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Abstract 

This study assesses forecasts of the pre-convective and near-storm environments from the 

convection-allowing models run for the 2008 National Oceanic and Atmospheric Administration 

(NOAA)/Hazardous Weather Testbed (HWT) Spring Experiment.  Evaluating the performance 

of convection-allowing models (CAMs) is important for encouraging their appropriate use and 

development for both research and operations.  Systematic errors in the CAM forecasts included 

a cold bias in mean 2-m and 850-hPa temperatures over most of the United States and smaller 

than observed vertical wind shear and 850-hPa moisture over the High Plains.  The placement of 

airmass boundaries was similar in forecasts from the CAMs and the operational North American 

Mesoscale (NAM) model that provided the initial and boundary conditions.  This 

correspondence contributed to similar characteristics for spatial and temporal mean error 

patterns.  However, substantial errors were found in the CAM forecasts away from airmass 

boundaries.  The result is that the deterministic CAMs do not predict the environment as well as 

the NAM.  It is suggested that parameterized processes used at convection-allowing grid length, 

particularly in the boundary layer, may be contributing to these errors. 

 It is also shown that mean forecasts from an ensemble of CAMs were substantially more 

accurate than forecasts from deterministic CAMs.  If the improvement seen in the CAM 

forecasts when going from a deterministic framework to an ensemble framework is comparable 

to improvements in mesoscale model forecasts when going from a deterministic to an ensemble 

framework, then an ensemble of mesoscale model forecasts could predict the environment even 

better than an ensemble of CAMs.  Therefore, it is suggested that the combination of mesoscale 

(convection-parameterizing) and CAM configurations is an appropriate avenue to explore for 

optimizing the use of limited computer resources for severe-weather forecasting applications. 
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1.  Introduction 

 

 The Storm Prediction Center (SPC) and the National Severe Storms Laboratory (NSSL) 

conducted the 2008 Spring Experiment (SE08) over a seven-week period during the peak severe 

convective season, from mid April through early June, as part of the activities for the National 

Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT).  As in 

past Spring Experiments, a vital component to its success was the active participation by diverse 

members of the meteorological community (e.g., forecasters, research scientists, model 

developers) who have a passion for operationally relevant meteorological challenges (Kain et al. 

2008).  As in recent years, the primary focus in 2008 was on the examination of convection-

allowing configurations of the Weather Research and Forecasting (WRF) model (Skamarock et 

al. 2005) covering approximately the eastern three-fourths of the continental U. S. (CONUS) in a 

simulated severe-weather-forecasting environment.  As in previous experiments, WRF model 

forecasts were evaluated based on their ability to predict the location and timing of thunderstorm 

initiation and evolution, and offer operationally relevant and useful information on thunderstorm 

morphology.  In addition, the experiment continued to evaluate a real-time, large domain 10-

member convection-allowing ensemble forecasting system to gauge the potential benefits of 

uncertainty information at convection-allowing model (CAM) resolutions (Kong et al. 2008; Xue 

et al. 2008). 

 Several studies have examined the effect of model horizontal grid length on forecast 

accuracy.  As described in the review by Mass et al. (2002), increasing resolution produces 

better-defined and more realistic structures in general (evaluated subjectively), but few studies 

have demonstrated that forecast accuracy, measured objectively over an extended period of time, 
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increases as grid spacing decreases below approximately 10-15 km.  More recently however, 

several modeling studies using convection-allowing configurations of the WRF model with 

horizontal grid spacings of ~4 km have suggested that these high-resolution models add value as 

weather forecast guidance tools.  For example, Done et al. (2004) demonstrated that convection-

allowing 4-km WRF forecasts predict the frequency and structures of convective systems better 

than 10-km WRF forecasts that used convective parameterization.  Similarly, Kain et al. (2005), 

Weisman et al. (2008), and Schwartz et al. (2009) all found that 4-km WRF forecasts with 

explicitly resolved convection yielded better guidance for precipitation forecasts than the 12-km 

North American Mesoscale (NAM) model that uses convective parameterization.  Additionally, 

these experiments revealed that running the WRF model at 4 km without convective 

parameterization does not result in grossly unrealistic precipitation forecasts, even though a 4-km 

grid is too coarse to fully capture convective scale circulations (Bryan et al. 2003).  This is 

consistent with the findings of Weisman et al. (1997) that 4-km grid length is sufficient to 

capture much of the mesoscale structure and evolution of convective systems. 

 Despite the successes of CAM forecasts noted above, studies on the accuracy of model 

forecasts of the mesoscale and larger scale fields within the CAM forecasts and how they relate 

to forecasts of the environment from models that do not allow convection at the grid scale are 

scarce (Weisman et al. 2008).  The studies mentioned in the previous paragraph focus largely on 

the quantitative precipitation forecasting (QPF) problem.  The lack of investigation into model-

environment forecasts led the developers of the SE08 to assemble a daily evaluation of the 

relationship between model forecasts of convective storms and model predictions of the pre-

convective and near-storm environment.  This endeavor was driven by recent subjective 

impressions that large errors in 18-30 h explicit forecasts of convection may be controlled 



 5 

frequently by errors in the fields that are introduced by the initial conditions (ICs) and lateral 

boundary conditions (LBCs) (Kain et al. 2005; Weisman et al. 2008).   

 SE08 participants were asked to spend ~1 h each day analyzing the 18-30 h forecasts of the 

mesoscale and larger scale environments from convection-allowing models and identifying 

differences with the associated analyses from the Rapid Update Cycle (RUC) model (Benjamin 

et al. 2004b).  Indeed, on some days, it was possible to identify errors in phase and amplitude 

within the larger scale fields that clearly had a negative impact on the CAM forecasts of 

convective initiation and evolution.  The errors were apparently inherited from the IC/LBCs 

provided by the forecasts from the operational version of the NAM, and on some days it was 

noted that NAM forecasts of convective precipitation showed biases that were very similar to 

those from the CAMs. 

 Although the subjective impressions on the quality of the model forecasts suggested many 

days in which the CAM forecasts were driven largely by the NAM ICs and LBCs, it is not clear 

if the increased resolution improved the forecasts of the environment overall compared to the 

NAM forecasts.  It is important for model developers to know the performance characteristics of 

the forecasts of the larger scale fields within the convection-allowing model forecasts, which can 

determine the location and timing of the explicit forecasts of convection.  In addition, forecasters 

continue to rely heavily on relationships between the environment and convective mode and 

evolution (Weiss et al. 2008); so it is important to maintain quality in the environmental forecasts 

as resolution increases. 

 The purpose of this paper is to produce a quantitative comparison of forecasts of the pre-

convective and near-storm environments from the convection-allowing models and forecasts of 

the environments from operational mesoscale models.  Most of the model evaluations are 
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restricted to the regions of the U.S. that have the potential for severe weather on a given day, 

which provides a potentially more meaningful analysis than if the evaluations were performed 

over the entire model domains, which cover at least the eastern two-thirds CONUS.  More 

specifically, this paper addresses the following questions: 

1.   What are the model biases and how quickly do forecast errors in the pre-convective and 

near-storm environmental fields grow in the CAMs and in the lower resolution models? 

2.   How do forecasts of the environment from the CAMs compare to those from lower 

resolution operational models? 

3.   Do ensemble mean CAM forecasts of the environment improve upon those from the 

deterministic CAMs composing the ensemble? 

 Knowledge gained from answers to these questions can provide specific information to 

model developers that can guide efforts to improve various components of the WRF model and 

aid in continued development of operational CAM systems.  Furthermore, this knowledge may 

help forecasters assess how much confidence to have in model guidance for severe-weather 

forecasting applications. 

 

2. SE08 models 

 

a. Deterministic WRF models 

 The model evaluation includes output from various configurations of the WRF model 

provided by the Center for Analysis and Prediction of Storms (CAPS) at the University of 
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Oklahoma, the National Centers for Environmental Prediction Environmental Modeling Center1 

(EMC), the National Center for Atmospheric Research (NCAR), and NSSL (see Table 1 for a 

description of each model).  The forecasts were initialized at 0000 UTC and 1-hrly forecast 

output was provided out to at least 30 h for each day of the experiment.  Although the size of the 

domains varied among the models, all of the models covered roughly the eastern three-fourths of 

the CONUS. 

 The EMC and NSSL models used the 0000 UTC analyses of the operational NAM model 

(Janjić 2003) for the ICs and the corresponding NAM forecasts for the LBCs.  The EMC model 

used the 12-km operational NAM while the NSSL model used the operational NAM fields 

interpolated to a 40-km domain.  The NCAR model used the WRF 3DVAR assimilation system 

on a 9-km outer domain, cycling every 3 hours from 1200 UTC to 0000 UTC, to provide ICs for 

the NCAR one-way nested inner domain with 3-km grid spacing, which was then initialized at 

0000 UTC.  Both the 9-km and 3-km forecasts extended for an additional 36 h, with the LBCs 

for the 3-km nest coming from the parallel 9-km run.  ICs and LBCs for the 9-km run were 

supplied from the operational EMC Global Forecast System (GFS) model (Environmental 

Modeling Center 2003).   Although the NCAR model is not the primary focus of this paper, an 

evaluation of output from the 3-km domain is presented because this system provided the first 

extensive real-time test of the WRF 3DVAR system used with a convection-allowing 

configuration. 

 

b. WRF-ARW 10-member ensemble  

                                                
1 This run is similar to the operational “high-resolution window” deterministic forecasts run at ~4-km horizontal 
resolution produced by the Environmental Modeling Center (EMC), which are nested within the 12 km NAM 
domain.  For more details on these forecasts, see URL http://www.emc.ncep.noaa.gov/mmb/mmbpll/nestpage/.    
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 The 10-member WRF ensemble was produced by CAPS (Table 2) and run at the Pittsburgh 

Supercomputing Center.  It used physics and IC/LBC diversity in nine out of 10 members, with 

one “control” member (identified as “CAPS-CN” in Table 1 and “CN” in Table 2) and eight 

perturbed members.  The control member uses a real-time analysis using the ARPS 3DVAR 

system for the ICs (Gao et al. 2004; Hu et al. 2006), in conjunction with the 12-km NAM 0000 

UTC analysis that was used as the background field.  Additional data from the wind profiler and 

surface observation networks, as well as radial velocity and reflectivity data from the WSR-88D 

radar network (Xue et al. 2008) were used in the assimilation. The forecasts from the 12-km 

NAM 0000 UTC cycle were used to provide the LBCs.  Mesoscale atmospheric perturbations 

were introduced in the IC/LBCs of these eight members by extracting four pairs of 

positive/negative bred perturbations from EMC’s operational Short Range Ensemble Forecast 

(SREF) system (Du et al. 2006) and applying them separately to the eight members.  

Furthermore, radar data (3D reflectivity and radial velocity) were assimilated into the control and 

eight perturbed members, using the ARPS 3DVAR data assimilation system.  The tenth member 

was configured identically to the control member, except that it used the 12-km NAM 0000 UTC 

analysis directly, i.e., no data assimilation was conducted (identified as C0 in Table 2).   

 

3.  Model evaluation method 

An objective evaluation of model output was performed to supplement the subjective 

findings of the SE08 participants.  Select model forecast fields and 20-km RUC analyses were 

filtered to a common domain using a Gaussian distance-dependant weighting function.  The 

common domain covers roughly the eastern two-thirds of the CONUS (Fig. 1) with a horizontal 

grid spacing of roughly (1/3) by (1/3) degree latitude and longitude, giving a zonal grid length of 



 9 

about 24 km at the southern boundary and about 33 km at the northern boundary.  The filtering 

of the model fields allows for a more direct comparison of the mesoscale and larger scale 

features from the various models to the resolvable scales of the associated RUC analyses than if 

the native grids were used and reduces greatly the influence of the convective-scale perturbations 

on the analysis (see the Appendix for more details on the filtering procedure). 

Six fields were selected for the evaluation, including the 2-m and 850-hPa temperature 

(TMP2m and TMP850) and dewpoint (DPT2m and DPT850), the convective available potential 

energy of a surface parcel (CAPE2), and the magnitude of the vector difference of the winds 

(wind shear) between 10 m and 500 hPa (WSHR).  These fields from the four daily WRF model 

forecasts (described in Table 1) and the mean of the CAPS ensemble (CAPS-ENSMEAN) are 

filtered to the common grid every three hours from 0 to 30 h.  In addition, the accuracy of the 

CAM forecasts of the pre-convective and near-storm environments compared to the lower 

resolution models is examined by filtering the forecasts from the operational versions of the 

NAM and GFS3 models to the common grid using the same method for filtering the CAM 

forecasts described above.  The associated analyses are obtained by filtering the 20-km RUC 

analyses to the common grid using the same method.  We refer the interested reader to Benjamin 

et al. (2004a) and Benjamin et al. (2007) for a detailed description of the RUC model and data 

assimilation system and to Benjamin et al. (2004b) for a detailed comparison of the RUC 

analyses to observations. 
                                                
2 It should be noted that the “surface” CAPE used in this study is not computed identically among the models.  The 
parcel that is used to calculate the RUC “surface” CAPE is an average of the thermodynamic conditions of the 
lowest seven model levels (~50 hPa deep), whereas the “surface” CAPE from the NAM and the CAMs use the 
parcel with the maximum equivalent potential temperature (θe) in the lowest 70 hPa.  Although these differences 
limit the ability to interpret any individual model/analysis comparisons, the results are presented to illustrate the 
magnitude of the typical differences in CAPE between the model outputs and the analysis that are currently 
available routinely in operations. 
3 The interpolation of the GFS forecast fields required different parameters in the filtering procedure because the 
resolution of the GFS input grids is lower than that of the common grid.  This resulted in smoother fields compared 
to the filtered fields from the other models. 
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A daily task for the SE08 participants was the development of an experimental severe-

weather forecast within a regional domain selected by the participants. The size of the regional 

domain was held fixed at roughly 1200 by 900 km, but was moved daily to a region deemed 

likely to experience convective weather during the forecast period (see Fig. 2 for an example of 

the regional domain and an experimental forecast).  The objective evaluation of the model output 

discussed herein focuses on the area encompassed by these regional domains and to the 31 days 

on which an experimental forecast was issued (see Fig. 1 for the center points used for the 

regional domains during the SE08).  This focuses the quantitative evaluation to specific regions 

known to be relatively favorable for severe convective weather throughout the period examined.  

The objective measures for each forecast field include the mean error (bias) and the root mean 

squared error (RMSE) between the filtered model fields and the filtered RUC analyses over all 

grid points within the regional domain at a given time or over a specified time period, depending 

upon the particular analysis. 

 

4. Mean RMSE and bias time trends 

 

a.  Model RMSE averaged over the regional domains 

Of interest to model developers and users of 18-30 h model forecasts for severe weather 

forecasting applications is the growth of the errors starting from the initial model state 

(represented here as the difference between model forecasts and the associated RUC analysis).  

The mean RMSEs for each variable, averaged over the regional domains for all days of the 

experiment, are found to have different growth characteristics (Fig. 3).  Nearly all of the 

TMP850 errors grow steadily through 12 h, then are steady or decrease in the 12-21 h period 
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before exhibiting growth again from 18-30 h (Fig. 3c).  For the next-day convective forecasts 

(18-30 h), the TMP850 errors are 1.4-1.8 times larger compared to the initial errors.  Similarly, 

WSHR errors for most of the models show initial growth out to 9 h, then are steady or decrease 

during the 9-15 h period, before increasing once again from 15- 30 h (Fig. 3f).  As for TMP850, 

the WSHR errors are 1.4-1.8 times larger for the 21-30 h forecasts compared to the initial errors, 

which is slightly smaller than the 1.5-2.5-day doubling times for errors in model fields 

dominated by larger-scale flows found in Simmons et al. (1995). 

The TMP2m, DPT2m, and DPT850 errors (Figs. 3a, 3b, and 3d) seem to be affected 

more by the diurnal cycle over the 30 h period than the TMP850 and WSHR errors.  This 

dependence on the diurnal cycle is clearly manifest in the CAPE errors, which are 2-3 times 

larger in the late afternoon (f21-f24) than in the early morning (f06-f12) (Fig. 3e).  Although the 

error growth for CAPE contains a strong diurnal signal, the removal of this signal still reveals an 

increasing trend; the CAPE errors at 24 h (valid at 0000 UTC the following day; the same 

nominal time of the initial analysis) are 1.2-1.8 times larger compared to the initial time, which is 

smaller than the error growth for the TMP850 and WSHR (Figs. 3c and 3f).  This relatively slow 

growth in model error of fields that are directly impacted by the planetary boundary layer (PBL) 

evolution compared to the typical growth of errors in larger-scale flows in the free atmosphere 

(Simmons et al. 1995, Wandishin et al. 2001) is found in Mass et al. (2002), Eckel and Mass 

(2005), and Kong et al. (2007).  Mass et al. (2002) suggest that orography, surface forcing for 

heat and moisture fluxes, and the greater influence of the physical parameterizations of the PBL 

at the mesoscales add a more predictable, deterministic component to the deterioration of the 

larger-scale forecasts that acts to constrain the growth of the initial errors. 
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b.  Model bias averaged over the regional domains 

Some insight into the contributions to the mean RMSE values is gained by examining the 

mean biases (Fig. 4).  The 2-m temperatures tend to be too warm at night (0300-1200 UTC) and 

too cool during the afternoon and evening (1800-0000 UTC), although a few do not exhibit this 

tendency (Fig. 4a).  For example, the NCAR run tended to be too cool at the surface at all hours 

except at the 0000 UTC start time and at 1800 UTC, and the CAPS-CN and NAM models 

maintain a slight warm bias throughout the daytime hours.   

The diurnal variation seen in the mean RMSE for TMP2m, DPT850, and CAPE (Figs. 3a, 

3d, and 3e) is likely a reflection of the diurnal variation in the mean biases among the various 

models (Figs. 4a, 4d, and 4e).  Interestingly, the two lower-resolution models (NAM and GFS) 

showed very little bias for DPT850 (Fig. 4d) and their RMSE values were among the smallest of 

all the models (Fig. 3d), whereas all of the CAMs show a distinct dry bias for DPT850 (Fig. 4d), 

which is discussed further in section 5.  The TMP850 errors tend to be small, but show a slight 

warm bias early in the diurnal cycle (Fig. 4c). 

Finally, it is noteworthy that all of the models under-forecast the magnitude of the wind 

shear during the day and the negative biases peak in the period when most severe convection 

tends to occur (Fig. 4f).  The reasons for this low bias are examined further in section 5.  This 

low WSHR bias could partly explain the inability of the CAMs to maintain strong convective 

structures in the early nighttime hours noted by the SE08 participants and which is shown in Fig. 

4 of Schwartz et al. (2009b) and Fig. 3 of Clark et al. (2009) for the convection-allowing models 

run for the 2007 Spring Experiment. 

 

5.  Comparison of operational mesoscale models and CAM forecasts 
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A primary goal of this study is to compare the forecasts of the environment from the 

deterministic CAMs to the lower resolution models that provide the ICs and LBCs.  An 

assessment of the environment forecasts remains an essential part of the severe convective 

weather forecast process, and these results can allow forecasters to gauge the performance of the 

CAMs against the NAM and GFS forecasts that are used widely in operations. 

 

a.  Spatial distribution of model bias 

The model biases averaged over the regional domains (Fig. 4) are explored further by 

calculating the spatial distribution of the biases over all days and all times for which model 

output was available.  The technique described in Elmore et al. (2006) to determine the statistical 

significance of biases in the face of naturally occurring spatial correlation is used for this 

comparison.  It is found that the CAM forecasts tend to produce larger biases than the NAM 

forecasts over much of the CONUS and for many variables, particularly for low-level 

temperature.  The NSSL model is used in an illustration of this larger bias (Figs. 5 and 6) 

because the low-level thermodynamic error characteristics from similar models have been 

examined extensively in previous Spring Experiments through subjective comparisons of 

forecast and observed soundings (Kain et al. 2008).  These comparisons made in past Spring 

Experiments revealed systematic biases that are confirmed in this study and discussed below. 

The NAM 24-h forecasts of TMP2m show regions that tend to be too cool and too warm 

in regional corridors (Fig. 5a), but a common systematic bias noticed by the Spring Experiment 

participants is illustrated by the NSSL 24-h forecasts that clearly show a cool bias over most of 

the domain (Fig. 5b).  This led Kain et al. (2005) to suggest that the Mellor-Yamada-Janjić 
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(MYJ) scheme in the WRF-ARW core, working with the NAM ICs and LBCs, is largely 

responsible for creating these conditions that are usually too cool near the surface during the late 

afternoon and early evening hours.  The regions that show the largest TMP2m cold biases in the 

NSSL model (southern Iowa and Missouri and over the Appalachian states) are regions that 

show only a slight cool bias in the NAM (Figs. 5a and 5b).  The biases in TMP850 show similar 

characteristics (Figs. 5c and 5d).  In particular, the NSSL model has a significant cold bias at 850 

hPa along the high Plains, where there is no significant bias in the NAM model.   Likewise, the 

regions that show a small to insignificant cool bias at 850 hPa in the NSSL forecasts (central to 

northern High Plains and eastern Texas) are regions that show a warm bias in the NAM model 

(Figs. 5c and 5d).  This suggests that the physical parameterizations used by the NSSL model are 

systematically adding a cold bias to forecasts that use the NAM ICs and LBCs. 

Kain et al. (2005) and Weisman et al. (2008) also suggested that the MYJ scheme run 

with convection-allowing resolutions produces a moist bias in the PBL.  The present results for 

the NSSL DPT2m forecasts confirm their findings, particularly over the Midwest and Great 

Lakes regions (Fig. 6b).  Note that the 2-m moist bias is even worse for the NAM forecasts over 

this same region (Fig. 6a).  However, the improvement in the NSSL 2-m dewpoint forecast bias 

over the NAM model over the Midwest and Great Lakes region is not evident in the bias time 

trends (Fig. 4b) because the regional domains were usually not located in this area (Fig. 1).  Over 

the regional domains, which were usually centered in the central and southern Plains (Fig. 1), the 

DPT2m biases were relatively small for both the NSSL and NAM forecasts (Figs. 4a and 4b) and 

there was no substantial difference between the NSSL and NAM forecasts seen in the mean 

spatial bias (Figs. 6a and 6b).   
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The moist bias at 2 m for the NAM and NSSL forecasts is not as widespread at 850 hPa 

(Figs. 6c and 6d), but there are differences in the biases between the NAM and NSSL forecasts.  

The significant mean errors for DPT850 tend to be too moist for the NAM forecasts (except over 

western Texas), but the sign of the dewpoint bias for the NSSL model forecasts depends on 

location (Fig. 6d).  The NSSL forecasts tend to be too moist over the northern High Plains and 

Midwest and too dry from Texas into the lower Ohio Valley.  Thus, a dominant dry bias exists in 

the time trend at 850 hPa for the NSSL forecasts (Fig. 4d) because the regional domains were 

usually located over the central and southern Plains (Fig. 1) where the NSSL model tends to be 

too dry at 850 hPa (Fig. 6d).  Note that the NAM DPT850 forecasts were nearly unbiased over 

the regional domains (Fig. 4d), indicating again that the NSSL model is producing a bias that is 

not evident in the NAM over the regional domains. 

Output from the NAM model, two deterministic models (NSSL and NCAR) and the 

CAPS-ENSMEAN are used to illustrate an interesting regional bias in vertical wind shear 

common to most of the models (Fig. 7).  Overall, the WSHR forecasts show little significant bias 

over much of the domain at 21 h, but a significant negative bias of 2-3 m s-1 is found over much 

of the central and southern High Plains.  This creates the negative WSHR biases seen in the time 

trends averaged over the regional domains (Fig. 4f).  Southeastern Colorado is a region with low 

WSHR forecasts in particular, in which the mean negative bias exceeds 4 m s-1 in the NAM (Fig. 

7a) and CAPS-ENSMEAN (Fig. 7d).  Included on Fig. 7 is the mean vector error in the 10-m 

winds at the locations with a statistically significant mean WSHR bias.  The westerly direction of 

most of the error vectors illustrates a tendency of the models to veer the 10-m winds too much 

over this region, resulting in an overall decrease in the mean wind shear.  Although the reasons 

for this tendency of the models to veer the winds over this region are not clear, the slight dry bias 
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in low levels, especially at 850 hPa (Fig. 6d), suggests that the models tend to push the dryline 

too far east.  Indeed, this was a tendency noted by SE08 participants on several occasions. 

 

b.  RMSE ranks 

The previous section illustrated that the CAMs tend to produce larger biases over much 

of the CONUS compared to the NAM.  Likewise, there is no consistent improvement in the 

forecasts of the CAMs over those of NAM and GFS models in terms of the mean RMSE and bias 

averaged over the regional domains (Figs. 3 and 4).  This is consistent with the results of Mass et 

al. (2002), who showed little to no consistent improvement in objective verification results for 

model fields at 4-km grid spacing compared to 12-km grid spacing over a much more limited 

region of the Pacific Northwest (although the fast LBC update in their two-way nesting 

procedure ensures more influence from the LBCs in their case). 

The lack of a consistent improvement in the CAM forecasts versus the GFS, and the 

NAM forecasts especially, is shown further by viewing the frequency distribution of the relative 

RMSE ranks of the models for each day (Fig. 8).  The models are ranked using the 24 days for 

which the model output was available for all of the models over the period examined.  The 15-21 

h period is examined to allow the next day’s diurnal cycle to be represented in the statistics, 

while focusing on the time period that typically precedes convective initiation or represents the 

early evolution of the daily convective activity (Schwartz et al. 2009b; Clark et al. 2009).  The 

NAM forecasts of DPT850 and CAPE over the 15-21 h forecast period are ranked in the top 

three almost 80% of the time (Figs. 8d and 8e).  There does not appear to be any substantial 

improvement in the performance of the CAMs compared to the NAM and GFS, and in fact, the 

CAM forecasts tend to be slightly worse overall according to the mean RMSE ranks. 
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c.  Similarity in large-scale boundaries and CAM errors away from the boundaries 

Although the use of a mean RMSE over a regional domain cannot separate objectively 

the contribution of timing, location, and magnitude errors, inspection of the forecasts by the 

SE08 participants and by the authors revealed that the placement of mesoscale and synoptic scale 

features in the NAM forecasts was very similar to the location of the features in the CAMs, as 

noted similarly in Weisman et al. (2008).  This is most apparent by focusing on the EMC model, 

which uses the same dynamic core (WRF-NMM; Janjíc et al. 2005) as the NAM.  The EMC 

model used in this study is essentially a higher-resolution version of the NAM used without 

cumulus parameterization (there are other minor differences, however, which prevents a 

complete isolation of the effects of higher resolution).   

A comparison of the NAM and EMC TMP2m forecasts on a day in which the NAM 

forecast of the pre-convective environment showed one of the largest improvements in RMSE 

over the CAMs is shown in Fig. 9.  The only significant large-scale airmass boundary in the 

region was a cold front positioned from the Nebraska/Iowa border into the Oklahoma panhandle 

(Figs. 9a and 9d).  Both the NAM and EMC forecasted the cold front too far to the north and 

west.  The difference fields of both models compared to the associated RUC analysis (Figs. 9c 

and 9f) show that the incorrect placement of the front resulted in positive temperature errors over 

Kansas and central Nebraska and negative temperature errors to the east.  Although there are 

differences in the placement of the cold front between the NAM and EMC forecasts, which 

results in different error magnitudes in this region (Figs. 9c and 9f), the models are clearly more 

like each other than the associated RUC analysis.  Based on the author’s experience, operational 

forecasters at the SPC have recognized this similarity the last few years. 
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The example in Fig. 9 illustrates the typical similarities between the NAM and CAM 

forecasts.  Although not always the case, the errors in the placement of airmass boundaries in the 

CAMs often appear to be driven largely by the LBCs, resulting in similar error patterns in the 

placement of mesoscale and synoptic scale features.  However, an important point to make is that 

significant differences in the errors between the NAM and CAMs also are present away from the 

airmass boundaries.  For example, the negative temperature errors found in the NAM forecast in 

eastern Oklahoma and Missouri (Fig. 9c) are exacerbated in the EMC forecast (Fig. 9f).  An 

inspection of model soundings by the SE08 participants revealed the most noticeable difference 

between the observations and the model forecasts from eastern Oklahoma to central and northern 

Missouri is the presence of widespread low-level clouds in both the NAM and EMC forecasts.  

Morning surface observations and subsequent visible satellite observations show that much of 

this region was indeed covered by low-level clouds during the morning hours, but this cloud 

cover had thinned and become much more isolated by the afternoon hours (not shown).  This 

analysis suggests that the large negative temperature errors in this region are likely due to the 

inability of the model physical parameterizations to properly predict the evolution of the low-

level clouds and their effect on the temperature and moisture profiles in the PBL during the day, 

which was a common analysis made by the SE08 participants. 

It is recognized that a comparison of the RMSE time trends cannot separate the 

contributions of timing, location, and spatial-structure errors.  Although the use of a verification 

technique that could separate these sources of error (e.g., Davis et al. 2006) is beyond the scope 

of this paper, the influence of location errors can be removed through an inspection of the 

distributions of forecast and observed variables over the regional domains.  An example is shown 

in Fig. 10, which reveals that the EMC forecasts also have a cold bias overall, as found for the 
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NSSL (Figs. 4a and 5b) and NCAR models (Fig. 4a).  Furthermore, Fig. 10 adds that the EMC 

forecasts are too cold more frequently than the NAM forecasts.  This is revealed by the fact that 

the distribution of EMC temperatures is shifted to the left toward colder values compared to both 

the NAM forecasts and the RUC analyses (Fig. 10).  This conclusion that the forecast values tend 

to have a distribution displaced further away from the RUC analyses than the NAM forecasts is 

valid for many of the CAMs and the other variables (not shown).  This is further evidence that 

the larger errors noted in the EMC forecasts overall and in the other CAMs (Fig. 3) have a 

significant contribution from errors present over much of the domain and aren’t simply due to 

location errors of the airmass boundaries. 

The modulating effect of errors that occur away from the airmass boundaries is also 

suggested for many variables in Fig. 3 (not just TMP2m), in which the changes in the mean 

RMSE for the NAM forecasts with time (black dashed line) follow the changes in the forecasts 

from the deterministic CAM models that use the NAM for the ICs and LBCs.  Again, this 

comparison is best made between the EMC and NAM models, since these models share the same 

WRF dynamic core and model physics, aside from the lack of cumulus parameterization in the 

EMC model (compare the purple line to the black dashed lines in Fig. 3). 

To summarize this last point, the placement of airmass boundaries is often similar 

between the CAM forecasts and the NAM forecasts that provide the ICs and LBCs.  Significant 

location errors can be the result, as exemplified in Figs. 9c and 9f.  However, as also exemplified 

in Fig. 9, a portion of the errors in the pre-convective and near-storm environments in the CAMs 

appears to emanate from inaccuracies in the forecasts away from these boundaries.  The 

NAM/EMC comparisons (Figs. 9 and 10) and the trends and rankings of the RMSEs (Figs. 3 and 

8) suggest that these errors away from the airmass boundaries tend to be worse in the CAMs as 
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compared to the NAM forecasts.  Although the specific reasons for this result are not clear, this 

suggests that the configuration of the physics used at coarser resolutions (and the attendant 

simplifications/assumptions) are not sufficient at higher resolutions.  This insufficiency may be 

leading to degradation of the CAM forecasts of the environment, which is discussed further in 

section 6. 

 

d.  Comparison of CAPS-ENSMEAN to other models 

The final goal of this study is to examine forecasts of the environment provided by the 

CAPS ensemble compared to the other model forecasts.  As found with mesoscale ensembles 

(Wandishin et al. 2001; Homar et al. 2006; Jones et al. 2007), the present results show a 

substantial improvement in the model forecasts of the environment with the convection-allowing 

ensemble compared to the deterministic convection-allowing model forecasts.  It is clear from 

Fig. 3 that the CAPS-ENSMEAN forecasts almost always improved upon the CAPS-CN forecast 

(examination of daily error comparisons, not shown, confirms this result), and from Fig. 8 that 

the CAPS-ENSMEAN forecasts tend to be ranked higher than the other models for all of the 

variables, except for CAPE4.  It is intriguing that for most of the variables, the CAPS-

ENSMEAN forecasts are ranked in the top three on at least 70% of the days.  In fact, the 

forecasts of WSHR are ranked first almost 80% of the time and are ranked in the top three on all 

24 of the days (Fig. 8f). 

To ensure that these improvements were not simply the result of the smoothing inherent 

in producing the mean fields, the relative ranks shown in Fig. 8 are calculated again, but only for 

the 15- and 18-h forecasts (valid at 1500 and 1800 UTC) over the 16 days with a “clean-slate” 
                                                
4 The CAPS-CN forecasts of CAPE are often ranked the worst among all the models, for reasons that are not clear, 
but that the CAPS-ENSMEAN forecast still almost always is ranked higher than the CAPS-CN forecasts, even if the 
forecasts are not accurate compared to the other models. 
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pre-convective environment, which are defined to be days with little to no deep convection 

within the regional domain from 0900 UTC through 1900 UTC.  This prevents any convective 

feedback from unfairly handicapping the deterministic CAMs in a comparison to the ensemble 

mean fields.  It is seen that the CAPS-ENSMEAN forecasts still improve upon the CAPS-CN 

forecasts for all variables except CAPE when only the undisturbed pre-convective environments 

are examined (Fig. 11).  For the WSHR forecasts, although the percentage of number-1 rankings 

for the CAPS-ENSMEAN declines (Figs. 8f and 11f), it still ranks first on almost 60% of the 

days (10 out of 16) and the percentage of rankings in the top two remains nearly the same for all 

days.   

The above analysis gives further support that the filter produces an equitable quantitative 

comparison of the environments and damps the convective-scale features, since the long-term 

error statistics on all days and on those days with little to no convection is very similar.  In 

addition, it strengthens the conclusions that the CAM forecasts are typically worse overall than 

the NAM and GFS forecasts for environmental parameters; yet, the CAPS-ENSMEAN forecasts 

are almost always better than the control and are frequently better than the other models, 

regardless of their native grid lengths and effective resolution.  Implications for this result are 

discussed in section 6. 

 

6. Summary and discussion 

 This study examines the quality of the pre-convective and near-storm environment 

forecasts from the convection-allowing WRF models (CAMs) run for the 2008 NOAA/HWT 

Spring Experiment (SE08).  The goal of this paper is to present the typical error characteristics of 

CAMs in severe weather-relevant sub domains and to compare them to the lower resolution 
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models used frequently in operations and to the mean of an ensemble of CAMs.  Motivation 

came from recent studies (Weisman et al. 2008; Weiss et al. 2008; Schwartz et al. 2009a) and 

experiences during the SE08 that show a strong correspondence of CAM model forecasts of 

convection to the precipitation forecasts of the lower-resolution models that provide the initial 

conditions (ICs) and the lateral boundary conditions (LBCs).  Indeed, SE08 participants noted 

errors in the pre-convective environment that had a large influence on the timing and location of 

convection for 18-30 h forecasts on several days.  However, it was not clear how the forecasts of 

the environment with increased resolution compared overall to the forecasts of the environment 

from the lower resolution model output.  Understanding the nature of the errors in the prediction 

of the environments by the CAMs is important to the continued development of the models at 

such high resolution and in the use of CAM-based systems at operational forecasting centers. 

 Although the use of summary statistics in this study (mean RMSE and bias) cannot 

separate the contribution of timing, location, and magnitude errors objectively, inspection of the 

forecasts reveals that the placement of larger-scale airmass boundaries in the NAM forecasts was 

often very similar to the location of the same boundaries represented in the CAM models, which 

resulted in similar timing and placement of convective features for next-day convective forecasts 

(18-30 h).  This correspondence contributed to similar temporal trends in the mean RMSE values 

among several variables examined.  However, despite these similarities in the mean error 

patterns in the CAM and NAM forecasts resulting from location errors, substantial errors were 

also found away from the airmass boundaries that were often exacerbated in the CAMs.  For 

example, the tendency for the CAMs to display a systematic cold bias was examined in detail. 

 Although this study does not isolate specific reasons for these error characteristics, we 

offer some hypotheses for some of the more pertinent results.  Although the influence of the 
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initialization and the strategy for the lateral boundary conditions cannot be ruled out (Warner et 

al. 1997), experience with a subjective evaluation of CAM forecasts during NOAA/HWT Spring 

Experiments (Kain et al. 2005; Kain et al. 2008), and the results presented in this study showing 

the model biases in the CAMs (Figs. 4-7 and Fig. 10), suggests that these errors away from 

airmass boundaries are linked to physical parameterizations used at model grid lengths that allow 

convection, especially parameterizations for boundary layer processes and shallow (non-

precipitating) clouds at or near the top of the boundary layer.  All of the fields examined in this 

study are strongly modulated by these two parameterizations because each field is sensitive to 

the growth and decay of the planetary boundary layer (PBL), in addition to other parameterized 

processes such as exchanges with the underlying surface below and the free atmosphere above 

and the degree of cloud-cover.  The MYJ PBL scheme, and the methods for how it interacts with 

other parameterized processes, was used in all of the deterministic forecasts examined here, yet 

this scheme was developed and calibrated using grid-spacing of ~O(10 km).  While it may be 

one of the better performing PBL schemes tested in the WRF model, the use of the MYJ scheme, 

or any PBL scheme, at ~4-km grid spacing could be impinging upon a “grey area” in grid 

spacing, in which resolved large eddies or horizontal convective rolls begins to blend with the 

parameterized mixing from the PBL scheme (Stensrud 2007).  This PBL grey area could be 

analogous to the use of convective parameterization with grid lengths ~O(10 km), in which the 

parameterized convective processes mixes with grid-scale convection (Molinari and Dudek 

1992).  The fact that the model fields that are strongly influenced by the PBL showed relatively 

slow error growth with time and a strong diurnal trend in the objective statistics (Fig. 3) suggests 

further a dominant role of the surface and PBL physics at these resolutions compared to other 



 24 

sources of model error (Mass et al. 2002), such as boundary conditions and error growth in the 

background larger-scale flows. 

 Another contributor to the relatively high amplitude CAM errors may be the absence of a 

shallow-convection (SC) parameterization in the CAM configurations.  The BMJ (Betts-Miller-

Janjić) SC parameterization (Janjić 1994) has been documented to produce unrealistic vertical 

structures at times (Baldwin et al. 2002), but in the NAM it provides a critically important 

transport mechanism between the MYJ PBL and the free atmosphere, modulating boundary layer 

growth processes and the exchange of mass between the PBL and the atmosphere just above it.  

There is no parameterization for this process in the CAMs.   

 Although the CAMs appear to suffer from relatively high amplitude errors in predictions of 

the convective environment, we stress that these errors do not prevent the CAMs from 

outperforming the NAM in terms of QPF from both deterministic (Schwartz et al. 2009a) and 

ensemble perspectives (Clark et al. 2009).  It seems likely that this QPF advantage could be 

further enhanced if the WRF model’s physical parameterizations could be refined for higher 

resolution applications.  Again, this study does not isolate the specific causes of the error 

characteristics of the CAMs, including the reasons offered above.  However, it is hoped that this 

study provides an impetus for further research to identify the true cause for the poorer 

environmental forecasts in absence of significant convective activity so that forecasts of both the 

environment and convection, and the convective feedback to the environment, can be improved. 

 Finally, it is intriguing that a CAM-based ensemble mean provides better forecasts of the 

pre-convective and near-storm environment than the parent NAM, even though the high-

resolution ensemble is anchored by the CAPS-CN configuration, which does not predict the 

environment better than the NAM.  Since the NAM appears to provide a deterministic 
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framework for predicting the mesoscale environment as good or a better than the CAMs, it seems 

reasonable to ask, could a mesoscale ensemble provide even better forecasts of the environment 

than a CAM ensemble?   Furthermore, can we then drive individual CAMs with members from 

the mesoscale ensemble to derive an even better deterministic CAM forecast?  If these 

suppositions are true, a potentially useful strategy, given current capabilities of operational 

models, is to employ a combination of mesoscale and convection-allowing configurations to 

provide guidance for severe weather forecasters.  Ensembles based on mesoscale models may 

provide optimal forecasts for the background convective environment and such ensembles could 

then be used to launch CAMs in either deterministic or ensemble frameworks for explicit 

predictions of convective storms.  This strategy may be prudent currently for a number of 

reasons, not the least of which is cost:  computational expenses for a 4-km grid are at least 27 

times higher than those for the same domain with 12-km grid spacing.  This underscores the need 

to develop ensemble systems that are appropriate for explicit predictions of convection.  Recent 

studies have begun to examine the creation of CAM forecasts driven by an ensemble of 

mesoscale forecasts (Kong et al. 2006, Dowell and Stensrud 2008) and research is ongoing at the 

NSSL and SPC to configure such a system for testing in upcoming NOAA/HWT Spring 

Experiments (Stensrud et al. 2008). 
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Appendix 
 
 A Gaussian distance-dependent weighting function was used to interpolate the model fields 

to the evaluation domains and was designed to remove convective-scale details completely while 

retaining meso-β and larger scale features; the filter removes over 99% of the amplitude of 30-

km wavelength features while retaining over two-thirds of the amplitude of 100-km wavelength 

features (see Fig. A1 for the filter response function).  The example shown in Fig. A2 illustrates 

that the filtered forecast fields from the CAMs contain spatial structures much closer to the 

structures seen in the 20-km RUC analyses that from the fields on the native CAM grids. 

 It should be noted that, although the filter is effective at removing convective-scale details 

up to seven times the grid length of the CAMs (Fig. A2), feedback of convective systems to the 

larger scale environment, is retained to some degree, especially for larger convective systems.  

However, the scale and amplitude of the convectively induced features that are retained in the 

filtered CAM fields are similar to the scale and amplitude of the convectively induced features 

that can be resolved by the 12-km NAM forecasts and the 20-km RUC analyses.  The resulting 

comparison is then largely a comparison of the mesoscale and larger scale synoptic fields, with a 

small contribution from the feedback from convection.  We believe the contribution of the 

convective feedback to the errors is relatively small, however.  As shown in Section 5, a 

comparison of the long-term error statistics on all days and on those days with little to no 

convection in the real atmosphere or the model environments is very similar.   
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Figure Captions 
 
 
Figure 1.  The common domain that contains the filtered RUC analysis and model forecast fields.  

The 3-letter station identifiers indicate the center points for the regional domains used to make 

experimental forecasts during the SE08 and to evaluate the models in this study (see Fig. 2 for an 

example of the size of the regional domains).  A total of 31 domains were used during the 

experiment (RSL and HLC were chosen twice). 

 
Figure 2. Example of a regional domain selected by the SE08 participants for the experimental 

forecast.  The size of this domain remained the same throughout the experiment and only varied 

by center point, which was Clinton, OK (CSM) on this day.  The contours depict areas expected 

to receive severe weather from 2100 UTC 5 May 2008 to 0500 UTC 6 May 2008; the 

percentages are the chance of receiving severe weather within 25 miles of any point. 

 
Figure 3.  RMSEs from the model runs, averaged over the regional domains for all 

days versus forecast hour for the six model fields described in the text. 

 
 
Figure 4. As in Fig. 3, except for the mean error (bias). 
 

Figure 5.  A comparison of the spatial distribution of the 24-h forecast mean temperature 

errors (C) (biases, or model minus analyses) between the NAM and NSSL models at 2 m and 

at 850 hPa.  The areas filled in brown for the 850 hPa plots indicate a mask used for data 

below ground or data outside of the native grid for the NSSL plot and the light blue areas 

indicate a mask used for grid points over the Gulf of Mexico and the Atlantic Ocean. All 
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colored areas outside of the masks indicate significant errors at a 95% confidence level (see 

Elmore et al. 2006 for details on how the confidence levels are calculated). 

 

Figure 6.  As in Fig. 5, except for the mean 24-h forecast dewpoint errors. 
 

Figure 7.  As in Fig. 5, except for a comparison of the mean 21-h forecast 10-m to 500-hPa 

wind shear errors (m s-1) for the NAM, NSSL, NCAR, and CAPS-ENSMEAN.  The vectors 

indicate the mean 10-m wind vector errors and are shown only where the wind shear errors 

are statistically significant. 

 
Figure 8.  The relative ranks of the RMSE, ranked from lowest RMSE to highest RMSE, 

averaged over the 15 - 21 h forecast period and averaged over the regional domains for each 

model and for the six model fields described in the text.  For example, the upper-left panel 

shows that the CAPS ensemble mean forecasts of 2-m temperature had the lowest RMSE on 

35% of the days and the second lowest RMSE on 25% of the days.  Only those days for 

which model output was available for all the models were used to calculate the rankings for 

each variable.  Note that the TMP850 and DPT850 were not available for the EMC model 

and the CAPE was not available for the GFS model. 

 
Figure 9.  A comparison of the TMP2m RUC analysis at 2100 UTC 1 May 2008 (upper-most 

panels) and the NAM (middle-left panel) and EMC (middle-right panel) 21 h forecasts valid 

at the same time within the regional domains.  The frontal positions are determined 

subjectively through inspection of the filtered temperature and wind fields.  The difference in 

TMP2m between the NAM forecast and the RUC analysis is shown in the bottom-left panel 
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and the difference between the EMC forecast and the RUC analysis is shown in the bottom-

right panel. 

 
Figure 10.  The distribution of 21-h forecasts and RUC analyses of TMP2m over the regional 

domains on 10 “clean-slate” convective days, in which there was little to no deep convection in 

the model forecasts or in the real atmosphere within the regional domains in the period leading 

up to the forecasts (see Section 5b). The lines connect the frequency values for each bin for the 

NAM (thick black line) and the EMC (thick grey line) forecasts and the RUC analyses (thin 

black line). 

 
Figure 11.  As in Fig. 8, except for the 16 “clean-slate” convective days, in which there was 

little to no deep convection in the model forecasts or in the real atmosphere within the 

regional domains in the period from 0900 UTC to 1900 UTC.  The EMC and NCAR models 

are not shown because output was available on only 10 of the 16 clean-slate days for these 

models. 

 

Figure A1.  Response function of the Gaussian weighting function used to interpolate the model 

fields to the common domain. 

 

Figure A2. The 20-km RUC analysis of TMP2m valid at 2100 UTC on 1 May 2008 and the 

corresponding 21-h forecasts from the filtered and unfiltered TMP2m fields from the EMC 4-km 

model on the regional domain. 
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Figure 1.  The common domain that contains the filtered RUC analysis and model 
forecast fields.  The 3-letter station identifiers indicate the center points for the 
regional domains used to make experimental forecasts during the SE08 and to 
evaluate the models in this study (see Fig. 2 for an example of the size of the 
regional domains).  A total of 31 domains were used during the experiment (RSL 
and HLC were chosen twice). 
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Figure 2. Example of a regional domain selected by the SE08 participants for 
the experimental forecast.  The size of this domain remained the same 
throughout the experiment and only varied by center point, which was 
Clinton, OK (CSM) on this day.  The contours depict areas expected to 
receive severe weather from 2100 UTC 5 May 2008 to 0500 UTC 6 May 
2008; the percentages are the chance of receiving severe weather within 25 
miles of any point. 
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Figure 3.  RMSEs from the model runs, averaged over the regional 
domains for all days versus forecast hour for the six model fields 
described in the text. 
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Figure 4. As in Fig. 3, except for the mean error (bias). 
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Figure 5.  A comparison of the spatial distribution of the 24-h forecast mean temperature 
errors (C) (biases, or model minus analyses) between the NAM and NSSL models at 2 m 
and at 850 hPa.  The areas filled in brown for the 850 hPa plots indicate a mask used for 
data below ground or data outside of the native grid for the NSSL plot and the light blue 
areas indicate a mask used for grid points over the Gulf of Mexico and the Atlantic Ocean. 
All colored areas outside of the masks indicate significant errors at a 95% confidence level 
(see Elmore et al. 2006 for details on how the confidence levels are calculated). 

 
 
 
 
 



 45 

 
 

Figure 6.  As in Fig. 5, except for the mean 24-h forecast dewpoint errors. 
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Figure 7.  As in Fig. 5, except for a comparison of the mean 21-h forecast 10-m to 500-
hPa wind shear errors (m s-1) for the NAM, NSSL, NCAR, and CAPS-ENSMEAN.  The 
vectors indicate the mean 10-m wind vector errors and are shown only where the wind 
shear errors are statistically significant. 
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Figure 8.  The relative ranks of the RMSE, ranked from lowest RMSE to highest 
RMSE, averaged over the 15 - 21 h forecast period and averaged over the regional 
domains for each model and for the six model fields described in the text.  For 
example, the upper-left panel shows that the CAPS ensemble mean forecasts of 2-m 
temperature had the lowest RMSE on 35% of the days and the second lowest RMSE 
on 25% of the days.  Only those days for which model output was available for all the 
models were used to calculate the rankings for each variable.  Note that the TMP850 
and DPT850 were not available for the EMC model and the CAPE was not available 
for the GFS model. 
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Figure 9.  A comparison of the TMP2m RUC analysis at 2100 UTC 1 May 2008 (upper-
most panels) and the NAM (middle-left panel) and EMC (middle-right panel) 21 h 
forecasts valid at the same time within the regional domains.  The frontal positions are 
determined subjectively through inspection of the filtered temperature and wind fields.  
The difference in TMP2m between the NAM forecast and the RUC analysis is shown in 
the bottom-left panel and the difference between the EMC forecast and the RUC analysis 
is shown in the bottom-right panel. 
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Figure 10.  The distribution of 21-h forecasts and RUC analyses of TMP2m over the regional 
domains on 10 “clean-slate” convective days, in which there was little to no deep convection in 
the model forecasts or in the real atmosphere within the regional domains in the period leading 
up to the forecasts (see Section 5b).  The lines connect the frequency values for each bin for the 
NAM (thick black line) and the EMC (thick grey line) forecasts and the RUC analyses (thin 
black line). 
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Figure 11.  As in Fig. 8, except for the 16 “clean-slate” convective days, in which there 
was little to no deep convection in the model forecasts or in the real atmosphere within the 
regional domains in the period from 0900 UTC to 1900 UTC.  The EMC and NCAR 
models are not shown because output was available on only 10 of the 16 clean-slate days 
for these models. 
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Figure A1.  Response function of the Gaussian weighting function used to interpolate the model 
fields to the common domain.
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Figure A2. The 20-km RUC analysis of TMP2m valid at 2100 UTC on 1 May 2008 and the 
corresponding 21-h forecasts from the filtered and unfiltered TMP2m fields from the EMC 4-km 
model on the regional domain.
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Table 1.  Configurations for the four deterministic WRF models examined in this study.  MYJ: 

Mellor-Yamada-Janjić turbulence parameterization scheme (Janjić 2001), NMM: Nonhydrostatic 

Mesoscale Model (Janjić et al. 2005), ARW: Advanced Research WRF (Powers and Klemp 

2004), Ferrier: Ferrier et al. (2002); WSM6: WRF single moment, 6 class microphysics; 

Thompson: Hall et al. (2005), GFDL: Geophysical Fluid Dynamics Laboratory (Tuleya 1994); 

Dudhia: Dudhia (1989); RRTM: Rapid Radiative Transfer Model (Mlawer et al. 1997). 

 
 

WRF name NSSL EMC NCAR CAPS-CN 
Horizontal 

Grid Spacing (km) 4.0 4.0 3.0 4.0 

Vertical Levels 37 43 40 51 
Boundary Layer/Turbulence MYJ MYJ MYJ MYJ 

Microphysics 
 WSM6 Ferrier Thompson Thompson 

Radiation 
(shortwave/longwave) 

Dudhia/ 
RRTM GFDL/GFDL Dudhia/ 

RRTM Goddard/RRTM 

Initial Conditions 40 km NAM 32 km NAM parallel 9 km 
WRF/GFS 

3DVAR analysis using 
12 km NAM analysis 

background 
Dynamic Core ARW v2.2 NMM v2.2 ARW v.3 ARW v2.2 
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Table 2. Variations in initial condidtions, lateral boundary conditions, microphysics, shortwave 

radiation, and planetary boundary layer physics for the 2008 CAPS 4-km WRF-ARW ensemble 

forecasts. NAMa –12km NAM analysis; NAMf – 12km NAM forecast. All members used the 

RRTM longwave radiation scheme, and the Noah land-surface scheme. YSU refers to the Yonsei 

University PBL scheme.  Additional details about the initial and boundary conditions and the 

perturbations can be found at URL http://www.emc.ncep.noaa.gov/mmb/SREF/SREF.html and 

in Xue et al. (2008). 

 
 

Member IC LBC 
 

Radar Microphysics Shortwave 
Radiation 

PBL 
Scheme 

CN ARPS 3DVAR 
Analysis 00Z NAMf yes Thompson Goddard  

MYJ 
C0 00Z NAMa 00Z NAMf no Thompson Goddard MYJ 

N1 CN – arw_pert 21Z SREF 
arw_n1 

yes Ferrier Goddard YSU 

P1 CN + arw_pert 21Z SREF 
arw_p1 

yes WSM6 Dudhia MYJ 

N2 CN – nmm_pert 21Z SREF 
nmm_n1 

yes Thompson Goddard MYJ 

P2 CN + nmm_pert 21Z SREF 
nmm_p1 

yes WSM6 Dudhia YSU 

N3 CN – etaKF_pert 21Z SREF 
etaKF_n1 

yes Thompson Dudhia YSU 

P3 CN + etaKF_pert 21Z SREF 
etaKF_n1 

yes Ferrier Dudhia MYJ 

N3 CN – 
etaBMJ_pert 

21Z SREF 
etaBMJ_n1 

yes WSM6 Goddard MYJ 

P4 CN + 
etaBMJ_pert 

21Z SREF 
etaBMJ_n1 

yes Thompson Goddard YSU 

 
 


