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Abstract Observing system simulation experiments are

performed using an ensemble Kalman filter to investigate

the impact of surface observations in addition to radar data

on convective storm analysis and forecasting. A multi-scale

procedure is used in which different covariance localiza-

tion radii are used for radar and surface observations. When

the radar is far enough away from the main storm so that

the low level data coverage is poor, a clear positive impact

of surface observations is achieved when the network

spacing is 20 km or smaller. The impact of surface data

increases quasi-linearly with decreasing surface network

spacing until the spacing is close to the grid interval of the

truth simulation. The impact of surface data is sustained or

even amplified during subsequent forecasts when their

impact on the analysis is significant. When microphysics-

related model error is introduced, the impact of surface

data is reduced but still evidently positive, and the impact

also increases with network density. Through dynamic

flow-dependent background error covariance, the surface

observations not only correct near-surface errors, but also

errors at the mid- and upper levels. State variables different

from observed are also positively impacted by the obser-

vations in the analysis.

1 Introduction

Successful numerical weather prediction (NWP) depends

greatly on accurate initial conditions obtained with data

assimilation. For convective storms, radar is the primary

observational platform used. However, radars usually do

not observe down to the ground level, because of the non-

zero elevation of the lowest scans and due to the earth

curvature effect. This problem becomes worse when the

storm is located far from the radar. For example, when a

storm is 100 km away, the center of the lowest 0.5� ele-

vation beam of a WSR-88D radar is more than 2 km above

the ground. Even the lower edge of the half power beam

does not reach the ground (see, e.g., Fig. 2 of Xue et al.

2006, XTD06 hereafter). Yet, for convective systems, the

low-level flows and cold pool are critically important in

storm development and evolution. At the ground level,

observations from automated meteorological stations and

sometimes from mesoscale observing networks are avail-

able. Effective assimilation of these observations, in com-

bination with radar data, has the potential to significantly

improve storm analysis and forecasts. These data are also

valuable for defining the low-level environment of the

convective storms, where radar has very limited observing

capabilities. The resolution of the surface network, how-

ever, is usually low compared with the scales of convective

features; thus their quantitative impact when radar is also

present is not necessarily clear. Further, the downdrafts are

primarily responsible for the cold pool, but it is not clear

how well the storm can retain the information contained in

surface observations taken in the downdraft region.

For the prediction of convective initiation and its later

evolution, Liu and Xue (2008) showed that the strength of

the analyzed cold pool is sensitive to the vertical correla-

tion length scale specified in the ARPS (Xue et al. 2000)
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Data Analysis System (ADAS, Brewster 1996), when

analyzing high-resolution surface observations. Similar

sensitivity was found by Dawson and Xue (2006). ADAS is

based on the Bratseth successive correction method

(Bratseth 1986) that theoretically converges to the optimal

interpolation (OI) solution. The background error covari-

ance in ADAS is modeled using a Gaussian correlation

model and allows for the use of different spatial correlation

scales in different analysis passes. In ADAS, the vertical

correlation length can be specified in terms of geometric

height or potential temperature. The latter allows more

vertical spreading of observation information in less stable

condition, but the correlation scale is still empirical. Using

ADAS and observations from both routine and special

mesoscale surface networks that were gathered by the 2002

International H2O Project (IHOP_2002, Weckwerth et al.

2004), Liu and Xue (2008) demonstrated significant posi-

tive impact of hourly surface data over a 6-h period on

convective initiation forecast in the ARPS model. Similar

results were obtained by Xue and Martin (2006) for another

convective initiation case from IHOP_2002.

To effectively assimilate surface observations, flow-

dependent background error covariance is needed. The

ensemble Kalman filter method (EnKF, Evensen 2003) is

one method that estimates and evolves flow-dependent

background error covariance using ensemble forecasts

through assimilation cycles. There are several studies

demonstrating that EnKF can provide comparable or better

performance to three-dimensional variational data assimi-

lation method (3DVar) which uses a static background

error covariance (Whitaker et al. 2004; Compo et al. 2006;

Whitaker et al. 2007; Meng and Zhang 2008).

The assimilation of surface observations for the plane-

tary boundary layer using EnKF has been examined

recently in simple column model settings with simulated

and real observations (Hacker and Snyder 2005; Hacker

and Rostkier-Edelstein 2007). Simulated surface observa-

tions have also been tested with a mesoscale model for the

case of a synoptic-scale winter cyclone by Zhang et al.

(2006) and Meng and Zhang (2007). Fujita et al. (2007)

examined the performance of EnKF for synoptic to

mesoscale flows with real surface observations. These

studies generally address the situations where the atmo-

spheric boundary layer is strongly influenced by the land

surface processes; they do not address the specific situation

where the thunderstorm downdraft and cold pool play an

important role.

Assimilation of high-resolution surface observations,

from, e.g., a high-density mesonet, for the initialization of

explicit convective storms, however, is limited to the study

of Zhang et al. (2004), which found positive impact of

simulated surface observations on model grids at 10 km

spacing when radar data were artificially limited to levels

above 4 km. Given the focus on the impact of radar

observations in their study, the impact of surface data was

only addressed briefly. Their study also made the simpli-

fying assumptions that the radar observations are available

at model grid points; one of the surface observation types

considered is the liquid–water potential temperature which

is not directly measured. Only warm rain microphysics was

used. These simplifying assumptions make it impossible to

address the issue of radar distance from the storm, which in

many cases is the most important factor determining the

low-level data coverage. The assumption that the radar data

are available at the model grid points also makes it

impossible to include the effect of beam spreading which

affects data coverage. The lack of low-level radar data

coverage is also suspected to be an important source of

error in the EnKF analysis of thunderstorms as shown in

the studies of Dowell et al. (2004) and Tong (2006).

We set out to perform a systematic OSSE (Observing

System Simulation Experiment, Lord et al. 1997) study on

the impact of assimilating high-resolution observations from

hypothetical surface networks, in addition to observations

from a radar located at different distances from the main

storm, trying to complete a systematic study on surface data

impact in convective scale storm analysis. A realistic radar

simulator is used, providing realistic data coverage. Surface

observing networks of different mean spacing are examined,

and the impact of surface data is interpreted with the help of

ensemble error covariance structures and our understanding

of convective storm dynamics. Both perfect and imperfect

forecasting model scenarios are considered in the OSSEs; in

the latter case model error is introduced by using different

microphysics schemes.

The rest of this paper is organized as follows: Section 2

describes the numerical model used, the design of the

observational network and the EnKF algorithm used.

Experiments assimilating surface observations with EnKF

are discussed in Sect. 3 and sensitivity tests are presented

and analyzed in Sect. 4. The impact of this assimilation on

subsequent forecasts is discussed in Sect. 5. Section 6

further examines the surface data impact in the presence of

model error, and Sect. 7 gives a summary and conclusions.

2 Model and experiment settings

We take the OSSE approach in this study, partly because it

is impossible or impractical to perform a complete set of

experiments with real observations that would require, for

example, observing the same real storm many different

times using the same radar from different distances, and the

real surface observing networks often have limited density.

In the case of real thunderstorms, full measurement on the

complete atmospheric state is not available, making the
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quality of analysis difficult to judge. With OSSEs, a model

simulation serves as the ‘truth’ or ‘nature run’ for all

experiments. Realistic observations can be simulated from

this model atmosphere using a radar simulator and

assuming certain surface network characteristics. With

OSSEs, observation configurations that are currently

unavailable can be tested. This study builds upon and

extends the earlier OSSE studies of Tong and Xue (2005,

TX05 hereafter), XTD06 and Tong and Xue (2008a),

which focused on radar data.

2.1 Description of simulation and assimilating model

The Advanced Regional Prediction System (ARPS, Xue

et al. 2000; Xue et al. 2001; Xue et al. 2003) is used as the

simulation and prediction model in this study. ARPS is a

compressible nonhydrostatic model that predicts velocity

components u, v, w, potential temperature h, pressure p and

mixing ratios for water vapor, cloud water, rainwater, cloud

ice, snow and hail/graupel (qv, qc, qr, qi, qs, and qh,

respectively) associated with ice microphysics schemes in

the model. These variables make up the state vector that is

estimated or analyzed using EnKF. The model also predicts

the turbulence kinetic energy (TKE), which is used in a

1.5-order subgrid-scale turbulence closure scheme. TKE is

not updated by the EnKF during assimilation as in our

previous studies (e.g., TX05). The ARPS includes several

single-moment ice microphysics packages. The Lin et al.

(1983, LFO83 hereafter) scheme is the default and is used

in the truth simulation and perfect model OSSEs. A mod-

ified version of the LFO83 scheme (Gilmore et al. 2004a,

LFO04 hereafter), the Schultz simplified ice scheme

(Schultz 1995, Schultz hereafter), the WRF 6-category

Single-Moment Microphysics scheme (Hong and Lim

2006, WSM6 hereafter), and their combinations are used in

the imperfect-model OSSEs.

2.2 Truth storm simulation

As in TX05 and XTD06, the 20 May 1977 Del City,

Oklahoma, supercell storm (Ray et al. 1981) simulated by

the ARPS is used as the truth for the OSSEs. A horizontal

resolution of 2 km is chosen with a grid of 67 9 67 9 35

points in the x, y and z directions, respectively, giving a

physical domain of 128 9 128 9 16 km. Radar and sur-

face observations are assumed to be available only within a

64 9 64 km2 subdomain located at the center of the model

grid. The main storm cells remained within this subdomain

throughout assimilation and prediction, and this observa-

tion domain has the same size as that used by TX05.

The larger domain used here is to avoid occasional

problems arising from perturbations created by the open

lateral boundary condition. In the vertical, a grid stretching

scheme based on a hyperbolic tangent function is used and

the vertical grid spacing is 200 m near the ground and

increases to 800 m at the model top.

An initial thermal bubble with a maximum potential

perturbation of 4 K is centered at x = 80 km, y = 48 km

and z = 1.5 km to initialize convection in the truth simu-

lation. The radii of the bubble are 10 km in the horizontal

and 1.5 km in the vertical. Open lateral and free-slip top

and bottom boundary conditions are used in both simula-

tion and assimilation. A constant wind of u = 3 m s-1 and

v = 14 m s-1 is subtracted from the original sounding to

keep the main storm (right mover) near the center of the

domain. These configurations are the same as those used in

TX05, except for the larger computational domain and the

use of vertical grid stretching; the stretched grid gives

better vertical resolutions near the surface.

The bubble-triggered storm updraft reaches its full

updraft intensity within 30 min. At around 60 min, the

supercell starts to split into two, with one right mover and

one left mover (Fig. 1a). By 120 min, the left mover exits

the northwest corner of the central subdomain (Fig. 2a).

Additional details on the general evolution of the simulated

storm can be found in TX05. The simulated model state is

output every 5 min for creating simulated observations and

for analysis/forecast verification.

2.3 Simulation of observations

A hypothetical WSR-88D radar with 1� beamwidth is

positioned to the southwest of the storm. For the first set of

experiments, the radar is located at x = -68 km and

y = -68 km (the coordinate origin is located at the

southwest corner of the 128 9 128 km model domain);

this is about 185 km from the domain center; approxi-

mately where the right-moving cell is located. At this

distance, the earth curvature effect combined with beam

bending based on the � earth radius model (Doviak and

Zrnic 1993) places the lower edge and the center of the

half-power beam of 0.5� elevation at 1.98 and 3.60 km

above ground, respectively. In another word, there is no

direct radar data coverage below 1.98 km level at all at this

distance. The vertical beamwidth as well as the spacing

between two consecutive beams is about 3.8 km at this

distance; for this reason, proper vertical beam pattern

weighting is important. Two other sets of experiments

assume that the radar is located 115 or 45 km southwest of

the main storm (see Table 1).

As in XTD06, radar data are assumed to be available on

the elevation levels in the vertical and already interpolated

to the model grid columns in the horizontal. The radar

emulator as used in XTD06 is applied to bring the data

from the model grid points to the radar elevation levels

with vertical beam pattern weighting. The standard WSR-
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(a) (b) (c)

(f)(e)(d)

Fig. 1 Perturbation wind vectors, simulated reflectivity Z (dBZ) and

perturbation potential temperature h0 (every 1 K) (upper panel), and

divergence fields (91,000 s-1) (lower panel) at z = 100 m (first

model level above ground) for truth (a, d), and experiments Ra (b,

e) and RaSfc (c, f) at 60 min of model time

(c)(b)(a)

(d) (e) (f)

Fig. 2 As Fig. 1, but at 120 min
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88D precipitation scanning mode is assumed (see Fig. 2 of

XTD06). Radial velocity (Vr) is simulated as in XTD06,

and the same Vr observation operator is used in the EnKF

assimilation. The reflectivity formula described in TX05 is

used for simulation and assimilation. This formula returns

the reflectivity (Z) in dBZ from the mixing ratios of rain,

snow and hail/graupel. More details of the radar emulator

can be found in XTD06.

Gaussian-distributed random errors with zero mean and

standard deviations of 1 m s-1 and 3 dBZ are added to

simulated Vr and Z, respectively. The 3 dBZ standard

deviation of Z error is smaller than the 5 dBZ used in TX05

and XTD06, but is suggested to be more appropriate by

Xue et al. (2007); the value is also used by Tong and Xue

(2008a). Using the larger error value results in slightly

worse analyses.

Surface stations of a hypothetical mesoscale observing

network are located inside the 64 9 64 km interior sub-

domain with station spacings of about 20 km in the control

and other directly related experiments, resulting in a total

of 9 surface stations. To simulate a network whose stations

are not on the grid point while keeping the network more or

less uniform, the stations are placed randomly within

400 9 400 m square boxes that are centered on the grid

points 20 km apart. The EnKF code is general; it does not

require a uniform distribution of stations.

The observed variables at these stations include the

horizontal wind components, the temperature, pressure and

water vapor mixing ratio. The standard deviation of the

zero-mean Gaussian errors added to the simulated surface

observations are: 1 m s-1 for wind components, 1 K for

temperature, 1 hPa for pressure and 1 g kg-1 for water

Table 1 List of OSSE

experiments examining the

impact of surface observation

data of different spacings and

for different radar distances

under the scenario of perfect

and imperfect model

Experiment Obs. Type Sfc. Obs.

Spacing (km)

Radar Dist.

(km)

Remark/aspects tested

Ra/Cntl Radar only N.A. 185 Control exp.

RaSfc Radar ? Sfc All 20 185 Cntl sfc obs spacing

RaSfcUV Radar ? Sfc V 20 185 Individual sfc obs

RaSfcT Radar ? Sfc T 20 185 Individual sfc obs

RaSfcP Radar ? Sfc Pres 20 185 Individual sfc obs

RaSfcQv Radar ? Sfc Qv 20 185 Individual sfc obs

RaSfcS32 Radar ? Sfc All 32 185 Sfc obs spacing

RaSfcS16 Radar ? Sfc All 16 185 Sfc obs spacing

RaSfcS12 Radar ? Sfc All 12 185 Sfc obs spacing

RaSfcS6 Radar ? Sfc All 6 185 Sfc obs spacing

RaSfcS4 Radar ? Sfc All 4 185 Sfc obs spacing

RaSfcS2 Radar ? Sfc All 2 185 Sfc obs spacing

RaD115 Radar only N.A. 115 Radar Dist

RaSfcD115 Radar ? Sfc All 20 115 Radar Dist

RaSfcD115S6 Radar ? Sfc All 6 115 Radar Dist and Sfc Obs spacing

RaD45 Radar only N.A. 45 Radar Dist

RaSfcD45 Radar ? Sfc All 20 45 Radar Dist

RaSfcD45S6 Radar ? Sfc All 6 45 Radar Dist and Sfc Obs spacing

RaNr0 Radar only 20 185 Imperfect model with 10 9 Nr0

RaLFO Radar only 20 185 Imperfect model with LFO84

RaSchultz Radar only 20 185 Imperfect model with Schultz

RaWSM6 Radar only 20 185 Imperfect model with WSM6

RaSfcNr0 Radar ? Sfc All 20 185 Imperfect model with 10 9 Nr0

RaSfcLFO Radar ? Sfc All 20 185 Imperfect model with LFO84

RaSfcSchultz Radar ? Sfc All 20 185 Imperfect model with Schultz

RaSfcWSM6 Radar ? Sfc All 20 185 Imperfect model with WSM6

RaSfcNr0 Radar ? Sfc All 6 185 Imperfect model with 10 9 Nr0

RaSfcS6LFO Radar ? Sfc All 6 185 Imperfect model with LFO84

RaSfcS6Schultz Radar ? Sfc All 6 185 Imperfect model with Schultz

RaSfcS6WSM6 Radar ? Sfc All 6 185 Imperfect model with WSM6
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vapor mixing ratio. In sensitivity experiments, different

network densities are tested (see Table 1).

Both radar and surface observations are assumed to be

available every 5 min. The latter is actually true with the

Oklahoma Mesonet while the WSR-88D radar volume scan

interval in precipitation mode is typically 5 min.

2.4 The EnKF algorithm

The EnKF algorithm used in this study is based on the

serial ensemble square root filter (EnSRF) of Whitaker and

Hamill (2002). In this study, we refer to the algorithm as

EnKF in general. The implementation follows XTD06

exactly, except for the addition of surface observations,

which are assimilated after the radar data (results obtained

assimilating surface observations first are very similar).

The state variables analyzed include u, v, w, h, p, qv, qc,

qr, qi, qs and qh. To initialize the first ensemble forecast

cycle, random initial perturbations as used in XTD06 are

added to a horizontally homogenous first guess defined

using the May 20 sounding of the truth simulation. The

random perturbations are drawn from a Gaussian distri-

bution with zero mean and standard deviations of 2 m s-1

for u, v, w, 2 K for h and 0.6 g kg-1 for qv and all

microphysical variables. Perturbations for all except for the

microphysical variables are added in the entire subdomain.

The perturbations for the latter are added only in the region

where radar echo is present at 20 min, the start time of the

first assimilation cycle. Reflectivity data in both the pre-

cipitation and clear air regions (negative Z values are set to

zero) are used. Radial velocity data are only used in regions

where Z is greater than or equal to 10 dBZ. We note here

that because the storm environment is initialized with a

perfect model sounding and there is no land surface process

in the model, there is no error in the storm environment

except for that introduced by the initial ensemble pertur-

bations. The benefit of the surface observations is expected

only where storm-induced disturbance exists.

Covariance localization (Houtekamer and Mitchell

2001) is used to limit the spatial influence of observations

and reduce sampling error. A Schur product is applied with

a smooth 5th-order distance-dependent function (Eq. 4.10

of Gaspari and Cohn 1999) multiplying the calculated

background error covariance. For radar observations, a

6 km localization radius is chosen in all directions to

ensure the best results when only radar data is used

(XTD06). For surface observations, when the mean station

spacing (station spacing hereafter for short) is 20 km, a

horizontal localization radius of 30 km and a vertical

radius of 6 km are found to be optimal through experi-

mentation. When the station spacing changes from 2 km

through 32 km in sensitivity experiments, different optimal

horizontal localization radii ranging between 6 km and

36 km are chosen, again based on experimentation. Further

discussions can be found in Sect. 4. Forty ensemble

members are used for all experiments, as in XTD06.

To avoid the filter divergence problem caused by

underestimation of covariance due to small sample size

and/or model error, covariance inflation is used in all

experiments following the procedure of TX05. For cases

using radar observations only, covariance inflation is only

applied in and near (within 6 km of) the region where

observed reflectivity exceeds 10 dBZ. This procedure is

applied to avoid amplifying spurious cells in precipitation-

free regions (XTD06). If a uniform inflation is applied

everywhere in the model domain but there is not much data

to constrain the ensemble spread (i.e., in the precipitation

free region that is also free of spurious convection), the

ensemble spread can grow too large, causing unphysical

and unstable solutions. In experiments with only radar

observations, a 5% inflation factor is applied for perfect-

model experiments and 15% is used for imperfect-model

experiments (see Sect. 6). For experiments including sur-

face observations, additional covariance inflation is applied

at the lower levels within the cutoff radius of the surface

observations, in the entire subdomain, using the same

inflation factor (at pointed influenced by both radar and

surface data, covariance inflation is done only once).

Therefore, covariance inflation in regions not directly

reachable by observations is avoided. This avoids exces-

sive increase in the ensemble spread where the ensemble is

not constrained by any observations.

2.5 Assimilation experiments

A complete list of experiments can be found in Table 1.

The control experiment, Cntl or Ra (for radar data only),

uses only data from a radar located 185 km from the

domain center where the main storm is located; this case

serves as the baseline. Other experiments add data from a

surface network of different station spacing and test radar

distances of 185, 115 or 45 km, respectively. Some

experiments assimilate a particular surface observation

variable. In the experiment names, ‘Ra’ denotes the use of

radar data, ‘Sfc’ indicates the use of surface observations,

‘D’ followed by a number indicates the radar distance and

‘S’ followed by a number indicates the station spacing. For

example, RaSfcD115S6 means that both radar and surface

data are used and the radar is located 115 km from the

domain center and the station spacing is 6 km. Additional

characters, such as T in RaSfcT, indicate which variables in

the surface data are assimilated. The results of these

experiments are reported in the next three sections,

focusing on the impact of additional surface observations.

The experiments with the default radar distance of 185 km

and default mean station spacing of 20 km have
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abbreviated names. Experiments discussed in Sect. 6

include model error. In all experiments, the first assimila-

tion cycle starts at 20 min and the first EnKF analysis

occurs at 25 min.

3 Impact of surface observations

3.1 Results of experiments Ra and RaSfc

The control experiment Ra (Table 1) is first examined,

together with RaSfc. Figures 1 and 2 show the surface

fields of the truth simulation and the ensemble mean

analyses of experiments Ra and RaSfc, at 60 and 120 min

of model time, respectively. RaSfc adds data from a surface

network of 20 km mean spacing with all observed vari-

ables (u, v, T, p and qv) assimilated. The ensemble mean

analysis fields are plotted. At 60 min, or after eight 5-min

analysis cycles, precipitation and cold pool associated with

the storm are established in both Ra and RaSfc in general

(Fig. 1b, c) but Ra does not capture the cell splitting or the

left moving cell at this time. The cold pool is too broad in

Ra based on the -1 K perturbation potential temperature,

h0, contour (Fig. 1b) but is much closer to the truth in

RaSfc (Fig. 1c). Ra completely misses the surface con-

vergence center associated with the main updraft while the

divergence center underneath the precipitation core is too

weak and does not have the right pattern (compare Fig. 1e

with d). In comparison, RaSfc does a much better job

capturing the convergence pattern along the gust fronts on

the south and north side and reproduces the magnitude and

pattern of the main divergence center much better (Fig. 1f).

It does significantly underestimate the convergence asso-

ciated with the main updraft. In both cases, the analyzed

fields are not very accurate quantitatively at this time.

At 90 min (not shown), the right and left moving cells as

seen from the low-level Z are now reasonably well cap-

tured in both cases. However, the convergence field is still

not accurately analyzed, especially along the gust fronts

and in Ra. By 120 min (Fig. 2), the hook echo structure of

the major storm is reproduced well in both Ra and RaSfc

(Fig. 2b, c) but we see more differences in the analyzed

surface divergence fields. Both the intensity and pattern of

the divergence in RaSfc are reproduced accurately (Fig. 2f)

but the divergence in Ra is generally broader and weaker.

The tail of the divergence band at the southwest end of

the gust front is missing in Ra. Also mostly missing is the

convergence center associated with the left mover near the

northwest corner of the plotted domain (Fig. 2e).

There are also clear differences between the analyses of

gust front. The temperature gradients along the gust fronts

are noticeably weaker in Ra (Fig. 2b) than in RaSfc

(Fig. 2c), and there is also larger position error of the gust

fronts in Ra, especially near the western and northern

domain boundaries. In general, the low-level analysis of

RaSfc can be considered very good at this time.

The subjective comparison between Ra and RaSfc

indicates that the surface observations have a noticeable

positive impact on the analysis of low-level features,

including the cold pool and associated flows, even though

the network has a much coarser resolution (*20 km) than

would be needed to resolve the sharp gradient along the

gust fronts. Our results agree with Zhang et al.’s. (2004)

study, which found the addition of surface observations

retrieves the low-level cold pool better with a denser

surface network of 10 km spacing. The impact on the

precipitation field seems smaller, presumably because of

that the hydrometeors that descend to the ground level are

well captured by the radar data above. Without surface

data, we have to rely on the model alone to establish the

cold pool through microphysical and dynamic processes.

As the cold air spreads away from the precipitation

region, no more radar data (except for the clear air

information contained in the zero reflectivity values) are

available.

The root mean square (rms) error of the ensemble mean

analysis calculated against the truth is used to further

quantify EnKF performance and the impact of surface data.

The evolution of rms error with time is shown in Fig. 3 for

Ra and RaSfc. As in TX05, the errors were calculated at

grid points where observed Z exceeds 10 dBZ. The errors

decrease during the first few cycles rapidly, from the ini-

tially very high level associated with the poor sounding-

based initial guess. Errors starting from 40 min, or after

four analysis cycles, are shown here. The relative error

ratio (RER) averaged over the last ten analysis cycles

ending at 120 min is also calculated to evaluate the impact

of surface observations. It is defined as

RER ¼ 1

10

Xn�9

i¼n

Ei
RaþSfc

Ei
Ra

;

where ERa?Sfc
i is the analysis rms error of a given state

variable at the ith cycle when using both radar and surface

observations and ERa
i denotes the corresponding error using

radar data only. The averaging over the last ten analysis

cycles removes temporal fluctuations and provides a more

reliable measure of the analysis accuracy. The RERs of

various state variables can be combined further to form

RERs for several major categories, such as that for the

wind, which averages the RERs of u, v and w and that for

microphysical variables, which averages the RERs of 5

microphysics variables. The total RER (TRER) averages

the RERs of all 11 state variables and is used as the main

indicator quantifying the improvement by surface obser-

vations. The RERs or TRERs of all experiments are
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summarized in Table 2. A similarly defined error ratio has

been used in Xu et al. (2008).

At the end of assimilation, or 120 min, the analysis

errors in most fields are clearly lower in RaSfc than in Ra

(Fig. 3). The percent improvement due to surface data is

the largest in u and h, with the errors in RaSfc being only

about 50–60% those of Ra. The absolute analysis rms error

reduction in RaSfc is 0.8 ms-1 for u and 0.27 K for h.

Other variables also display improvements to various

extents. The relative rms error in RaSfc is 65% of Ra for v,

61% for w, 73% for p and 60% for qv. Even for micro-

physical variables which are not directly observed by sur-

face observations, significant improvements are also found:

the rms error is 60% of Ra for qc, 62% for qr, 48% for qi,

62% for qs and 54% for qh. This amounts to a 30–50%

reduction in errors in various model fields due to the

assimilation of surface observations. We note that there are

temporary increases in the rms errors near 65 min; this also

occurs in our earlier studies for this storm (TX05 and

XTD06) and we believe it is related to the cell splitting at

this time. The RER of RaSfc also shows evident

improvement in the last ten analysis cycles (Table 2). The

reduction in the total relative error (1 - TRER) is 32%

with the help of surface observations.

To examine the impact of surface data at different lev-

els, vertical profiles of rms errors obtained by horizontal

averaging over the precipitation regions are plotted in

Fig. 4 for 120 min. The rms errors for u, v, h, p, qr and qv

are the largest at the low levels and near the surface in Ra,

primarily because of the lack of low-level radar data. The

largest improvements in RaSfc for these variables are also

found at the surface. For example, the rms error reductions

are 2.6 ms-1 for u, 0.8 K for h and 12 Pa for p at the

surface, reflecting the better analysis of the surface cold

pool and the associated fields with the use of surface

observations. For w and all four microphysical variables

shown (qc, qr, qs and qh), the largest rms error reduction is

generally found at the levels where the corresponding Ra

errors are the largest. For example, qh error is reduced from

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

Fig. 3 The rms error of ensemble mean forecasts and analyses

plotted against time for Ra (solid) and RaSfc (dotted) for a u (m s-1),

b v (m s-1), c w (m s-1), d potential temperature h (K), e pressure

p(Pa), f qc (g kg-1), g qr (g kg-1), h (upper curves) qv and (lower

curves) qi (g kg-1), i qs (g kg-1), and j qh (g kg-1). The sharp

reductions in the error at the analysis times are due to analysis

updates. See TX05 for further explanations of this type of plots

Table 2 Relative rms error ratio (RER) of u, v and w, for micro-

physical variables, h, qv and all variables (total) for listed experiments

Experiment uvw Micro h qv Total

RaSfc 0.72 0.67 0.67 0.67 0.68

RaSfcUV 0.80 0.76 0.73 0.76 0.77

RaSfcT 0.84 0.75 0.80 0.86 0.80

RaSfcP 0.93 0.90 0.91 0.93 0.91

RaSfcQv 0.86 0.79 0.77 0.80 0.81

RaSfcS32 0.85 0.83 0.78 0.80 0.83

RaSfcS16 0.66 0.64 0.62 0.61 0.64

RaSfcS12 0.61 0.62 0.55 0.56 0.60

RaSfcS6 0.50 0.55 0.48 0.43 0.51

RaSfcS4 0.47 0.53 0.45 0.39 0.48

RaSfcS2 0.47 0.56 0.45 0.38 0.49

RaSfcD115 0.71 0.71 0.72 0.68 0.70

RaSfcD115S6 0.52 0.61 0.56 0.50 0.56

RaSfcD45 0.97 1.04 0.96 0.95 0.99

RaSfcD45S6 0.85 0.96 0.89 0.82 0.89
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about 0.28 g kg-1 to about 0.14 g kg-1 near the 4 km

level, and the maximum reduction in qs error, about

0.08 g kg-1, occurs close to 12 km. The error reduction in

w is between 0.3 and 0.7 m s-1 between the levels of 2 and

13 km. This general improvement in the storm analysis

through the addition of surface data, even at the upper

levels away from the ground, is very encouraging.

3.2 Background error correlation structure

To gain insight into how the surface data affect the model

state, we examine a few fields of ensemble-derived back-

ground error correlation (q) between a hypothetical surface

observation (called the observation prior, not the observa-

tion itself, in data assimilation terminology) and a state

variable. The background error covariance estimated from

the ensemble members determines how observation infor-

mation is spread in space and across variables and thereby

helps improve the analysis of variables not directly

observed. Accurate error correlations should reflect the

physical structure of the storm.

We choose two locations of possible surface observa-

tions at 75 min (Fig. 5) to calculate the spatial forecast

error correlations. The first location, O1, is in the inflow

region of the storm, at (73, 65) km, and the second location,

O2, is in the outflow region within the cold pool, at (57, 59)

km (Fig. 5a). The surface inflow through O1 feeds the

convergence center marked as CC and the outflow through

O2 originates from the surface divergence center marked as

DC in Fig. 5a. As in TX05, we calculate the correlation

coefficients between an observation prior (which is linked

to the state via an observation operator) at a given

observation location, and a state variable at all other grid

points. When these two variables are the same, we are

calculating the spatial auto-correlation coefficient, and

when they are different, we obtain a spatial cross-correla-

tion. Such correlation information, after being localized, is

used directly in the EnKF algorithm for analysis update.

We choose two vertical cross sections, along lines A-B

and C-D, as shown in Fig. 5a. The horizontal wind vector

is projected onto each of these two lines (positive towards

B and D, respectively), and we calculate the correlation

between this wind component (referred to as U) with other

state variables. The projected wind component U instead of

actually assimilated wind components is chosen just for

convenience of discussion.

We first present the q field at the surface, between U at

location O2 (wind along line C-D) and u at the grid points

(Fig. 5a), and between surface temperature at O2 and u at

the grid points (Fig. 5b). Positive U-u correlations are

found to occupy a large part of the cold pool outflow region

and extend out to 20–30 km from O2 (Fig. 5a) and more so

in the generally westward direction. This positive correla-

tion indicates that when U is smaller (more negative) at O2,

u is smaller (more negative), which is physically reason-

able because these U and u are located within the same

outflow region; a stronger outflow observed at O2 suggests

stronger outflows at locations with positive correlations. To

the northeast of O2, correlation contours are more closely

packed, and the correlation coefficient becomes negative

immediately beyond the divergence center (but before

going into the inflow region). This demonstrates that the

outflow on the other side of DC is also stronger when that

on this side of divergence center near O2 is stronger.

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

Fig. 4 The rms error profiles of the ensemble mean analyses of Ra (solid) and RaSfc (dotted), for a u (m s-1), b v (m s-1), c w (m s-1), d h (K),

e p (Pa), f qc(g kg-1), g qr (g kg-1), h qv (g kg-1) and qi (g kg-1), i qs(g kg-1), and j qh(g kg-1) at 120 min
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The correlation between surface temperature T at O2

and u at the grid points shows a similar pattern as that

between U and u (Fig. 5b), which shows that a stronger

colder cold pool corresponds to stronger outflows, with

more negative u west of DC and less positive u east of DC.

When such cross-correlation is estimated with reasonable

accuracy, surface temperature observations can be used

effectively to update the flow field, and vice versa. The

generally well-defined correlation patterns up to 30 km

from the observation location suggest that the localization

radius of 30 km used for the current surface network is

appropriate.

In the upper panels of Fig. 6, the correlations between

surface observations at O1 and other state variables in the

vertical cross-section along line A-B, through O1 and CC,

are shown (in contours), together with the corresponding

state variable fields (shaded contours). For the correlation

between T at O1 and vertical velocity w, the most promi-

nent feature is a deep column of positive correlation

coinciding with the main updraft (Fig. 6a), suggesting the

presence of a stronger updraft when surface T in the low-

level inflow region is higher. A similar pattern is found

between U at O1 and w, suggesting a stronger updraft when

the surface inflow towards CC is stronger (Fig. 6d); again,

this is physically consistent with the expected storm

dynamics. The negative correlation with potential temper-

ature, h, in the updraft region indicates enhancement of the

warm core structure by the low-level inflow (Fig. 6b). The

correlation of U with u is negative in the lower part of the

troposphere and positive above (Fig. 6c), suggesting that a

stronger easterly component at the surface contributes to

more westward tilt of the updraft at the low levels while at

the upper levels this enhanced easterly component may

turn into an enhanced westerly component as the updraft

air parcels rise and overturn.

The corresponding correlation fields in the C-D cross

section are plotted in the lower panels of Fig. 6. In this

case, the cross section passes through the surface diver-

gence center (DC) with the observation station located

inside the cold pool (O2). Again, we find similar correla-

tion patterns between surface T and U with w (Fig. 6e, h).

The strong positive correlations between U, T in the

downdraft outflow region and w in the updraft region,

extending all the way from the surface to about 9 km,

indicate a stronger downdraft (or weaker updraft) when

temperature at O2 inside the cold pool is lower, or when

the outflow near the surface is stronger. The positive cor-

relation between U and h in the downdraft region (Fig. 6f)

also reflects the relation between the outflow strength and

downdraft temperature. The correlation between U and u in

this cross section changes sign at the middle troposphere

(Fig. 6g), similar to what is observed in the A-B cross

section (Fig. 6c).

The physically meaningful and dynamically consistent

correlations of surface temperature and wind with the state

variables presented here, taken in both the inflow and

outflow regions, indicate that the ensemble system is able

to properly estimate the spatial auto- and cross-correla-

tions. Such flow-dependent error correlation information is

valuable for optimally utilizing surface observations. The

6 km covariance localization radius that we use in the

vertical allows the surface observations to directly

(a) (b)

Fig. 5 The surface truth wind vectors, together with forecast error

correlation coefficients estimated from the forecast ensemble at

75 min for experiment RaSfc. Error correlation between a a hypo-

thetical surface wind observation U (wind along C-D line, see text for

reference) at station O2 (x = 57 km, y = 59 km) and u at the grid

points, and b between a hypothetical surface temperature observation

at station O2 and u. Solid (dashed) contours represent positive

(negative) correlations at intervals 0.2; zero contours are omitted. CC

and DC in a mark the low-level convergence and divergence centers,

respectively, and lines A-B and C-D indicate location of the vertical

cross sections shown in Fig. 6
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influence state variables up to 6 km above the surface. Of

course, the impact of surface observations is not limited to

the lowest 6 km (see Fig. 4), because of information

propagation in time and space by the prediction model.

There is also some correlation patterns with medium

magnitude contained in Fig. 6 which are far away from

surface stations and appear not understandable with our

current knowledge about supercell thunderstorm dynamics.

We believe some of these patterns might be spurious due to

the sampling error caused by the small ensemble number.

The application of covariance localization helps to allevi-

ate the sampling error by limiting the impact of surface

observations to nearby state variables. The cutoff radius of

30 km in horizontal and 6 km in vertical prevent most of

the spurious covariance structure affecting the analysis.

4 Sensitivity experiments

In this section, we will further examine the impact of dif-

ferent observation variables or types and the impact of

surface data for different network densities and/or radar

distances.

4.1 Impact of surface measurement type

In this sub-section, the surface measurement types or

variables, including wind, temperature, pressure and water

vapor, are assessed individually for their impact. The

experiments are listed as RaSfcUV, RaSfcT, RaSfcP and

RaSfcQv in Table 1 and are the same as RaSfc except

that only the listed surface observation variables are

included.

The relative analysis error plots for these four experi-

ments are shown in Fig. 7. The relative error is defined as

the ratio of the rms error of the individual sensitivity

experiment to that of the chosen reference, which in this

case is Ra (c.f., Fig. 3). The plots show that surface wind

observations have the largest impact while pressure

observations have the least impact; the relative rms errors

of RaSfcP are close to 1 at the end of assimilation cycles.

In this case, the RERs or TRER are 93–90% (Table 2),

indicating only 7–10% error reduction when only addi-

tional pressure observations are assimilated. For micro-

physical variables, temperature observations result in the

smallest RER (Table 2). None of these individual mea-

surements were able to produce as large an impact as RaSfc

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 6 Forecast error correlation coefficients estimated from the

forecast ensemble at 75 min for experiment RaSfc, in the vertical

cross section along line A-B (upper panels) and along C-D (lower
panels) in Fig. 5. Error correlations (upper panels) between a hypo-

thetical surface temperature observation T at O1 (x = 73 km,

y = 65 km) and w, b hypothetical surface wind observation U at

station O1 and h, c U and u, d U and w. Error correlations (lower

panels) between, e surface T at station O2 (x = 57 km, y = 59 km)

and w, f U at O2 and h, g U and u, and h U and w. Thick solid
(dashed) contours represent positive (negative) correlations at inter-

vals 0.2. Shaded with thin contours shows the truth field of w in a, d,

e and h with interval 2.5 m s-1, and perturbation h0 in b and f with

interval 2 K. Wind vectors in c and g show the truth perturbation wind

field
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which assimilates all surface variables; it achieves a TRER

of 68%.

It is noted that the largest improvements for state vari-

ables h, p and qv are also obtained when assimilating sur-

face winds rather than direct measurements of these

variables themselves. This seems to be at least partly

because rms errors for h, p and qv in Ra are already much

smaller than the standard deviations of the corresponding

surface observation errors (Fig. 3), which are 1 K for T,

100 Pa for p and 1 g kg-1 for qv. Such error-containing

observations have a limited ability to further reduce the

errors of the corresponding state variables (however, keep

in mind that local errors in h, p and qv, especially under-

neath the active storms, are larger than those of precipita-

tion-domain mean shown in Fig. 3, so the benefit of

analyzing surface data should still be achievable). For

u and v, the analysis errors from Ra are still relatively large

(Fig. 3) compared with the surface wind observation

errors; therefore, there is more room for direct positive

impact by the wind observations. When wind fields are

improved, other variables benefit too. In general, h benefits

from surface observations most among all state variables;

this is consistent with the fact the most important features

at the surface are related to the cold pool. The improvement

in analyzed cold pool temperature comes not only from

thermodynamic observations, but even more so from sur-

face wind observations, which directly improve the anal-

ysis of convergence and divergence patterns that are

closely linked to updraft and downdraft intensities as well

as gust front positions.

It is expected that the impact of surface observations is

the largest when all of the measured variables are assimi-

lated, since in this case every individual measurement

shows benefit. The total impact using all measurements

together is smaller than the sum of individual impacts, in

terms of the percentage error reduction.

Zhang et al. (2004) show that liquid–water potential

temperature observations have a larger impact than winds

in retrieving the cold pool, which is different from our

conclusion. Since liquid–water potential temperature is

typically not measured, we cannot directly compare our

results with theirs. Simplistic radar data coverage

assumption, the use of Vr data only and the simple

microphysics used in Zhang et al.. (2004) further hinder a

direct comparison in details.

In summary, the surface wind observations are found to

have the largest impact on the analysis of wind and tem-

perature fields for the chosen supercell and for the typical

observation errors assumed. The potential temperature

fields benefit not only from thermodynamic observations

but also from wind observations. Such inter-connections

are reflected in the background error covariance derived

from the forecast ensemble, which drives the multivariate

EnKF analysis. Wind observations are used to update all

state variables, not just wind components themselves.

4.2 Varying surface network spacing

A series of experiments are conducted to examine the

impact of surface network spacing on the analysis.

(a) (b) (c) (d) (e)

(j)(i)(h)(g)(f)

Fig. 7 Analysis rms errors relative to those of Ra for RaSfcUV (solid), RaSfcT (dotted), RaSfcP (dash-dotted) and RaSfcQv (dashed), as a

function of analysis time
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Additional experiments with network spacing ranging from

32 km to 2 km are performed (Tables 1, 2). In these

experiments, surface observations are still approximately

uniformly distributed in the central subdomain with 4, 16,

25, 100, 256 and 961 surface stations in RaSfcS32, RaS-

fcS16, RaSfcS12, RaSfcS6, RaSfcS4 and RaSfcS2,

respectively.

For each network spacing, experiments are conducted to

determine the optimal horizontal covariance localization

radius. The optimal localization radius is plotted against

the network spacing in Fig. 8a. As the spacing decreases,

the optimal radius also decreases. When a denser network

is employed to resolve smaller scale features, reducing the

radius has the effect of keeping the influence of each

observation more localized. The sampling error in the

ensemble filter can also be decreased when a smaller

localization radius is used (Anderson et al. 2005).

We first examine the cases of medium- and high-density

observation networks with 12 and 6 km grid spacings. In

RaSfcS12, for u, v, h0, p0, qv, qc, qr and qs, the relative

analysis rms errors decrease faster and reach lower levels

than those in RaSfc by 90 min (Fig. 9). After 90 min, as

the left-moving cell propagates quickly towards the

northwest corner of the subdomain, the rms errors start to

grow in RaSfcS12 and become close to those of RaSfc for

some variables by the end of the assimilation period; this

corresponds to the time when the number of surface

observations (which are confined to the subdomain) cov-

ering the left-moving cell decreases.

When the number of surface stations is increased to 100

with a spacing of 6 km in RaSfcS6, the rms errors of the

variables directly observed (u, v, h, p, and qv) become

consistently smaller than in RaSfc and RaSfcS12. For qc,

qh, qrand w, this decreased spacing of 6 km leads to an

improvement at most analysis times, but a slight degrada-

tion in the last couple of cycles as compared with the cases

using coarser-resolution observing networks. Even so, the

improvement over the radar-only case, Ra, is still signifi-

cant after the last cycle, with a 10% to 45% reduction in

error for the variables. In the last 2–3 cycles, the analysis

error is already small enough, especially at the surface,

which makes improvement from surface observations more

difficult and might be the reason why the error of the dense

network from last few cycles approach or surpass those of

the sparse ones. The degradation of the analysis with

increasing network density in some later cycles for some of

the indirectly observed variables also reflects the nonlinear

nature of the storm-scale data assimilation problem. It is

also possible that the ensemble spread during the final few

cycles is too small. Future studies should examine more

effective ways of adaptively adjusting the inflation rather

than using ad-hoc methods. Relative to the generally large

improvement in other variables, and during other cycles,

the amount and extent of the degradation are small.

The TRERs of the above experiments are plotted against

the observation spacing in Fig. 8b. The TRER decreases

roughly linearly as network spacing decreases (network

resolution increases), until the network spacing is close to

the grid interval of truth simulation. Given that the number

of surface observations is much smaller than the number of

radar observations (which is kept fixed), such a strong

dependence of analysis accuracy on surface network den-

sity is rather interesting; it suggests that the impact of the

surface network on the analysis of convective-scale fea-

tures becomes increasingly large as the density of the

network increases.

(a)

(b)

(c)

Fig. 8 a The optimal horizontal covariance localization radius for

surface data as a function of mean surface network spacing, b the total

rms error ratio (TRER) as a function of the mean surface network

spacing, and c the TRER as a function of the number of surface

observations, plotted in a logarithmic space. The thick straight line in

c represents the -1/2 slope
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Since Fig. 8b shows that TRER � d, where d is the mean

network spacing, it follows that TRER � A n-1/2 and

log(TRER) � -1/2log(n), where A is the area covered by

the network and n is the number of observation stations.

Morss et al. (2001) point out that such a power-law

behavior is expected of a network where the number of

observations is much greater than the number of degrees of

freedom in the analysis. This condition is obviously not met

in our case, however, even if we include radar observations.

In Fig. 8c, we plot the TRERs against the number of

surface observations in logarithmic space; the thick straight

line represents a slope of -1/2. It can be seen that for

relatively coarse network resolutions, the error reduction

rate is close to the -1/2 power law and for higher reso-

lutions, the rate of error reduction is slower than the power

law suggests. Morss et al. (2001) and Anderson et al.

(2005) also found steep error reduction when the obser-

vations are relatively sparse (but not too sparse); for rela-

tively dense networks the error reduction is close to or

somewhat shallower than the power law indicates. Our case

is more complicated because of the constant presence of

much denser radar observations assimilated before surface

data. In addition of a different index to measure error

reduction (we use relative error ratio to examine surface

data impact, instead of absolute analysis error), it is not

appropriate to compare our results with those previous

researches directly. However, it is interesting to notice that

in our case the general trend in the error curve is similar to

those two studies. It suggests that there might be com-

monality between single- and multi-source data assimila-

tion in the study of surface observation impact. Further

investigation is needed in future research.

The above experiments clearly demonstrate the benefit

of higher surface network densities for storm-scale analy-

sis. For real storms that may contain even more small-scale

structures than the simulated truth storm does, additional

benefit could potentially be achieved with higher density

networks.

4.3 Varying radar distance

In the next set of experiments, the radar is placed closer to

the storm, at a distance of 115 km in RaD115, RaSfcD115

and RaSfcD115S6 and a distance of 45 km in RaSfcD45

and RaSfcD45S6 (see Table 1). Figure 10 shows the

analysis rms errors of RaD115 relative to those of Ra, as

well as those of RaSfcD115 and RaSfcD115S6 relative to

those of RaD115. With the radar at a closer distance of

115 km, RaD115 is consistently able to produce better

analyses than Ra, especially for microphysical variables

(which are directly linked to Z measurements). The final

error levels in RaD115 are lower for all variables. Relative

rms errors are even smaller during the intermediate cycles

than in the final analysis. Relative error reductions reach

10–20% compared with Ra for most variables, with the

largest error reduction around 75% at 65 min for qr. In fact,

the error peaks found in many variables in Ra (Fig. 3) and

other experiments of the same radar distance (not directly

shown) at around 60 min are mostly gone, resulting in

significantly smaller relative errors around this time

(Fig. 10). The closer radar location provides more low-

level data coverage and better vertical resolution at the

location of storm. When the radar is located at 115 km

from the main storm, the impact of additional surface

(a)

(f) (g) (h)

(c) (d)

(i) (j)

(e)(b)

Fig. 9 As Fig. 7 but for RaSfc (solid), RaSfcS12 (dotted) and RaSfcS6 (dashed). All are errors relative to those of Ra
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observations with a mean spacing of 20 km is smaller

during the early assimilation cycles (RaSfcD115 vs.

RaD115), compared with the 185 km case (RaSfc vs. Ra),

but the impact increases during the later cycles (compare

the solid curves in Figs. 9 and 10 noting the difference in

vertical axis scales), partly because of the error increase in

the case using no surface data (RaD115). The TRER of

70% is slightly larger but still close to that of RaSfc (68%).

RaSfcD115S6, with a network spacing of 6 km, shows a

much more pronounced impact of the surface data, starting

from the early cycles (Fig. 10). After 90 min, both 20 and

6 km networks provide significant positive impacts, with

the 6 km network providing the most. Unlike the case with

the radar distance of 185 km (see Sect. 4.2), we observe no

degradation in the analyses of microphysical variables as

the spacing decreases in this case whereas the errors of

some variables (w, qrand qs) with 6 km network spacing in

the final few cycles still approach close to the 20 km case.

It is not clear whether the degradation will happen if more

assimilation cycles are performed after 120 min. In spite of

the small error increase of some variables in last 1–2

cycles, the improvement from the dense network is still

significant.

When the radar is located much closer to the storm

center, at a distance of about 45 km, radar observations

alone give very good analyses; there is not much room left

for further improvement by surface observations of 20 km

spacing, with the achieved TRER being 99%. The assim-

ilation of surface observations at a spacing of 6 km in

RaSfcD45S6 improves the results over those of RaD45,

with an error reduction of 11% (TRER = 0.89, Table 2).

5 Impact of surface observations on forecast

As mentioned earlier, data assimilation aims to provide

accurate initial conditions for the following forecasts. It has

been shown that assimilation of surface observations helps

to improve the analysis, which is used as the initial con-

dition for the subsequent forecasts. To further examine the

impact of surface observations on the ensuing forecast, we

perform 1-h forecasts from the ensemble mean analyses of

Ra, RaSfc and RaSfcS6, at 60, 90 and 120 min. We plot the

average relative error ratios between the forecasts with and

without surface data for groups of state variables, with

station spacing of either 20 or 6 km. The groups of vari-

ables are wind components u, v and w, potential tempera-

ture and pressure and the microphysical variables.

Figure 11 shows that when the forecasts start at 60 min

of model time and when the station spacing is 20 km, the

RER (thick black lines) of the wind components grows

quickly from the initial value of about 0.7 to near 1 at

100 min and exceeds 1 after 100 min. When the station

spacing is 6 km, the corresponding RER (thick dashed

lines) grows from about 0.56 at 60 min to near 0.75 by

90 min and remains approximately level afterward. The

RERs for the microphysical variables have very similar

trends (Fig. 11c) while those for h and p show that the

benefit of surface data is sustained for the entire period

when 20 km station spacing is used, and even increases

with time for 6 km station spacing (Fig. 11b).

It is clear from Fig. 12 that the 60-min forecast of RaSfc

valid at 120 min is rather poor (Fig. 12c) and is similar to

that of Ra (Fig. 12b); the reflectivity associated with the

Fig. 10 Analysis rms errors of RaD115 relative to those of Ra (dotted), of RaSfcD115 relative to those RaD115 (solid), and of RaSfcD115S6

relative to those of RaD115 (dashed)
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main cell near the center is completely missing in both

cases. The corresponding forecast in RaSfcS6 is much

closer to the truth (Fig. 12d vs. a); because the surface data

are assimilated for a relatively short period of time (8

cycles over 40 min), the benefit of a denser network is

much greater. The benefit of the 20 km network is effec-

tively lost after a forecast period of 40 min; the relatively

poor initial condition at 60 min appears to be the reason.

For a denser 6 km network the benefit is sustained for a

forecast period of 60 min and even increases slightly with

time for thermodynamic variables (Fig. 11b).

When surface observations are assimilated until 90 min

of model time, significant benefit of surface observations is

sustained throughout the hour-long forecast period (thin

black lines in Fig. 11), for both network densities. In this

case, the RERs for the wind components and the micro-

physical variables decrease with time for much of the time

period. Overall, the RERs are lower than in the previous

case, where a shorter assimilation period was used, and the

RERs for the 6 km network are lower than those of the

20 km network in both cases throughout the forecast. The

difference due to network density is generally larger when

the forecasts are initialized at the earlier time of 60 min.

This suggests that when surface observations are assimi-

lated within fewer cycles, there is more benefit from having

a denser network. These conclusions are also supported by

the low-level forecast fields at 150 min (Fig. 13). The

forecast of Ra (Fig. 13b) is the poorest among the three and

that of RaSfcS6 (Fig. 13d) is the best. The most noticeable

differences are due to the left-mover near the northwestern

corner of the plotting domain. For the main cell near the

center, the difference is smaller, especially when compared

with the previous case where the forecasts start from

60 min (c.f., Fig. 12).

When the assimilation cycles continue until 120 min,

the analysis RERs of the 6 km (RaSfcS6) and 20 km

(RaSfc) cases (gray lines in Fig. 11) become closer. In fact,

the analysis RERs for the wind components (Fig. 11a) are

so close that after 10 min of forecast time the RER of the

20 km case (thick gray curve) becomes lower than that of

the 6 km case (this behavior is related to nonlinear error

growth). The actual analysis errors at this time are already

very small, even for the case using a 20 km network

spacing (c.f., Fig. 3); therefore, further improvement due to

higher network density becomes negligible. For tempera-

ture and pressure, the benefit of the denser network lasts a

little longer (Fig. 11b) while the benefit is not seen in terms

of the microphysical variables throughout the hour-long

forecast (Fig. 11c). This suggests that when radar data

coverage on a storm is available for a sufficiently long

time, a 20-km resolution surface network is enough.

6 Impact of surface data in the presence of model error

Model error can significantly impact the behavior of the

EnKF analysis. For real-world problems, model error is

inevitable. Model error can originate from physical param-

eterizations, model numerics and resolution and simplifying

assumptions made within the dynamic equations. For short-

range (*a few hours) simulation/prediction of convective

storms, the microphysical parameterization (MP) is often the

largest source of error or uncertainty (e.g., Gilmore et al.

2004b; Tong and Xue 2008b) and efforts to alleviate such

uncertainty can be made through parameter estimation

(Tong and Xue 2008a). In this section, we simulate the

potential MP error by using different MP scheme(s) in the

assimilating model than the one used in the truth simulation.

Such an approach has been used with cumulus parameteri-

zation schemes in the OSSEs of Meng and Zhang (2007) for

larger scale applications. Our main goal here is to assess the

impact of surface data in the presence of a dominant model

error.

We first assess the impact of model error in the radar-

only case. Experiments RaLFO04, RaSchultz and RaW-

SM6 are the same as Ra except for the use of the LFO04,

(a)

(b)

(c)

Fig. 11 The average relative rms error ratios of the u, v and

w components (upper panel), h and p (middle panel), and moisture

and microphysical variables (lower panel), for 60-min-long forecasts

starting from ensemble-mean analyses at 60 min (thick black lines),

90 min (thin black lines), and 120 min (thick gray lines). The solid
curves are for the forecast errors starting from the analyses of RaSfc

(with 20 km station spacing) relative to the corresponding errors of

Ra (radar only), and the dashed lines are for the forecast errors of

RaSfcS6 (6 km station spacing) relative to those of Ra

56 J. Dong et al.

123



Schultz and WSM6 (c.f., Sect. 2a) MP schemes, respec-

tively, instead of the truth MP scheme of LFO83. Experi-

ment RaMulti uses LFO04, Schultz and WSM6 in 13, 13

and 14 of the 40 ensemble members and such a multi-

physics approach has been found effective by Meng and

Zhang (2007) and Fujita et al. (2007) in increasing the

ensemble spread and reducing analysis error. Another

experiment, RaNr0, uses LFO83 with the rain water

intercept parameter, Nr0, increased by a factor of 10. This

increases the number of rain drops and reduces their

average sizes, leading to more rain evaporation and

stronger cold pools. In the presence of model error, the

covariance inflation coefficient is increased to 15%.

Figure 14a shows the TRERs of the radar-only experi-

ments with MP error relative to the perfect-model experi-

ment Ra. In all cases the TRER is larger than 1, indicating

degradation of the analysis due to model error. Among

them, RaWSM6 has the largest TRER and RaNr0 has the

smallest TRER. For RaNr0 the error is increased by about

27%, while for RaWSM6 the error is larger than that of the

perfect-model case by about a factor of 3. For real cases,

we do not know which MP scheme is more accurate; one

way to account for such uncertainty is to use multiple MP

schemes in the ensemble, helping to better sample the

uncertainty. Figure 14a shows that the TRER of RaMulti is

smaller than those of RaWSM6 and RaSchultz but slightly

larger than that of RaLFO04. Considering that LFO04 is a

‘close relative’ of LFO83 that is used in the truth simula-

tion, the fact that RaMulti performs close to RaLFO04

suggests that the use of multiple MP schemes is rather

effective.

In the presence of MP error, it is shown that with a

network of 20 km spacing surface observations still show

positive impact on the storm analyses (Fig. 14b), but the

magnitude of impact is reduced. The error reduction is the

largest for RaSfcNr0; being about 20% with a TRER of

about 80%. RaSfcNr0 has the smallest MP error since only

the value of the rain intercept parameter is incorrect. The

TRERs of all 20-km experiments using a single wrong

microphysics scheme are close to 95%, indicating rather

small positive impact from surface data. Although larger

model errors (using a single wrong MP scheme) can create

more room for state error correction, the model error can

also lead to less accurate covariance estimates on which the

data assimilation depends and hence to smaller impacts

from the observations than RaSfcNr0. When multiple MP

(c)

(a)

(d)

(b)

Fig. 12 Perturbation wind

vectors, Z (dBZ, shaded) and h0

(K, contours) fields, valid at

120 min, from the truth a, and

1-h forecasts starting from

60-min ensemble-mean

analyses of Ra b, RaSfc c and

RaSfcS6 d
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schemes are used in RaSfcMulti, the TRER is about 88%,

smaller than the cases using a single wrong MP scheme.

We also notice that the microphysical state variables are

improved least by the surface observations among these

experiments (not shown). A denser surface network of

6 km spacing is shown to produce larger positive impacts

(Fig. 14b), with the error reduction in the multi-scheme

case being about 25%, while the error reduction in the case

using the wrong rain intercept parameter value is about

40%. The relative impacts among different schemes are

similar to those seen in the 20 km case.

The larger impact from using multiple MP schemes

than using single ‘‘wrong’’ MP schemes is partly due to

the increase of the spread (Fig. 15). Spread is averaged

over the last ten assimilation cycles to provide the relative

spread increase. The average relative spread increase from

using multiple MP schemes is always positive for all of

the state variables. Generally, there are larger relative

spread increases in the microphysical variables than in

others. The relative spread increase of qs can be as large

as 600%.

We note here that in this study, the environment of the

convective storms is assumed perfect (apart from the noise

introduced when initializing the initial forecast ensemble),

being based on a perfect sounding. The surface data are

used to help analyze the perturbations associated with the

convective storms; near the surface the cold pool and

associated features are profoundly influenced by the

microphysics (Snook and Xue 2008); for this reason,

microphysics error significantly reduces the ability of sur-

face observations in improving state estimation.

7 Summary and conclusions

In this paper, an ensemble square root Kalman filter is used

to assimilate simulated radar and surface network obser-

vations for a supercell storm, with the goal of examining

the impact of additional surface observations on the storm

analysis and forecast. Realistic low-level radar data cov-

erage is simulated with a radar emulator using realistic

beam pattern weighting.

(a)

(d)(c)

(b)

Fig. 13 As Fig. 12, but for

fields valid at 150 min, of truth

a and 1-h forecasts starting from

90-min ensemble-mean

analyses of Ra b, RaSfc c and

RaSfcS6 d
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It is shown that the assimilation of mesonet-like surface

observations can significantly improve convective storm

analysis when compared with the cases using radar

observations only, particularly when the radar is at suffi-

cient distance from the storm to have poor low-level cov-

erage. Surface observations help fill the low-level data gap

and improve the storm analysis even when the resolution of

these observations is much coarser (e.g., at a 20 km spac-

ing) than the radar data. The rms error reductions due to

surface observations reach 30–50% in such a case when the

assimilation model is perfect. Surface observations

improve analyses of the cold pool, consistent with Zhang

et al. (2004)’s study using simplified settings. The con-

vergence and divergence associated with the cold pool are

also retrieved better in terms of pattern, magnitude and

position while the precipitation fields are improved less

because hydrometeors at higher levels are only indirectly

related to surface observations and are better captured by

radar.

It is shown that surface observations not only help

correct the near-surface errors, but also improve the anal-

yses of state variables at the mid- and upper levels. The

greatest improvement from surface observations usually

occurs at levels where analysis errors obtained without

using surface data are the largest. The flow-dependent

background error covariance estimated from the ensemble

and the dynamical interactions realized through the pre-

diction model are believed to play an important role. The

background error correlations estimated from the ensemble

exhibit physically reasonable structures and confirm the

ability of the surface observations to properly influence all

state variables at other grid points.

In general, the better analysis obtained using both radar

and surface observations, used as the initial condition for
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Fig. 14 a Total relative rms error ratios (TRERs) between imperfect

and perfect model experiments for radar data only experiments

RaNr0, RaLFO04, RaSchultz, and RaMulti, and b total relative rms
error ratios (TRERs) for experiments with and without surface data

when the model is imperfect

Fig. 15 Relative spread increase percentage of RaSfcS6Multi to RasfcS6LFO, RasfcS6Schultz and RasfcS6WSM6. Spreads are averaged over

the last ten assimilation cycles
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the following forecast, also improves the subsequent storm

forecast. When the forecast starts at an earlier time, when

fewer assimilation cycles have been taken and when the

cold pool occupies a smaller area, a higher density surface

network results in a much greater positive impact. When

many analysis cycles are performed, the 20-km network is

able to produce a similar level of positive impact as the

6-km network, and the impact lasts for at least 1 h in both

cases during the forecast. In some cases, the improvement

in the forecast even increases with time.

When assimilating the surface observation types indi-

vidually, using typical observation errors, wind observa-

tions show the largest positive impact, reflecting the

important role of low-level flows in the storm development,

maintenance and propagation. Temperature observations

are found to have the second largest impact and pressure

observations are found to have the least impact. Part of the

reason for the small impact of pressure observations may

be due to the relatively large error specified for the pressure

observations (1 hPa standard deviation) as compared with

the error level of analyzed pressure achieved using radar

data alone. The largest positive impact is achieved when all

surface observation types are assimilated together.

Different covariance localization radii are used for radar

and surface observations in the EnKF analysis. The optimal

radii for surface observations, found through experimen-

tation, generally decrease as network spacing decreases and

are generally larger than those of radar data; such a ‘multi-

scale’ analysis technique seems to be effective when

dealing with data from networks with very different reso-

lutions. An argument in support of such an approach is that

observation networks are often designed to capture their

respective target flow scales (e.g., a rawinsonde network is

designed to primarily capture synoptic-scale structures). A

practical consideration is the desire to produce relatively

smooth analyses given the observation networks, and to

avoid ‘bull’s eyes’ in the analyses. Similar multi-scale

techniques have been used in the context of 3DVAR

(e.g., Hu et al. 2006) and successive correction methods

(e.g., Xue and Martin 2006).

The rms error relative to the radar-only case is found to

decrease linearly as mean surface network spacing

decreases until the spacing is close to the grid interval of

truth simulation. When plotted against the total number of

surface stations, this relative error is approximately pro-

portional to the inverse of the square root of the number of

stations when the network is relatively coarse, similar to

the behavior found by Morss et al. (2001).

When the radar is located at a closer distance of 115 km,

the radar-only analysis is significantly improved over that

of 185 km case. In this case, the surface observations still

show consistent positive impact and this impact increases

with increasing network density. When the radar is located

only 45 km from the storm, a station spacing of 6 km is

needed to achieve a noticeable impact because the radar-

only analysis is already very good.

The impact of surface observations is also examined in

the presence of microphysics-related model error. Such

model error is found to reduce the relative impact of sur-

face observations. When multiple microphysics schemes

are used in the forecast ensemble, a surface network of

20 km (6 km) spacing produces error reduction of about

10% (25%).

The impact of surface observations does depend on the

quality of analysis obtained using radar data only. It also

depends on the general quality of state estimation, which

affects the estimated error covariance between the surface

observations and unobserved state variables. Attempts to

analyze convective storms using surface data only were

unsuccessful. The impact of surface observations may be

larger when error also exists in the storm environment,

which can affect the forecast even more; this is a topic for

future study. Finally, we note that while this study may

share some of the common limitations of OSSEs, the

results obtained do give us valuable insights that would be

difficult, if not impossible, to obtain with real data.
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