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Assimilation of radial velocity and reflectivity data from coastal
WSR-88D radars using an ensemble Kalman filter for the
analysis and forecast of landfalling hurricane Ike (2008)
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Ensemble Kalman filter (EnKF) assimilation and forecasting experiments are per-
formed for the case of Hurricane Ike (2008), the third most destructive hurricane
hitting the USA. Data from two coastal WSR-88D radars are carefully quality con-
trolled before assimilation. In the control assimilation experiment, reflectivity (Z)
and radial velocity (Vr) data from two radars are assimilated at 10 min intervals
over a 2 h period shortly before Ike made landfall. A 32-member forecast ensem-
ble is initialized by introducing both mesoscale and convective-scale perturbations
to the initial National Centers for Environmental Prediction (NCEP) operational
global forecast system (GFS) analysis background, and the ensemble spread during
the analysis cycles is maintained using multiplicative covariance inflation and pos-
terior additive perturbations. The radar data assimilation results in much improved
vortex intensity and structure analysis over the corresponding GFS analysis. Com-
pared with the forecast starting from the GFS analysis, the forecast intensity, track
and structure of Ike over a 12 h period are much improved in both determinis-
tic and ensemble forecasts. Assimilation of either Vr or Z leads to improvement in
the forecasts, with Vr data exhibiting much greater impacts than Z data. With the
2 h assimilation window, 30 min assimilation intervals produced results similar to
10 min intervals, while 60 min intervals were found to be too long. The ensemble
forecasts starting from the EnKF analyses are found to be mostly better than the cor-
responding deterministic forecast, especially after ensemble post-processing, such
as probability matching for precipitation. Precipitation equitable threat scores were
calculated and compared. Copyright c© 2012 Royal Meteorological Society
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1. Introduction

Landfalling hurricanes (and tropical cyclones in general) can
pose deadly threats to many lives and cause billions of dollars
of damage. Accurate prediction of hurricane track, intensity

and associated rainfall can save many lives and properties.
The official forecasts of hurricane track from the US National
Hurricane Center (NHC hereafter) have improved greatly in
recent years (Rappaport et al., 2009; Cangialosi and Franklin,
2011), but improvement in hurricane intensity forecasting
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has been limited (Houze et al., 2007). The accuracy of the
current operational hurricane intensity forecasts is more or
less at the same level as in the 1990s (Rappaport et al., 2009).

Many efforts have been made to identify the factors
affecting intensity prediction (Anthes, 1982; Emanuel, 2005;
Krishnamurti et al., 2005; Rogers et al., 2006; Li and Pu, 2009;
Khain et al., 2010). These factors include surface heat and
moisture fluxes, sea-surface temperature and environmental
wind shear. Internally, intensity forecasting is believed to be
closely related to mesoscale and small-scale wind, cloud and
precipitation structures (Houze et al., 2007; Wang, 2009).
While hurricane track is primarily determined by large-scale
steering flow, some of the vortex-scale or even smaller-scale
features and effects, such as the beta drift effect, convection
distribution, vertical structure, microphysics processes and
vortex asymmetries can also influence track forecasting
(Chan and Williams, 1987; Fiorino and Elsberry, 1989;
Flatau et al., 1994; Davis and Bosart, 2002; Fovell et al.,
2009, 2010). Radar is one of the most effective observation
platforms for providing information on hurricane structures
at high temporal and spatial resolutions. Radial velocity and
reflectivity observed by Doppler weather radars can provide
important information on the wind and microphysics
properties of hurricanes at the vortex and convective
rainband scale (Marks, 2003; Weng et al., 2011; Zhang,
2011; Zhang et al., 2011).

High-resolution numerical models have proven to be
a very promising tool for hurricane track and intensity
forecasting (Chen et al., 2007; Davis et al., 2008). To
improve the ability of numerical models in predicting
hurricanes, some studies have examined the sensitivity of
forecast to model resolution and physics parametrizations
(McFarquhar et al., 2006; Fierro et al., 2009), while others
have focused on improving the initial conditions through
data assimilation (DA). Assimilating bogus vortex data has
resulted in improved hurricane forecasts (Zou and Xiao,
2000; Pu and Braun, 2001; Xiao et al., 2009a; Kwon and
Cheong, 2010; Zou et al., 2010). Without resorting to vortex
bogusing, radar observations have been used to define
vortex initial conditions, leading to improved forecasts in
both track and intensity when using high-resolution models
(e.g. Xiao et al., 2007; Zhao and Jin, 2008; Pu et al., 2009;
Xiao et al., 2009b; Zhang et al., 2009; Zhao and Xue, 2009;
Zhao et al., 2012a, 2012b).

All DA studies cited above used a three-dimensional vari-
ational (3D-Var) DA method, except for Zhang et al. (2009).
Using static background error statistics that usually do not
have any knowledge about the presence of a hurricane,
3D-Var is not the most effective method for localized,
rapidly evolving hurricanes. The lack of flow-dependent
cross-variable covariance also prevents effective extraction
of information contained in remotely sensed radar data that
measure only radial velocity and reflectivity. With such lim-
itations, 3D-Var is not very effective at, or even capable of,
directly assimilating reflectivity data, especially when using
a mix-phase microphysics scheme. Among more advanced
DA methods, the ensemble Kalman filter (EnKF) employs
ensemble forecasts to estimate flow-dependent background
error covariance, including cross-covariances among vari-
ables, and thus has advantages over 3D-Var.

The EnKF was first proposed by Evensen (1994) and has
since seen widespread applications in geophysical science
as well as other fields. Its relatively simple formulation and
easy implementation compared with the four-dimensional

variational (4D-Var) DA method allow it to enjoy great
popularity within the research community. The EnKF has
found its way into operational NWP systems, including
creating initial conditions for ensemble forecasting (e.g.
Houtekamer et al., 2009). It has also been shown to improve
tropical cyclone track forecasting within a global forecasting
model (Hamill et al., 2011) and can be used for hurricane
predictability research also (e.g. Sippel and Zhang, 2010;
Zhang, 2011).

Previous studies have demonstrated that EnKF is a
powerful tool for assimilating radar data, including radial
velocity and reflectivity for convective thunderstorms
(Dowell et al., 2004; Zhang et al., 2004; Tong and Xue, 2005;
Xue et al., 2006; Aksoy et al., 2009). For tropical cyclones,
Zhang et al. (2009) assimilated radar radial velocity data
from coastal weather radars for hurricane Humberto (2007).
Using EnKF, the hurricane’s position and intensity were
accurately analyzed and deterministic forecasts resulting
from the ensemble mean analyses showed improvement
in track and intensity over both operational forecasts and
forecasts initialized with a 3D-Var scheme. Most recently,
Li et al. ( 2012) applied an ensemble-3D-Var hybrid method
to assimilate radial velocity data from two coastal radars,
and demonstrated the advantage of using ensemble-derived
flow-dependent covariance over static 3D-Var covariance
for hurricane initialization.

The assimilation of reflectivity data has produced positive
impacts on hurricane forecasts within 3D-Var frameworks
(Xiao et al., 2007; Zhao and Jin, 2008; Zhao and Xue, 2009),
but so far reflectivity data have not been assimilated using
EnKF for tropical storms according to our knowledge. Even
within 3D-Var frameworks, reflectivity has been assimilated
by assuming a warm-rain process only (Xiao et al., 2007),
or utilizing a post-3D-Var adjustment procedure (Zhao
and Jin, 2008), or using a separate complex cloud analysis
package (Zhao and Xue, 2009); these practices indicate
difficulties with direct assimilation of reflectivity data
using 3D-Var. We note here that even for continental
convection where most of the EnKF radar data assimilation
research has occurred, the assimilation of reflectivity data
using EnKF is also still an active topic for research (e.g.
Dowell et al., 2011). There are more uncertainties with the
reflectivity observation operators due to the involvement of
microphysics size distributions, etc., and the nonlinearity
of the operators poses additional challenges (Jung et al.,
2008, 2010). Effective assimilation of reflectivity data
usually requires reliable cross-variable covariances among
state variables, including those of microphysical species
while microphysics parametrization errors may significantly
affect the reliability of covariance and filter performance
(Snook et al., 2011; Jung et al., 2012).

This study attempts to investigate for the first time
the assimilation of radar radial velocity and reflectivity
observations with EnKF for a hurricane, either at the same
time or individually. One of the variants of EnKF, the serial
ensemble square root filter (EnSRF; Whitaker and Hamill,
2002) that has been used extensively for thunderstorm
radar assimilation, is used in this study. Extending previous
research, this study also investigates the impact of EnKF
assimilation of radar data on quantitative precipitation
forecasting (QPF) for a hurricane.

The rest of this article is organized as follows. Section
2 briefly introduces the Hurricane Ike case, the forecast
model, radar observations, EnKF algorithm and experiment
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Figure 1. The physical domain of the numerical simulation, the best
track (denoted by black dots) and radar coverage for Ike. The positions
of two radars are denoted by rectangles. The range circles of the
Houston–Galveston, Texas (KHGX) and Lake Charles, Louisiana (KLCH)
radars are for a maximum of 460 km. The best track starts from 0300 UTC
September 13 to 0000 UTC September 14, plotted every 3 h.

set-up. Ensemble spreads and innovation statistics during
the analysis cycles are discussed in section 3. Section 4
discusses the impact of radar data on the deterministic
forecasts of intensity, track and precipitation while ensemble
forecasting results are shown in section 5. Section 6 examines
the sensitivity to DA intervals and the use of single radars. A
summary is given in section 7.

2. Hurricane Ike (2008), prediction model, observations
and data assimilation experiment setting

2.1. Hurricane Ike (2008)

Hurricane Ike (2008) was the most intense hurricane during
the 2008 Atlantic hurricane season, reaching category 4
over the western Atlantic before making landfall over Cuba
at category 3. It made landfall along the US coast near
Galveston, Texas at 0700 UTC 13 September as a category
2 hurricane. After the first landfall over Galveston, Ike
passed over San Leon, Texas and made its final landfall near
Baytown, Texas around 0900 UTC. At and after landfall, Ike
took a northwest, north, then northeast path (Figure 1) and
weakened to a tropical storm around 1800 UTC September
13 in eastern Texas. Over its inland path, Ike brought heavy
precipitation and damages to 11 US states, making it the
third costliest hurricane in US history, only after Hurricane
Katrina (2005) and Hurricane Andrew (1992). This study
investigates the impact of assimilating radar reflectivity and
radial velocity data from two coastal WSR-88D radars using
EnKF.

2.2. The prediction model

The advanced regional prediction system (ARPS; Xue et al.,
2000, 2001, 2003) is used in this study as the prediction
model. The prognostic state variables associated with the
ARPS options used include velocity components u, v and

w, potential temperature θ , pressure p, turbulence kinetic
energy (TKE), water vapour mixing ratio qv, and the
mixing ratios of cloud water, rainwater, ice, snow and
hail (qc, qr, qi, qs and qh, respectively). A 515× 515 × 53
grid with a horizontal resolution of 4 km defines the whole
physical domain of 2048× 2048 × 25 km3 (Figure 1).
Mean vertical grid spacing is 500 m, with a vertical grid
stretching scheme that has a grid spacing of 50 m at
the surface, yielding 14 model levels within the lowest
1 km. The lowest model level for scalar variables and
horizontal wind components is at 25 m above surface.
The Lin et al. (1983) three-ice microphysical scheme is used.
Subgrid-scale turbulence mixing is handled by the 1.5-order
TKE-based turbulence parametrization after Deardorff
(1980). while within the convective planetary boundary
layer (PBL) a non-local vertical mixing length is used based
on Sun and Chang (1986). The PBL scheme was tested
initially in Xue et al. (1996) for ARPS. The surface fluxes
are parametrized using stability and roughness-length-
dependent formulations based on Businger et al. (1971)
and Deardorff (1972), and over the ocean the roughness
length is wind-speed dependent (Donelan et al., 1993). An
alternative formulation for the drag coefficient for high-
wind conditions based on more recent observational studies
(Powell et al., 2003; Donelan et al., 2004) was also tested but
the results were found to be insensitive to the particular
formulation for the case.

Other physics parametrizations include the National
Aeronautics and Space Administration (NASA) Goddard
Space Flight Center (GSFC) long- and short-wave radiation
parametrizations, a two-layer force-restore soil-vegetation
model (Ren and Xue, 2004) initialized with the National
Centers for Environmental Prediction (NCEP) global
forecast system (GFS) land-surface model state. Fourth-
order momentum advection is used in both the horizontal
and vertical. A second-order monotonic flux-corrected
transport (FCT) scheme (Zalesak, 1979) is applied to
potential temperature, water variables and TKE. Details
on these physics and computational options can be found
in Xue et al. (1995) and Xue et al. (2001, 2003).

2.3. Radar observations, quality control and observation
operators

Coastal WSR-88D radars at Houston–Galveston, Texas
(KHGX) and Lake Charles, Louisiana (KLCH) provided
the coverage for Ike when it approached the Texas coast
(Figure 1). Reflectivity (Z) and radial velocity (Vr) data
from these two radars are assimilated with observation
error standard deviations specified as 2 dBZ and 1 m s−1,
respectively. For the quality control, level-II Z data are
processed with the 88d2arps program in the ARPS system
(Brewster et al., 2005) to remove ground clutter, speckles
and other artefacts. The level-II Vr data are manually
quality-controlled for each elevation using interactive SOLO
software (Oye et al., 1995) available from the National
Center for Atmospheric Research (NCAR) to ensure correct
velocity de-aliasing.

After quality control, the radar data on the scan elevations
are bilinearly interpolated to the ARPS scalar variable
column locations but kept on the radar elevation levels.
Since the range resolution of the level-II data (250 m for
radial velocity and 1 km for reflectivity) is much higher than
the model grid spacing of 4 km, only the data surrounding the
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model columns are used in the interpolation; this procedure
represents a form of data thinning. During the assimilation
period, volume coverage patterns (VCP) modes 12 and 121
were employed by KHGX and KLCH, respectively, providing
a dense vertical coverage for lower elevation angles. No
vertical interpolations are performed for the observations,
i.e. the data are kept on the elevation levels and assimilated
directly. All data within a 5 min scan volume closest to
the analysis time are assumed to be valid at the analysis
time. Negative reflectivity values are set to zero and still
assimilated, mainly for the purpose of suppressing possible
spurious convection. The radial velocity data are assimilated
only where observed Z is larger than 10 dBZ. These are
consistent with recommendations of Tong and Xue (2005).

The forward observation operator for Vr data is based
on the formula of Tong and Xue (2008), that includes the
hydrometeor terminal velocities. The reflectivity formula of
Tong and Xue (2008) is used, which calculates the model
version of reflectivity in dBZ from the mixing ratios of rain,
snow and hail. A transition zone from dry to wet hail is
defined in the −2.5◦ to 2.5◦ C temperature layer. Because
the observations are at the radar elevations, a vertical beam
pattern weighting function using a Gaussian power-gain
function is used to bring the grid point values of radial
velocity and reflectivity to the elevation levels, as described
in Xue et al. (2006). This weighting function allows the data
on the elevation levels to directly impact grid levels within
the radar beam width, while other levels within the vertical
localization radius can be updated by the filter through
spatial covariances.

2.4. EnKF experiments and settings

A baseline control forecast without radar DA (CNTL) is
run from 0600 UTC 13 September, initialized with NCEP
GFS analysis valid at the same time (Table 1). In all other
experiments with EnKF radar DA, the forecast ensemble is
created by adding mesoscale and convective perturbations
in two steps. In the first step, a single 4 h forecast is run from
1800 UTC September 12 GFS analysis interpolated to the
4 km model grid, and mesoscale perturbations are added to
the forecast at 2200 UTC in the entire model domain to create
an initial ensemble of 32 members. These perturbations
are created by smoothing Gaussian random perturbations
with zero mean using a two-dimensional recursive filter
(Purser et al., 2003), with a horizontal decorrelation scale
of 100 km (see, e.g. Huang, 2000; Jung et al., 2012). The
perturbations are scaled to have standard deviations of
2 m s−1 for u and v, 1 K for θ and 1 hPa for p. For qv,
the relative standard derivation is 10% of the unperturbed
value, to avoid excessively large absolute perturbations at the
upper levels. Other state variables are not perturbed in this
step. Six-hour-long ensemble forecasts are first carried out
from these perturbed initial conditions to develop evolved
background error covariance, which hopefully samples the
mesoscale environmental uncertainties.

In the second step, at 0400 UTC 13 September, another set
of convective-scale perturbations with a smaller horizontal
decorrelation scale of 12 km and a vertical decorrelation
scale of 4 km is added to the ensemble forecast fields,
but only in regions where observed Z exceeds 10 dBZ.
These perturbations are created by applying a fifth-order-
correlation smoothing function after Tong and Xue (2008).
Their standard deviations are 2 m s−1 for the wind

components, 2 K for θ , 10% for qv, and 1 g kg−1 for
all microphysical variables. The above spatial scales and
magnitudes of perturbations were found to yield the best
results through many assimilation experiments.

The lateral boundary conditions are from the 6 h
operational GFS analyses and 3 h forecasts in between,
available on the 0.5◦ grid. They are also perturbed
by adding mesoscale perturbations. Within ARPS, linear
time interpolations are performed between the boundary
condition times.

Our first set of three DA experiments, ExpVr, ExpZ and
ExpAll (also called Exp10Min), employs 10 min assimilation
cycles. They assimilate Vr alone, Z alone and both Vr and Z,
respectively (Table 1). In these experiments, the first EnKF
analysis of radar data occurs at 0410 UTC, 10 min after
the convective-scale perturbations are introduced into the
forecast ensemble, and the assimilation cycles end at 0600
UTC 13 September, around 1 h before the landfall. Two
additional experiments, named Exp30Min and Exp60Min
(Table 1), are the same as ExpAll but assimilate the data
every 30 and 60 min, respectively. In two more experiments,
ExpKHGX and ExpKLCH, instead of using data from both
radars, a single radar is used: KHGX or KLCH, respectively.
At the end of the assimilation window, at 0600 UTC, an 18 h
long deterministic forecast and an ensemble of forecasts are
run until 0000 UTC 14 September. The DA experiments
and no-radar control experiment CNTL are illustrated in
Figure 2.

To reduce sampling error caused by the small ensemble
and to account for inevitable model error, prior multi-
plicative covariance inflation of 5% (Tong and Xue, 2005;
Xue et al., 2006) before each analysis and posterior addi-
tive inflation after each analysis are applied at the model
points within the influence range of available radar obser-
vations. The multiplicative inflation is applied to all 11 state
variables. The additive noise has a Gaussian distribution
with zero mean and the standard deviations are 1 m s−1

for u, v and w, and 1 K for θ . The additive noise has a
horizontal decorrelation scale of 9 km and a vertical scale
of 4 km, achieved by applying the fifth-order filters (Tong
and Xue, 2008). Whitaker and Hamill (2010) found that
the best result is obtained with the combination of mul-
tiplicative and ‘evolved’ additive inflations in their global
model study, while Dowell and Wicker (2009) documented
benefit of additive noise for thunderstorm analysis. For all
of our experiments, a covariance localization to alleviate the
negative impacts of noisy remote covariance has cut off radii
of 12 km in the horizontal and 4 km in the vertical. The
inflation and localization parameters were chosen based on
a number of sensitivity experiments; so were the magnitudes
of the initial and additive perturbations.

In our earlier sensitivity experiments, it was found that
using reflectivity to update the wind, potential temperature
and water vapour mixing ratio had a negative impact on the
hurricane intensity analysis. Hence, in our EnKF algorithm,
the reflectivity data are used to update only pressure and
microphysical variables, qc, qi, qr, qs and qh. The radial
velocity data update all of the 11 state variables, i.e. u, v, and
w, θ , p, qv, and all microphysical variables. The updating
of non-velocity variables is achieved through the flow-
dependent cross-covariance derived from the ensemble.
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Table 1. Summary of experiments with no radar data assimilation, and with radar data assimilation using different observation types, assimilation
intervals or the number of radars.

Experiment Observations assimilated Radar assimilation interval (min) Single or both radars

CNTL No radar DA NA NA
ExpVr Vr 10 Both
ExpZ Z 10 Both
ExpAll (Exp10Min) Vr +Z 10 Both
Exp30Min Vr +Z 30 Both
Exp60Min Vr +Z 60 Both
ExpKHGX Vr +Z 10 KHGX only
ExpKLCH Vr +Z 10 KLCH only

GFS forecast as IC

GFS analysis as IC

Meso-scale perturbations Covective-scale perturbations

2200UTC 0912 0400UTC 0913

0600UTC 0913 0000UTC 0914

ExpVr, ExpZ
ExpAll

Exp30Min

Exp60Min

CNTL

Figure 2. The data assimilation and control simulation (CNTL) schemes. From the top: 10 min assimilation interval, 30 min assimilation interval, 60 min
assimilation interval and CNTL simulation. The vertical arrows denote the assimilation of radar observations. The tilted arrows denote the addition of
perturbations to generate the initial ensemble members.

3. Ensemble spread, observation innovation statistics
and analysis increments

The EnKF relies on a sufficiently accurate estimate of the
background error covariance to update the state variables in
a dynamically consistent way. Due to sampling error and the
lack of explicit representation of model errors, the forecast
ensemble tends to be underdispersive. Maintaining adequate
ensemble spread is necessary to prevent filter divergence. An
examination of the spread of the state variables in the
precipitation region during the analysis cycles of ExpAll
(Figure 3) reveals that spread reductions occur with each
EnKF analysis for all state variables (even for pressure that
is not directly observed), with larger reductions during the
first few cycles and stabilizing in later cycles. Despite the
gradual reduction of the forecast spread in the subsequent
cycles, the standard deviations from the ensemble members
are maintained at levels between 2.5 and 3 m s−1 for u and
v, between 0.06 and 0.14 g kg−1 for qc, and between 0.3 and
0.35 hPa for pressure. These errors are at a level expected of
good quality analyses, and their maintenance was helped by
the multiplicative and additive inflations applied.

The observation innovations, or the r.m.s. differences
between the observations and the model states in the
observation space, measure how well the model state fits the
observations. It is typically denoted as y− H(x) where y is the
observation vector, x the state vector and H the observation
operator. The r.m.s. innovations of ExpVr, ExpZ and ExpAll
averaged in the precipitation region are shown in Figure 4 for

the analyses and background forecasts. With respect to both
radars, the r.m.s. innovations of Vr have the largest reduction
in the first two assimilation cycles in both ExpVr and ExpAll.
In these two experiments, after 10 to 20 min of forecast and
analysis, the innovation reductions remain and continue
until the end of the analysis cycles. At the end, the r.m.s.
innovations of Vr are 2 to 6 m s−1, which are much smaller
than the initial values of about 10 m s−1. This indicates that
both the forecast and the analysis states are largely improved
by the EnKF DA in terms of their fit to radar observations.
In ExpZ, the assimilation of reflectivity does not update
model wind fields but only the microphysical variables. The
hydrometeor variables are involved in the calculation of
terminal velocities and in the Vr observation operator (Tong
and Xue, 2008). Through this connection, the assimilation
of Z actually slightly improves the Vr innovation against
KLCH data (Figure 4(b)). In ExpAll, the reflectivity analysis
improves the microphysics fields and also the covariance
structure. Through better state and covariance estimation,
Vr in ExpAll is able to improve Vr analysis more than in
ExpVr, as shown in Figure 4(a) and Figure 4(b). For the
Z innovations in ExpZ and ExpAll, the largest reductions
are in the first cycle. At the end, the r.m.s. innovation of Z
was around 5 dBZ in those two experiments, much smaller
than the initial values of 20 dBZ. The assimilation of Vr data
has very limited direct impact on the model microphysical
fields, as evidenced by the slight innovation increase during
the analysis time. Most of the reduction of Z innovation in
ExpVr is through the model forecast adjustment during the
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Figure 3. Time evolution of ensemble forecast and analysis spreads, defined as the standard deviations from the ensemble mean, during the EnKF
analysis cycles, spatially averaged in precipitation regions where Z > 10 dBZ, for (a) u, (b) v, (c) cloud water mixing ratio (qc), and (d) pressure (p), from
experiment ExpAll. Those for the background forecast are depicted by solid lines and those for analysis by dashed lines.

first several cycles, after the wind fields are improved by Vr

assimilation.
The analysis and forecast minimum sea-level pressures

(MSLPs) during the assimilation cycles are plotted in
Figure 5 to further examine the impact on the storm
intensity from Vr and Z. The best-track MSLPs are also
plotted for comparison purposes. The MSLP decreases by
about 5 hPa in ExpVr and ExpAll in the first analysis and
the storms continue to strengthen over the next 30 min. The
reduction of MSLP during the forecast is a result of pressure
adjustment to the updated wind fields by Vr data. In the rest
of the assimilation cycles, the centre pressures of ExpVr and
ExpAll are well maintained at around 955 hPa with little
error growth during the forecast. The MSLP of ExpZ changes
little during the analysis before 0540 UTC. During the last
20 min, MSLP decreases by 1–3 hPa in the analysis, probably
benefiting from a better evolved covariance between the
microphysical fields and pressure. The final analyzed centre
pressure of ExpZ is much higher than the best track and
those of ExpVr and ExpAll.

To better understand the behaviour of the radar data
analysis, the increments of horizontal wind components
and pressure in the first and last analysis cycles are plotted
in Figure 6 and Figure 7 at different model levels for
ExpVr, ExpZ and ExpAll. During the first analysis at 0410
UTC, the horizontal wind increments in ExpVr and ExpAll
appear to systematically strengthen the hurricane vortex
in the background, with the increments showing a well-
organized structure of cyclonic circulation at low to high
levels (Figure 6(d), (g), (j), (f), (i) and (l)). At the surface (the
first level above ground), the data coverage from the farther
located KLCH is small due to the upward tilting of radar
beams; this makes the impact come mainly from KHGX
and only part of the vortex is strengthened (Figure 6(a)
and (c)). Above 3 km, the wind increments decrease with
height, probably due to the weaker vortex aloft. The pressure
increments in ExpVr and ExpAll are the largest at the lower
levels, as are the wind increments; this is consistent with the

decreasing vortex intensity with height. The impacts on the
pressure from radial winds are determined by the covariance
between wind and pressure estimated from the ensemble.
For ExpZ, the pressure increments are sporadic and small in
the first analysis, indicating weak correlations between the
microphysical fields and pressure. Note that the winds are
not updated by Z in ExpZ.

At the end of the analysis cycles, the error in the overall
vortex of the background forecast has been greatly reduced
from the previous cycles and the wind increments are
therefore much less organized, indicating that most of the
corrections now correspond to the sub-vortex, convective
scale structures (Figure 7(a), (d), (g), (j), (c), (f), (i) and
(l)). As for ExpZ, there are noticeable low-level pressure
increments at the surface, although highly localized. The net
effect is the reduction of MSLP (Figure 5).

4. Data assimilation impact on the analysis and
deterministic forecast

4.1. Impact on analyzed and forecast hurricane structures

The fields of wind, pressure and temperature from the GFS
analysis and from the final EnKF analyses of ExpZ, ExpVr
and ExpAll at 0600 UTC are shown in Figure 8, at the
1 km height level and in vertical cross-sections through the
individual vortex centre of each experiment. With radar data,
the centre pressure in the DA experiments is clearly lower
than in the GFS analysis (Figure 8(a)–(d)), and the wind
speed is larger, especially in ExpVr and ExpAll. The vertical
cross-sections show that the maximum wind speed is on the
east side of the vortex centre in all cases (Figure 8(e)–(h)).
ExpZ has a maximum wind speed of 51 m s−1 whereas
those of ExpVr and ExpAll are over 59 m s−1, compared
with the 44 m s−1 of GFS analysis. Strong winds exceeding
36 m s−1 are confined to the lowest 3 km in GFS analysis but
extend to 7 km in ExpZ and 10 km in ExpVr and ExpAll;
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Figure 5. Analysis and forecast minimum sea-level pressures during the analysis cycles in ExpVr, ExpZ and ExpAll. The best-track data are linearly
interpolated to 10 min intervals for comparison.

this indicates that deeper vortices are obtained when radar
data are assimilated and Vr data clearly have the most direct
impact on the wind fields analyzed.

Figure 8(i)–(l) show the temperature and vertical velocity
fields in vertical cross-sections. With the assimilation of
reflectivity in ExpZ, a stronger warm core is established at
the low to mid-levels (Figure 8(j)) compared with that in GFS
analysis (Figure 8(i)), and the warm core is even stronger in
ExpVr and ExpAll. Weak updrafts of generally less than 1 m
s−1 are found in ExpZ on both sides of the vortex centre near
the radius of maximum wind, while vertical velocity that can
be derived from GFS analysis is much weaker (not shown).
In ExpVr and ExpAll, the vertical velocity is stronger and
has more structures than in ExpZ, apparently due to the
additional flow information introduced by the Vr data. A
deep updraft of more than 2.2 m s−1 is found in ExpAll near
x = 1280 km, and such updrafts are usually associated with
rain bands (see Figure 7). Clearly, the assimilation of radar

observations builds a stronger, tighter and deeper vortex
with a warm core that is more consistent with the observed
hurricane intensity.

The single east–west cross-section through the vortex
centre may not be very representative of the whole vortex.
Azimuthally averaged radius-height wind and temperature
fields at 0600 UTC are plotted in Figure 9. Compared with
CNTL, horizontal winds are stronger in ExpZ with the
maximum value exceeding 36 m s−1. The maximum winds
at low levels are over 48 m s−1 in ExpVr and ExpAll. Regions
with wind speed exceeding 30 m s−1 extend to 10 km height
in ExpVr and ExpAll, deeper than the 9 km in CNTL and
ExpZ. Large horizontal gradients of wind speed are built
up around the vortex centre in ExpVr and ExpAll. The
regions of strong wind exceeding 36 m s−1 extend to 180 km
from the vortex centre in ExpVr and ExpAll. The warm
core of ExpZ is slightly deeper than that of CNTL, while
ExpVr and ExpAll have even stronger and deeper warm
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Figure 6. Horizontal wind (vectors) and pressure increments (contours at intervals of 50 Pa) at (a)–(c) the surface, (d)–(f) z = 3 km, (g)–(i) z = 6 km
and (j)–(l) z = 9 km, from the first analysis cycle at 0410 UTC 12 August 2008, from ExpVr ((a), (d), (g) and (j)), ExpZ ((b), (e), (h) and (k)), and ExpAll
((c), (f), (i) and (l)). Radars are denoted by the black dots in (a).

cores (Figure 9(e)–(h)). The updraft regions in ExpVr and
ExpAll are also deeper and stronger than in ExpZ, with
the updrafts centred at roughly 50, 100 and 150 km from
the centre, respectively. In general, the vortex is stronger in
ExpZ than in CNTL, while the vortices in ExpVr and ExpAll
are the strongest and deepest. Note that part of the predicted
vortex is over land and asymmetries develop in the vortex as
a result (Figure 8(e)–(h)). The differences among various
experiments are probably larger on the east side of the vortex
than those between azimuthally averaged fields.

The analyzed and forecast composite reflectivity and
horizontal wind vectors at the 3 km height are presented
in Figure 10 for CNTL, ExpVr, ExpZ and ExpAll, together
with the observed composite reflectivity (OBS). Stronger
and tighter inner core circulations are found in the final
analyses of all DA experiments, compared with that in the
GFS analysis (Figure 10(a)–(e)). The reflectivity field in
ExpVr shows broader and stronger precipitation bands than
observations (Figure 10(c)) while the GFS analysis contains
no hydrometeor field (Figure 10(b)). ExpAll and ExpZ have
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Figure 7. As Figure 6 but for the last analysis cycle at 0600 UTC 13 August 2008.

similar rainband structures and are closer to the observations
than ExpVr (Figure 10(d)–(e)). These differences are also
reflected in the r.m.s. innovations of Z at this time (Figure 4),
where, for both radars, the r.m.s. innovation of Z is about
15 dBZ in ExpVr and only about 5 dBZ in ExpAll and ExpZ.
This is not surprising because Z is directly assimilated in
ExpAll and ExpZ.

At the 6 h forecast time, the observed centre of Ike is
over land north of Houston. Generally, all experiments
with radar DA have a more tightly wrapped rain-band
structure that compares better with observations than in

CNTL (Figure 10(f)–(j)). The spiral rain-band northwest of
the vortex centre in CNTL is too strong (Figure 10(g)).

By 1800 UTC or 12 h into the forecast, Ike has
moved further inland and a more asymmetric structure
with stronger precipitation in the northwest and southeast
quadrants is seen in the observation (Figure 10(k)). A more
elongated precipitation pattern is exhibited by CNTL with
a clear-air hole at the vortex centre that is not observed
(Figure 10(l)). With radar data, the precipitation patterns
are closer to the observations, with the vortex centre filled
with weak precipitation (Figure 10(m)–(o)). Among the
radar DA experiments, ExpZ has a precipitation pattern that
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Figure 8. (Top panels) The horizontal wind (vectors) and pressure (contours at intervals of 20 Pa) at 1 km height and 0600 UTC from (a) the GFS
analysis, and analyses of (b) ExpZ, (c) ExpVr and (d) ExpAll. (Middle panels) The east–west cross-section of horizontal wind speed through the vortex
centre of each experiment (indicated by the black lines in (a)–(d)) for the analyses of GFS, ExpZ, ExpVr and ExpAll, respectively. (Lower panel) The
same east–west cross-section for temperature (contours) and vertical velocity (shaded contours) for the four corresponding cases.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Radius-height plots of azimuthal mean horizontal velocity fields (a)–(d), vertical velocity (shaded contours in (e)–( h)) and temperature
(contours in (e)–(h)) at 0600 UTC for (a, e) CNTL, (b, f) ExpZ, (c, g) ExpVr and (d, h) ExpAll.
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Figure 10. Composite reflectivity (colour shaded) and wind vectors at 3 km height analyzed and predicted by experiments ((b), (g), (l) and (q)) CNTL,
((c), (h), (m) and (r)) ExpVr, ((d), (i), (n) and (s)) ExpZ, and ((e), (j), (o) and (t)) ExpAll, as compared with ((a), (f), (k) and (p)) corresponding
observations. The times shown are 0600, 1200, 1800 UTC 13 September and 0000 UTC 14 September 2008, for the four rows from top to bottom.

appears closest to the observations (Figure 10(n)). At this
time, all forecasts show a rain band oriented southwest to
northeast through Oklahoma that is apparently the result
of interaction between the hurricane circulation and a mid-
latitude cold front. This rain band, however, is overpredicted
in the model compared with the observations.

At the final forecast time of 0000 UTC 14 September,
the strongest precipitation is now mostly north of Texas.
The interaction with the cold front to the north and
the moisture transport from the Gulf of Mexico leads to
rainfall in Oklahoma and Arkansas and a more asymmetric
precipitation pattern around the vortex centre overall
(Figure 10(p)). CNTL still exhibits a precipitation-free hole
in the vortex centre (Figure 10(q)) while the vortex centres in
ExpZ and ExpAll are filled with precipitation (Figure 10(s)
and Figure 10(t)). The overall precipitation patterns in
the radar-assimilating experiments are arguably closer to
the radar observations at this time, especially in the outer
precipitation region in northeast Oklahoma and southwest

Kansas. Quantitative verifications of precipitation will be
given later.

4.2. Intensity and track forecasting

The MSLPs every 3 h during the 18 h long forecasts from
all experiments are plotted in Figure 11(a), along with the
best-track MSLP from the National Hurricane Center. All
radar DA experiments show clear improvement compared
with CNTL during the first 12 h of forecast for intensity
based on MSLP. The analyzed MSLPs of about 955 hPa in
ExpVr and ExpAll (with two curves almost overlapping)
at 0600 UTC are much lower than the 975 hPa of CNTL,
although still somewhat higher than the best-track value of
951 hPa. Assimilation of Z alone leads to a much smaller
improvement of 8 hPa over CNTL, yielding a weaker vortex
than when assimilating Vr or both Vr and Z. The analysis
intensity improvement over CNTL is about 83% for ExpVr
and ExpAll and about 33% for ExpZ in terms of MSLP error
reduction, defined as (ErrorCNTL - ErrorDA)/ErrorCNTL. It is
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Figure 11. (a) The predicted minimum sea-level pressures and (b) maximum surface wind speed for Hurricane Ike, plotted every 3 h from 0600 UTC
13 September to 0000 UTC 14 September, compared with the best-track values ( OBS).

noted that for convenience the term ‘error’ is used here to
describe the difference between the model results and the
best-track data, even though the latter typically also contain
error.

The MSLP in CNTL of about 975 hPa is too high and does
not change much during the first 12 h of the forecast, while
the observed hurricane starts at about 951 hPa MSLP and
continues to weaken until 2100 UTC, due to landfall shortly
after 0600 UTC. ExpVr and ExpAll capture the pressure
rise at rates similar to the best-track data before 1500 UTC,
but their rate of rise is slower than observed between 1500
and 2100 UTC. This discrepancy might have been caused
by prediction model error, such as in the treatment of
surface processes responsible for the vortex spin down. The
slower spin down resulted in a lower MSLP after 1800 UTC
than observed. A similar behaviour was also observed in
the study of Zhao and Xue (2009), which used the ARPS
3D-Var and cloud analysis system to assimilate radar data
for the same case. Figure 11 also shows that the assimilation
of reflectivity data in addition to radial velocity in ExpAll
did little to MSLP, with differences between the analysis
and forecast MSLPs of ExpAll and ExpVr being generally
less than 0.5 hPa. Comparing further with the results of
ExpZ shows clearly that the assimilation of Vr data provides
most of the impact on MSLP analysis and forecasting. This
result is different from that of Zhao and Xue (2009) where

adjustments to temperature and moisture fields through a
complex cloud analysis package can greatly affect MSLP.

The predicted maximum surface wind speeds are also
plotted in Figure 11(b), along with the best-track data for
comparison. The maximum surface winds of ExpVr and
ExpAll at 0600 UTC are clearly higher than that from GFS
analysis (CNTL). Even though the vortex in ExpZ is clearly
stronger than that in CNTL, as indicated by the azimuthally
averaged wind fields (Figure 9(a) and (b)), the maximum
surface wind in ExpZ is slightly weaker than in CNTL.
During the forecast, the maximum surface winds of all
simulations are closer to each other and weaker than the
best track.

The predicted tracks and track errors are plotted in
Figure 12, along with the best track (OBS). Starting from
a quite small initial track error of 7 km, CNTL takes the
westernmost path during the 18 h long forecast, which is
the furthest from the observed track among all experiments.
Its error increases with forecast time and reaches 80 km at
0000 UTC 14 September (Figure 12(b)). With radar DA,
the track errors in the final analyses at 0600 UTC are all
larger than in CNTL. These larger errors are partly related
to the way the centre location is determined. The initial
centre location is determined from the mean pressure of
the 32-member ensemble. After the averaging, the mean
pressure field shows a somewhat elongated vortex, creating
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Figure 12. (a) The predicted track for Hurricane Ike, plotted every 3 h from
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best track (OBS). (b) The predicted track error for Hurricane Ike, plotted
every 3 h from 0600 UTC 13 September to 0000 UTC 14 September. To
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the east-west direction ( latitude).

some difficulty in determining the exact location of the
vortex centre. For ExpAll, averaging the centre locations of
individual members results in a mean centre location that is
10 km closer (see Figure 16(a)).

In the first 3 h of forecast, the hurricane in CNTL moves
slower than in all DA experiments. At 0900 UTC after the
landfall, the predicted tracks in all DA experiments are closer
to the best track than in CNTL, with the track errors all being
less than 20 km (Figure 12(b)) while those of ExpVr and
ExpAll are less than 10 km. From 1200 to 2100 UTC, the
observed hurricane took a mostly northward path toward
Tyler, Texas (32.3◦ N, 95.3◦ W). The ExpZ experiment
captures this northward direction very well during these
9 h but with a westward displacement of 15 to 18 km.
Both ExpVr and ExpAll have very small track errors of less
than 5 km at 1200 UTC but take a more westward curved
path than ExpZ between 1200 and 2100 UTC. All three DA
experiments have southward displacement error of about
27 km at 0000 UTC September 14, the end of the 18 h
forecast. Although ExpZ has a larger mean track error of
18 km compared with ExpVr and ExpAll (Figure 12(b)), it
is encouraging to see that assimilating Z alone still results
in 56% improvement on average compared with CNTL in
track forecasting.

Pu et al. (2009) observed a marginal improvement
of the Hurricane Dennis (2005) intensity forecast when
assimilating reflectivity data alone using the WRF 3D-Var
(Xiao et al., 2007). They also found that the impact from
reflectivity data alone on intensity forecast is smaller than
assimilating radial velocity data alone or assimilating both

radial velocity and reflectivity data. They attributed part of
this to the small impact of reflectivity data on the track
forecast. In our case, the hurricane centre in the analysis of
ExpZ at 0600 UTC is too far north near the coast, and the
larger position error than in ExpVr and ExpAll continued
until 1500 UTC (Figure 12(a) and (b)), but the error is still
much smaller than in CNTL.

In our case, the assimilation of radial velocity clearly
has a larger impact on intensity than assimilating Z alone.
This may not be surprising because hurricanes are wind-
dominated systems; radial velocity data from two Doppler
radars can measure the wind structures within the hurricanes
quite well, while EnKF updates pressure and thermodynamic
fields through cross covariances and through dynamic
mass-wind adjustment during the assimilation cycles. The
reflectivity data are directly linked to the microphysical
fields, while the correlations between reflectivity and wind
fields, as estimated from the ensemble, may be less certain.
In fact, updating the latter variables in the EnKF degrades the
analysis, as pointed out in section 2.4, and is therefore not
performed in the experiments presented here. More effective
assimilation of reflectivity data using EnKF, especially for
tropical storms, will require more research.

4.3. Precipitation forecasting

Flooding from local precipitation and the storm surge caused
by Ike was one of the major causes of death and property
loss, highlighting the importance of QPF for landfalling
hurricanes (Rogers et al., 2009). Figure 13 shows the 18 h
accumulated precipitation for all experiments along with
the stage IV precipitation data (Lin and Mitchell, 2005).
The observed rainfall maximum is positioned around
Huntsville (30.7◦ N, 95.55◦ W) and Conroe (30.3◦ N,
95.45◦ W), Texas, north of Houston (Figure 13(a)). The
CNTL experiment fails to predict this maximum completely
(Figure 13(b)). Assimilation of radar data in ExpVr, ExpZ
and ExpAll helps to capture this intense precipitation area,
although the strength and coverage are underpredicted
(Figure 13(c)–(e)). For lighter or stratiform precipitation it
is not easy to tell which experiment has a better prediction.

To quantify the precipitation forecast skills, equitable
threat scores (ETS hereafter; Schaefer, 1990) against the
stage IV data for 3 h accumulated precipitation are calculated
and plotted for all experiments in Figure 14. A threshold
of 30 mm is chosen to represent convective rainfall. In the
first 6 h of forecast, all experiments with radar data have
higher ETS scores than CNTL. From 1200 UTC to 1800
UTC, the score is still higher in ExpZ while those of ExpAll
and ExpVr become close to that of CNTL. There are ETS
increases for ExpAll and ExpVr from 1800 to 2100 UTC.
The track error reductions in ExpVr and ExpAll during this
period may have contributed to the ETS increase. At the end
of forecasts, ETSs of all the experiments are below 0.1, partly
due to the shrinking area of convective precipitation at this
time; in such a case, small position errors with convective
cores can lead to very low scores. The ETS is also generally
lower for smaller fractional coverage.

The ETS of 18 h accumulated precipitation is also
calculated (Figure 15) for four thresholds ranging from
30 mm to 120 mm. Lower (higher) thresholds represent
precipitation of more stratiform (convective) nature. For all
the thresholds, radar DA clearly helps improve QPF. The
relative improvement is larger for larger thresholds, implying
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Figure 14. Equitable threat scores (ETS) of 3 h accumulated precipitation at the 30 mm threshold for CNTL, ExpVr, ExpZ and ExpAll.

more impact of the radar data on convective precipitation.
For the 120 mm threshold, the improvements of the three
radar DA experiments are all about 300% relative to CNTL,
or the ETSs are about four times that of CNTL. It should
be noted that storm track plays an important role in the
precipitation forecast. In our study, the effect of track error
is not separated from the precipitation pattern error. Future
work can look into this important aspect (Marchok et al.,
2007).

5. Ensemble forecasts

5.1. Ensemble forecasts of intensity and track

The EnKF DA provides an ensemble of analyses that can
be used to initialize an ensemble of forecasts. Ensemble
forecasts of 32 members are carried out from the final
analyses of ExpAll at 0600 UTC. At this time, the ensemble
spread of MSLP is 0.7 hPa, rather small compared with the
intensity error of 4 hPa (not shown). This may be because
of the large number of radar observations constraining
the vortex intensity rather strongly, and/or because of
the relatively small forecast spread growth during the
assimilation period due to the lack of synoptic to large-
scale uncertainties in the hurricane environment in our

experiments and the relatively short forecast lengths during
the analysis cycles.

During the later forecast, the intensity spread does not
increase much with time; this is at least partly because Ike is
in its weakening stage. Other studies have also found that the
intensity error growth of a decaying hurricane is not as large
as intensifying hurricanes and the ensemble spread tends to
decrease with time (see, e.g. figure 12 of Zhang et al., 2009).
The ensemble mean forecast MSLP is similar to that of the
corresponding deterministic forecast.

The ensemble forecast tracks and ensemble track spreads
are plotted in Figure 16. The deterministic forecast track
starting from the ensemble mean analysis and the mean
track of ensemble forecasts are also shown for comparison.
Uncertainty growth is observed in the ensemble track
forecasts (Figure 16(a)). The spread of the ensemble track is
defined as

√√√√ 1

N − 1

N∑
i=1

d2
i , (1)

where N is the ensemble size and di is the distance between
the vortex centres of the ith member and the mean. The track
spread increases during most of the forecast time except for
a temporary reduction in the first 3 h (Figure 16(b)). The
track spread at the end of 18 h forecast is increased by

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 467–487 (2013)



EnKF Assimilation of Radar Data for Hurricane Ike 481

Figure 15. Equitable threat scores (ETSs) of 18 h accumulated precipitation
from 0600 UTC 13 September to 0000 UTC 14 September, at the threshold
of 30 mm, 60 mm, 90 mm and 120 mm for deterministic forecasts of
CNTL, ExpVr, ExpZ and ExpAll, and the ensemble mean forecast and the
probability matched ensemble mean forecast of ExpAll.
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Figure 16. (a) The ensemble forecast tracks for ExpAll (grey), compared
with the best track, CNTL, mean track of ensemble and deterministic track
forecasts. (b) The spread of ensemble tracks for ExpAll.

75% compared with the beginning. As mentioned in section
4.2, the average vortex position of ensemble members is
closer to the best track than that of the ensemble mean
analysis at 0600 UTC. The mean predicted track of the
ensemble members also has certain improvement over the
deterministic forecast at 1500 and 1800 UTC (Figure 16(a)),
suggesting the potential benefit of the mean ensemble
forecast track over the deterministic track forecast.

5.2. Ensemble forecasts of precipitation

Predicted ETSs are also calculated for each ensemble member
of ExpAll (Figure 17). At most forecast times, most of the
ensemble members have higher scores than CNTL. The ETSs
of the deterministic forecast always fall within the range of
ensemble ETSs during the 18 h of forecast. The ETS of the
ensemble mean is higher than the deterministic forecast at
2100 UTC, and comparable or lower at other forecast hours.

In high-resolution predictions, the precipitation field
tends to have high spatial and temporal variations across
the ensemble members. One problem with the simple
ensemble mean of precipitation is the excessively broad
rainfall areas and rainfall maxima underestimation owing
to the smoothing effect of averaging (Kong et al., 2009).
The simulated radar reflectivity of the ensemble mean
is plotted in Figure 18, compared with the observations
and deterministic forecast. The averaging over ensemble
members leads to a wider region of weak rainfall surrounding
the vortex centre than the deterministic forecast at the
displayed times, while the magnitude of strong reflectivity
is generally too low. In our study, the ETS of 18 h
accumulated rainfall for the ensemble mean is larger than
the corresponding deterministic forecast at the 30 mm and
60 mm thresholds (Figure 15), benefiting from the higher
spatial coverage. At the 90 mm and 120 mm thresholds,
however, the ETSs of the simple ensemble mean are lower
than those of the deterministic forecast (Figure 15); much
of this is due to the excessive smoothing associated with the
ensemble averaging, thereby reducing the area coverage of
heavy precipitation.

Probability matching (PM, hereafter) provides a useful
way to reorganize the precipitation fields among ensemble
members and improve the QPF. Probability matching sets
the probability distribution function (PDF) of the less
accurate dataset to be the same as that of the more accurate
dataset (Ebert, 2001). The PM method in this study follows
Ebert (2001) by assuming that the best spatial distribution of
the rainfall field is represented by the ensemble mean, while
the best frequency distribution is given by the ensemble
QPFs. The PM algorithm first combines the accumulated
precipitation from all the ensemble members on the selected
domain and ranks the precipitation from the greatest to the
smallest to obtain the PDF of the accumulated precipitations.
This ensemble of precipitation is saved as array 1. Similarly,
the precipitation of the ensemble mean over the same
domain is also ranked in highest to the lowest order, saved
as array 2. Then the grid point with the highest value in
array 2 is reassigned to the highest precipitation in array
1, and so on. The grid point with the mth value in array
2 is reassigned to the (N × m)th value in array 1, where
N is the ensemble size. The PM method has been applied
successfully in Clark et al. (2009) and Kong et al. (2009)
for post-processing convective-scale ensemble precipitation
forecasts.

With PM, the 3 h accumulated rainfall ETSs at the 30 mm
threshold have a slight but clear improvement over the
regular ensemble mean for all forecast times (Figure 17).
For the 18 h accumulated precipitation, PM has higher ETS
scores at the 60 mm, 90 mm and 120 mm thresholds than
the regular mean (Figure 15). At the 120 mm threshold,
representing strong rainfalls, the PM processing increases
the simple mean score by about 50%. Among the three
sets of scores for experiment ExpAll, the PM-processed
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Figure 17. Equitable threat scores of 3 h accumulated precipitation at the 30 mm threshold for the ensemble forecasts (grey), the deterministic forecast,
the ensemble mean forecast and the probability matched ensemble mean forecast of ExpAll.
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Figure 18. Composite reflectivity (colour shaded) and wind vectors at 3 km height analyzed and predicted by the deterministic forecast ((b), (f), (j) and
(n)), the ensemble mean forecast ((c), (g), (k) and (o)), and probability matched ensemble mean forecast ((d), (h), (l) and (p)), as compared with ((a),
(e), (i) and (m)) corresponding observations. The times shown are 0600, 1200, 1800 UTC 13 September and 0000 UTC 14 September 2008 for the four
rows, respectively.
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ensemble mean has the best ETS for all four thresholds
except for 120 mm, where the deterministic forecast scores
slightly better than PM. The simulated reflectivity after
PM maintains the widespread weak rainfall regions outside
the vortex while it strengthens precipitation inside the
hurricane (Figure 18). For example, the PM-processed 18 h
forecast reflectivity (Figure 18(p)) appears the closest to
the observation (Figure 18(m)). These results show the
value of an ensemble for hurricane precipitation forecasting,
especially after suitable processing, while EnKF provides a
potentially optimal way for generating initial condition
perturbations that correctly represent analysis uncertainty.

6. Sensitivity experiments

6.1. Sensitivity to assimilation interval

To examine the sensitivity of the hurricane forecast to radar
DA frequency, Z and Vr data are assimilated at 30 and 60 min
intervals in Exp30Min and Exp60Min. These experiments
are otherwise the same as ExpAll. Because of the use of
10 min intervals, ExpAll is also referred to as Exp10Min in
this section (Table 1).

Figure 19 shows that the 60 min interval is not enough
to build up a vortex whose MSLP is close to that of the
10 min case, while the result with 30 min intervals is very
close. The forecast in the 10 min interval case (Exp10Min) is
slightly better in the first 3 h, then becomes very close to that
of Exp30Min. The track forecasts of all three experiments
are similar, with mean track errors of 14 km, 12 km and
14 km for ExpAll (Exp10Min), Exp30Min and Exp60Min,
respectively. The ETSs of the three cases are similar, with
the ETSs of 18 h accumulated precipitation being 0.50, 0.50
and 0.47 for ExpAll (Exp10Min), Exp30Min and Exp60Min
at the 30 mm threshold, and 0.20, 0.20 and 0.21 at the
120 mm threshold, respectively. The results suggest that
the assimilation of radar data over a 2 h period at 30 min
intervals may be enough, in this case at least.

6.2. Sensitivity to single radar assimilation

To investigate how effective data from a single Doppler
radar can be, the observations from single KHGX or KLCH
radar are assimilated separately in ExpKHGX and ExpKLCH
(Table 1). These experiments are otherwise the same as
ExpAll. The analyzed horizontal wind fields at 0600 UTC

at 1 km height are plotted in Figure 20. In ExpKHGX
(Figure 20(b)), the analyzed 1 km wind speed maximum
is larger than in ExpKLCH (Figure 20(c)), with the region
of 48 m s−1 or greater winds being much wider. Such
differences may be due to the fact that the inner core of Ike
is closer to KHGX than KLCH when it approaches the land.
When the observations from both radars are assimilated
in ExpAll (Figure 20(a)), the area of wind speed exceeding
48 m s−1 is larger than in ExpKLCH but still smaller than
in ExpKHGX. On the other hand, the maximum wind at
1 km height is 57.9 m s−1 in ExpAll, slightly stronger than
the 56.2 m s−1 in ExpKHGX and much stronger than the
51.7 m s−1 in ExpKLCH.

Among ExpAll, ExpKHGX and ExpKLCH, experiment
ExpKHGX produced the strongest analyzed vortex at 0600
UTC, in terms of MSLP (Figure 21(a)). The intensity
differences from the best track are 2, 11 and 4 hPa for
ExpKHGX, ExpKLCH and ExpAll, respectively. Throughout
the forecast hours, ExpKHGX maintained the strongest
vortex among the three. ExpKLCH produced the weakest
vortex analysis and forecast, but still much stronger than in
CNTL.

The track forecast of ExpKLCH is closer to the best track
from 1200 to 1800 UTC with a more eastward path than
ExpKHGX and ExpAll (Figure 21(b)). The track error of
ExpKLCH is always the smallest or the second smallest
during the 18 h of forecast. The mean track errors for
ExpKHGX, ExpKLCH and ExpAll are 17, 9 and 14 km,
respectively.

It appears that KLCH has more positive contributions to
the track forecast than KHGX, while KHGX has a larger
positive impact on the intensity forecast than KLCH. As in
some cases the track and intensity forecasts of a hurricane
tend to be more closely linked to the asymmetric and
axisymmetric parts of the circulation, respectively (Emanuel,
1999; Fovell et al., 2010), it is possible that KLCH has a more
positive impact on the asymmetric structure while KHGX
exerts a more positive influence on the axisymmetric part
of circulation. Without a reliable proof, this remains a
hypothesis. In this case, assimilating both radars gives better
intensity forecasts than assimilating KLCH alone and better
track forecasts than assimilating KHGX alone. Considering
that the assimilation of radial velocity data from more than
one radar with different viewing angles generally improves
the analysis of wind fields, the use of data from multiple
Doppler radars is preferred, but the assimilation of data
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Figure 20. The analyzed horizontal wind speed (contours) vectors at z =
1 km for (a) ExpAll, (b) ExpKHGX and (c) ExpKLCH at 0600 UTC 13
September 2008.

from a single radar can also be very beneficial; such results
also indicate the power of the EnKF DA method.

7. Summary and conclusions

The impact of radar data assimilation on the analysis and
forecasting of Hurricane Ike (2008), in terms of intensity,
track and precipitation, is investigated with the cloud-
resolving ARPS model and the ARPS EnKF DA system.
Radial velocity (Vr) and/or reflectivity (Z) observations from
up to two coastal Doppler radars are assimilated within a 2 h
period shortly before Ike’s landfall. The DA intervals of 10,
30 and 60 min are examined, as is the assimilation of data

from each radar alone. The results of DA experiments are
compared to a forecast starting from the NCEP GFS analysis
valid at the end of the DA window. The structures of the
analyzed hurricane vortices from different experiments are
compared, and ETSs for forecast precipitation are calculated.
Ensemble forecasts from the EnKF analyses are produced,
and their forecasts and derived products are compared
with deterministic forecasts and observations. This is the
first attempt to assimilate radar reflectivity directly for a
hurricane (or tropical cyclone) using EnKF, and also the
first time that the precipitation forecasts resulting from
EnKF analyses are directly verified against high-resolution
observations for a hurricane.

With prior multiplicative and posterior additive covari-
ance inflations, the ensemble spread is reasonably well
maintained in our EnKF DA system and large impacts from
the radar observations on the analyzed wind and micro-
physical fields are obtained when measured by observation
innovations. This is true even though the filter is probably
underdispersive at the vortex scale, as indicated by the small
spread in MSLP. The assimilation of radar radial velocity
data in the first one or two cycles clearly strengthens the
hurricane vortex found in the GFS-based background.

In our study, the assimilation of radar observations is
also found to improve the structure, intensity, track and
precipitation forecasts of Ike over the forecast initialized
with the operational GFS analysis directly. Assimilating Vr

leads to a much greater improvement in intensity than
assimilating Z. For track forecast, Vr alone produces a
slightly better forecast than Z alone. Assimilating Z alone
results in a precipitation forecast improvement that lasted
longer than using Vr alone. Assimilating both Vr and Z
has similar results as assimilating Vr alone, indicating a
dominant role of Vr data when analyzed using EnKF for
hurricanes. In our study, reflectivity is used to update
pressure and microphysical variables only due to the negative
impact found on the analysis when updating other variables.
The covariance structure between the reflectivity and those
fields might not have been reliable enough, especially during
the earlier cycles, to allow for direct positive impacts on the
other variables. This is an aspect that will require further
investigation.

The similarity in the track and intensity forecasts when
assimilating radial wind alone and assimilating both radial
wind and reflectivity is also observed by Pu et al. (2009)
in their airborne radar DA study using WRF 3D-Var.
They observed small impacts on hurricane intensity and
track forecasting from reflectivity data. They attributed the
smaller improvement on the intensity forecast partly to a
small impact on their track forecast. They also attributed
the use of warm rain microphysics in their study as a
possible reason. Zhao and Jin (2008) also found a marginal
or negligible impact on the intensity analysis and forecasting
from assimilating reflectivity alone with the US Navy’s
3D-Var system and mesoscale model. Zhao and Xue (2009)
noticed, however, significant improvements from reflectivity
assimilation in Ike intensity forecasts when using the ARPS
3D-Var combined with a complex cloud analysis package
including an ice-microphysics scheme. The adjustment to
the moisture field in the complex cloud analysis procedure
was found to be the most important to the intensity analysis;
without the moisture adjustment, the reflectivity data had
very little impact in their study (Zhao and Xue, 2009).
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Figure 21. (a) The predicted minimum sea-level pressures and (b) the
forecasted track of CNTL, ExpKHGX, ExpKLCH and ExpAll from 0600
UTC 13 September to 0000 UTC 14 September 2008, compared with the
best track.

In our experiments with EnKF, which use the same
forecast model as Zhao and Xue (2009), there is a solid
improvement in track forecast assimilating reflectivity data
alone (as much as assimilating both Z and Vr) but only
a moderate improvement in intensity forecast. Because of
the close involvement with the model microphysics and
uncertainties with the reflectivity observation operators (e.g.
Jung et al., 2010), among other things, the assimilation
of reflectivity data is a more challenging problem than
assimilating radial velocity. As a result, there are few studies
on the impact of radar reflectivity observations in the context
of hurricane forecasts, and more studies are clearly needed
to investigate this topic in more depth.

Ensemble forecasts starting from our EnKF analyses
show some uncertainty growth in track, but not much
growth in intensity. The latter is at least partly due to
the weakening of the hurricane itself during the forecast
period. The simple ensemble mean precipitation forecast is
found to outperform the deterministic forecast for stratiform
precipitation in terms of ETSs. For high precipitation
thresholds, the ensemble mean is worse. The probability
matching technique for ensemble post-processing improves
the ETSs at heavy rainfall thresholds. Overall, the ensemble-
derived probability-matched ETSs are the highest or close
to the highest at all the thresholds evaluated.

The experiment with 30 min assimilation intervals shows
similar results as the 10 min cycles, while assimilating
radar data at 60 min intervals fails to obtain a strong
vortex at the end of the 2 h assimilation window. The
experiment with both coastal radars has a better track
forecast than using the Houston–Galveston, Texas (KHGX)
radar alone and a better intensity forecast than using the
Lake Charles, Louisiana (KLCH) radar alone; these results

indicate advantages of using data from multiple Doppler
radars. The hurricane forecast assimilating data from a
single Doppler radar is also much improved over that
without radar data.

Radar data observe the convective and sub-vortex scales
but their impact on hurricane forecast is necessarily not
limited to a short period of time, especially when the vortex-
scale structure and intensity are improved by the data
assimilation (Zhang et al., 2011). More research efforts are
needed to derive maximum benefit from Doppler radar
observations, including reflectivity data, in the future.
In addition, other observational sources such as surface
observations, soundings, profilers and satellite observations
are expected to help improve the larger scale environment
and improve the forecast at longer ranges. Combining all
available sources of data should be the direction of future
efforts. We do realize that the results obtained in this study
can be case or data assimilation system dependent. Some
related discussions have been provided, and other published
studies are referred to. Future research should test such
impacts for many cases to obtain statistically robust results
and our effort in this article represents a step in that direction.
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