. Namely, the shape parameters

of the DSD differ [ar5 0 was used in theMY scheme of

Morrison andMilbrandt (2011), whereas ar5 2 was used

in this study]. However, the graupel parameters exam-

ined in this study are identical to those in Morrison and

Milbrandt (2011), and the similar mixing ratios between

theMY andMorrison schemes in this study disagree with

the results ofMorrison andMilbrandt (2011), which found

that the MY scheme tended to produce more graupel.

Also, above 3 km, the MY and Morrison schemes pro-

duced a higher graupel mixing ratio (Fig. 12e) than the

single-moment schemes for graupel.

The design of the WDM6 and WSM6 schemes makes

them more similar to each other than any other pair of

schemes in this study (not including the WSM6 schemes

with perturbed parameters). The major differences be-

tween the WDM6 and WSM6 schemes include the num-

ber of moments predicted for rain, the shape parameter of

the rain DSD, and the addition of cloud condensation

nuclei as a prognostic variable in the WDM6 scheme.

There are also minor differences in how some micro-

physics processes like accretion rates are parameterized.

The retrieved rain variables for WDM6 and WSM6 were

quite different, however. The WDM6 scheme produced

the smallest raindrops overall, corresponding to the larg-

est drop concentration and surface areas as well. It also

produced a higher rain mixing ratio and slightly greater

radar reflectivity (not shown), but similar domain-

accumulated precipitation (also not shown). Since the

graupel distributions had the same shape parameter, dif-

ferences in the graupel variables were reduced compared

to those in the rain variables. The WSM6 scheme tended

to produce a lower graupel mixing ratio near the surface

(Fig. 12e). This is likely related to how some of the graupel

and rain processes were parameterized. It is beyond the

scope of the study to isolate the specific impact from in-

corporating themajor differences one at a time. However,

the results herein are generally in agreement with those

obtained in Lim and Hong (2010) in which the same

versions of both schemes were compared.

5. Summary and conclusions

Two approaches to accounting for the uncertainty

of the MP parameterization in warm-season QPF in a
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convection-allowing ensemble were examined. The two

approaches include a set of completely different MP pa-

rameterizations (MMP) and a set of different numerical

values of a set of parameters within a single MP scheme

(PPMP). The combination of the two approaches was

also tested. These approaches were implemented within

the storm-scale ensemble framework of the Center of

Analysis and Prediction of Storms at the University of

Oklahoma, and tested during the NOAA HWT 2011

Spring Experiment (27 April–10 June 2011). An ensem-

ble of convection-allowing WRF-ARW simulations was

run in real time at 4-km resolution over the contiguous

United States for 35 cases during the period. The two

ensembles tested—MMP and PPMP—along with an en-

semble composed of members from both ensembles, had

5, 6, and 10 members, respectively (1 member belonged

to both ensembles). To minimize the impact of ensemble

size on the comparison between approaches to account-

ing for microphysics errors, scores for the MMP and

pooled ensembles were obtained from an average of 100

five-member resamples.

It was found that, in general, the MMP ensemble was

more skillful than the PPMP ensemble (based on

WSM6) with variations dependent on themetric chosen,

the forecast lead time, and the precipitation threshold.

TheMMP ensemble was more skillful for FBSs for most

lead times and thresholds, but the PPMP ensemble was

more skillful for high thresholds when ROC areas were

examined. The rank histograms of the MMP ensemble

were slightly flatter than those of the PPMP and pooled

ensembles. TheMMPensemblewas also somewhatmore

biased, but mostly due to one member. Also, the com-

bined approach where both sophisticated MP schemes

and perturbed parameters within a simpler single-moment

MP scheme were used was no more skillful than the

better of theMMPand PPMP ensembles. Since all PPMP

members were based on WSM6, the skill of those mem-

bers was limited by the skill of WSM6. Therefore, the

results obtained here may not apply to perturbed pa-

rameter ensembles generated by perturbing other mi-

crophysics schemes. The similarity in the performances of

the MMP and PPMP ensembles was sensible, however,

since the WSM6 scheme frequently ranked in the middle

of the microphysics schemes considered and near the

middle of the WSM6 perturbation schemes, as shown in

section 3a.

TheQPF from individual members was also examined.

Verification scores varied more among members of the

MMP ensemble than among members of the PPMP en-

semble for low and moderate thresholds. Large variation

was found in the bias during the first and second convec-

tion maxima. The WSM6-M3 and WSM6-M4 schemes

showed the largest positive bias in the mean errors and in

the frequency biases at the highest two thresholds during

the second convection maximum. The MY scheme

showed the largest negative bias. PPMP members were

generally less biased, but were also less skillful at all but

the highest thresholds. The skill of individual members

depended on the thresholds and methods of verification.

For example, for ETS, the Thompson and Morrison

schemes were the most skillful at the lightest two

thresholds whereas the WDM6 scheme was the least

skillful at low andmoderate thresholds at later lead times.

For FBS, the Thompson scheme showed the highest

skill at moderate thresholds, and both Thompson and

Morrison showed the highest skill at the highest thresh-

old. The Ferrier1 and WDM6 schemes were the least

skillful at moderate thresholds at the second convection

maximum. For ROC areas, the WSM6-M3 and WSM6-

M4 schemes were the best at the highest thresholds. The

MY schemewas the least skillful at the second convection

maximum.

In addition to evaluating the ensembles using objec-

tive verification scores, the systematic behaviors of the

members using retrieved microphysics parameters rel-

evant to this study were examined. The range of the

retrieved rain intercept parameters from the double-

moment members is, in general, consistent with the range

of perturbed rain intercept parameters for the PPMP

members. The retrieved graupel intercept parameter

values suggest the perturbed graupel intercept values

used in the PPMPmembers were too low. The behavior

of the PPMP members was found to be consistent with

the prescribed values of the rain and graupel intercept

parameters and graupel density. The pattern of behavior

was more variable for the double-moment members, and

the causes of differences in retrieved parameters among

these MP schemes are more complex than differences

among the single-moment members owing to the differ-

ences in parameterizations of individual processes within

each scheme. The WDM6 scheme tended to produce

a very large number of small raindrops, whereas the MY

scheme tended to produce very large raindrops.

Although resampling of the pooled ensemble with an

equal size as the PPMP andMMP ensembles was nomore

skillful than the better of the PPMP andMMP ensembles,

the full 10-member pooled ensemble showed better skill

than other ensembles tested for nearly all lead times,

thresholds, and metrics. This result brings up an inter-

esting point in that increasing ensemble size had a signifi-

cant impact in the skill of the ensembles tested (see also

Clark et al. 2011; Ebert 2001). One easy way to populate

the ensemble is to perturb the parameters for a given

physical parameterization scheme such as the PPMP.

This study represents one step toward developing a

strategy for the optimal design of a convection-allowing
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ensemble prediction system. Ideally, members of an en-

semble should represent random draws from the proba-

bility distribution of truth for a given forecast system and

each member should be equally possible to represent the

truth. The design of the PPMP andMMP ensembles may

violate such rules. The parameters used in the PPMP

ensemble were not randomly perturbed. The MMP en-

semble is composed of different microphysics schemes,

with each scheme having its own bias. In addition, only

the uncertainty in QPF associated with varied micro-

physics was tested, but uncertainty in QPF from model

error can also come from errors in other physics param-

eterizations such as the boundary layer, radiation, and

land surface. Since only QPF was examined, it cannot be

determined whether either approach is more skillful at

predicting other meteorological fields such as surface

temperature, relative humidity, wind speed, or geo-

potential height at other levels in the troposphere. Thus,

future studies should also examine the impacts of varied

microphysics on other fields. The specific conclusions

may also be dependent on the specific choices of the MP

schemes used in the ensemble, and to the way parameters

are perturbed. Future studies should investigate ways to

use variations in these parameterizations to better design

convection-allowing model ensembles, as their use will

be more strongly desired in the future for operational

weather forecasting purposes.
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APPENDIX

Microphysics Vocabulary

Except for the Ferrier1 scheme, all of theMP schemes

used in this experiment use similar assumptions for the

PSDs of the various classes. They all use the following

model:

nx(Dx)5N0xD
a
x

x e2l
x
D

x , (A1)

where subscript x refers to one of the water species

(r, rain; g, graupel; I, cloud ice; s, snow; h, hail; and

c, cloud water; the subscript will be dropped hereinafter),

n is the volumetric concentration of spherical particles of

diameterD toD1DD,N0 is the intercept parameter, l is

the slope parameter, and a is the shape parameter. Note

that when a 5 0, this reduces to the inverse-exponential

distribution. The pth moment of the PSD is given by

M(p)5

ð‘
0
Dpn(D) dD5

N0

la1p11
G(a1p1 1), (A2)

where G is the gamma function and G(Z)5 (Z2 1)!

when Z is an integer. Three moments would be required

to fully characterize this PSD without making any as-

sumptions. Typically, the three moments used include

the mixing ratio, which is proportional to the third mo-

ment of the PSD; the number concentration, which is the

zeroth moment of the PSD; and the reflectivity factor,

which is the sixth moment, for each species. Each mo-

ment requires its own set of conservation equations for

each species, which increases the complexity of the

scheme and also increases the computation time. How-

ever, use of a greater number ofmoments has been shown

to increase the realism of simulations of squall lines at

convection-allowing resolutions (Morrison et al. 2009).

Four schemes in this study—Thompson, Morrison, MY,

andWDM6—use two moments for some species. All are

doublemoment for rain, and two (Morrison andMY) are

double moment for graupel as well. Species mixing ratio

and number concentration are the two moments used in

these schemes. While the other schemes are only single

moment, other moments can be derived using manipu-

lations of (A1) and (A2). For instance, the number con-

centration can be determined by

Nt 5

�
[N0G(a1 1)]d

�
qra
c

G(a1 1)

G(a1 4)

�a11�1/(a1d11)

,

(A3)

where ra is air density and c and d are related through

the mass–diameter relationship, wherem(D)5 cDd and

q is the species mixing ratio. In this paper we retrieved

the intercept parameter for the double-moment schemes

using (A3). However, the meaning of the intercept pa-

rameter becomes nonphysical when the shape parameter

is nonzero. Therefore, the ‘‘normalized’’ intercept pa-

rameter, which is the intercept parameter for an expo-

nential distribution with the same liquid water content

and mean volume diameter (Testud et al. 2001), is used
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instead. The total surface area of particles is proportional

to M(2):

Surface area5pM(2)5
pNt(a1 2)(a1 1)D2

m

G(a1 4)

G(a1 1)

� �2/3 , (A4)

where it has been assumed that a is an integer and d5 3,

which is true for both rain and graupel, and Dm is the

mean mass diameter. The mean mass diameter, the size

that splits the PSD into two equal halves, is given by

D5

�
ra
cx

q

Nt

�1/3

. (A5)
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