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ABSTRACT

Meaningful verification and evaluation of convection-allowing models requires approaches that do not rely on point-to-point matches of

forecast and observed fields. In this study, one such approach—a beta version of theMethod for Object-Based Diagnostic Evaluation (MODE)

that incorporates the timedimension [knownasMODE time-domain (MODE-TD)]—was applied to 30-h precipitation forecasts from four 4-km

grid-spacing members of the 2010 Storm-Scale Ensemble Forecast system with different microphysics parameterizations. Including time in

MODE-TD provides information on rainfall system evolution like lifetime, timing of initiation and dissipation, and translation.

The simulations depicted the spatial distribution of time-domain precipitation objects across the United States quite well. However, all

simulations overpredicted the number of objects, with the Thompson microphysics scheme overpredicting the most and the Morrison method

the least. For the smallest smoothing radius and rainfall threshold used to define objects [8km and 0.10 in. (1 in.5 2.54 cm), respectively], the

most common object duration was 3h in both models and observations. With an increased smoothing radius and rainfall threshold, the most

common duration became shorter. The simulations depicted the diurnal cycle of object frequencies well, but overpredicted object frequencies

uniformly across all forecast hours. The simulations had spurious maxima in initiating objects at the beginning of the forecast and a corre-

sponding spurious maximum in dissipating objects slightly later. Examining average object velocities, a slow bias was found in the simulations,

which was most pronounced in the Thompson member. These findings should aid users and developers of convection-allowing models and

motivate future work utilizing time-domain methods for verifying high-resolution forecasts.

1. Introduction

Useful verification and evaluation of convection-

allowing models1 requires ‘‘nontraditional’’ approaches

that do not rely on point-to-point matches of forecast and

observed fields (e.g., Roberts and Lean 2008; Casati et al.

2008; Clark et al. 2010, and many others). These non-

traditional approaches are needed because, as grid reso-

lution increases, the time scales at which very accurate

predictability is possible on the grid scale become very

short (e.g., Lorenz 1969). Thus, even for forecasts that

humans would consider very good because they capture

some feature of interest at about the right location and

time, double penalties (i.e., forecast but not observed,

observed but not forecast) will harshly penalize tradi-

tional metrics.

One approach for nontraditional verification is object-

based verification in which objects are contiguous regions
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Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072.
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1 The term convection allowing refers to simulations that explicitly

depict convection (i.e., do not use convective parameterization) but

that do not use high enough resolution to adequately resolve processes

like turbulence and entrainment within clouds. The term generally

describes simulations run with 3–4-km horizontal grid spacing.
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of grid points of a particular field exceeding a specified

threshold. After objects are defined, pattern recognition

techniques are applied to match forecast to observed

objects. Attributes of matched objects such as location,

intensity, and shape can be compared to evaluate their

degree of similarity. Various object-based approaches

have been documented including the contiguous-rain-

area method (Ebert and McBride 2000; Ebert and

Gallus 2009), compositing methods (e.g., Nachamkin

2004), multiscale object identification (Lack et al. 2010)

and the structure, amplitude, and location (SAL) mea-

sure (Wernli et al. 2008).

Herein, we utilize an object-based approach known as

the Method for Object-Based Diagnostic Evaluation

(MODE; Davis et al. 2006a; Davis et al. 2009), which is

part of the Developmental Testbed Center’s (DTC)

Model Evaluation Tools (MET; current version available

online at http://www.dtcenter.org/met/users/downloads/).

InMODE, objects are defined within a spatial field after

application of smoothing and thresholding. Then, fuzzy-

logic-based algorithms can be applied to match and/or

merge objects in forecast and observed fields.

Many recent studies have demonstrated meaningful

diagnostics by applying MODE to convection-allowing

forecasts. Davis et al. (2006b) examined rainfall fore-

casts over the central United States from a 4-km grid-

spacing configuration of the Weather Research and

Forecasting (WRF) model (Skamarock et al. 2008).

Attributes of forecast rain areas, defined using length

and intensity scales consistent with those of mesoscale

convective systems (MCSs), revealed the overprediction

of the number of rain areas with length scales $ 80 km.

Additionally, Davis et al. (2006b) defined rain systems

by associating rain areas across consecutive 1-h time

intervals. For rain systems, the WRF model over-

predicted the average duration, and forecast systems

typically occurred 1–2 h later than observed.

MODE has also been used to evaluate convection-

allowing forecasts generated by the Center for Analysis

and Prediction of Storms (CAPS) in support of the

2009 and 2010 National Oceanic and Atmospheric

Administration/Hazardous Weather Testbed (NOAA/

HWT) Spring Forecasting Experiments (Kain et al. 2010a;

Jensen et al. 2010; Clark et al. 2012a). Simply overlaying

forecast and observed reflectivity objects defined by

MODE revealed that forecasts without radar-data-

assimilation frequently contained MCSs with an upstream

lag relative to forecasts with radar-data-assimilation dur-

ing the first 0–6h of the forecasts. The lag was attributed to

the time needed for non-radar-data-assimilating forecasts

to spin up MCSs present near-model initialization.

Other studies applying MODE to convection-

allowing forecasts include Johnson et al. (2011a,b), in

which cluster analyses were performed to evaluate the

systematic similarity–dissimilarity of ensemble precip-

itation forecasts; Johnson and Wang (2012), in which

MODEwas used to generate and calibrate object-based

probabilistic precipitation forecasts; Johnson and Wang

(2013), in whichMODEwas used to compare the skill of

convection-allowing ensemble members using the Ad-

vancedResearch core of theWRFmodel (ARW) versus

that found when using the Nonhydrostatic Mesoscale

Model (NMM) dynamics core of the WRF model; and

Johnson et al. (2013), which systematically compared

the performance of 1- and 4-km grid-spacing forecasts.

Finally, Duda and Gallus (2013) used MODE to di-

agnose the skill of 3-km grid-spacing WRF model sim-

ulations at predicting the convective initiation and

upscale evolution of convection into MCSs.

Until recently, MODE has only considered two-

dimensional spatial objects.2 However, efforts are on

going to incorporate the time dimension into an exten-

sion of MODE known as MODE time-domain (here-

after MODE-TD) that will become part of DTC’s MET

software package (Bullock 2011). In MODE-TD, con-

tiguous regions of grid points exceeding a specified

threshold encompassing both space and time are time-

domain objects. The addition of time results in a much

more powerful diagnostic tool that can provide informa-

tion on aspects of phenomena over their entire life cy-

cles including longevity, timing of initiation–dissipation,

translation speed, and evolution (e.g., growth, decay,

changes in maximum intensity, etc.), all of which could not

be diagnosed considering the spatial dimension alone.

MODE-TD concepts should have particularly useful

applications to convection-allowing forecast systems,

because these concepts will provide a framework for

evaluating explicitly depicted convective phenomena

such as supercells, MCSs, and flash-flood-producing

rainfall systems. In fact, several recent studies have

demonstrated useful applications of MODE-TD con-

cepts in convection-allowing forecasts. For example,

Clark et al. (2012b, 2013) identified time-domain objects

in convection-allowing ensemble forecasts of hourly

maximum updraft helicity (UH), a diagnostic for mea-

suring rotation in simulated storms (Kain et al. 2008,

2010b), and found that the total length of forecast UH

objects was strongly related to the total pathlength

of observed tornadoes over 12–30-h forecast periods.

Also, Miller and Correia (2012) and Kain et al. (2013)

applied a technique for identifying forecast and observed

2AlthoughDavis et al. (2006b) devised a method for considering

the time dimension by associating precipitation objects at adjacent

time periods, this is not a built-in functionality of the MODE

software.
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convective initiation, which was defined as the local

time minima within time-domain objects of simulated

reflectivity.

The purpose of this study is to apply a beta version

of MODE-TD to a set of convection-allowing precip-

itation forecasts generated during spring 2010 by CAPS

in support of the 2010 NOAA/Hazardous Weather

Testbed Spring Forecasting Experiment (SFE2010; Clark

et al. 2012a). The forecasts are composed of four

members of the Storm Scale Ensemble Forecast (SSEF)

system (Xue et al. 2010; Kong et al. 2010) identically

configured except for their microphysics parameteri-

zation. The main goal of this study is to demonstrate

new and insightful methods for comparing various as-

pects of the forecasts and observations that would

not be possible without incorporating the time di-

mension in object identification. Specific characteristics

of time-domain objects examined include spatial distri-

bution, duration characteristics, frequency of initiation–

dissipation, and translation. Comparisons of average

forecast and observed time-domain object attributes

are emphasized without attempting to match objects

from forecasts to observations. The remainder of this

study is organized as follows. Section 2 describes the

model and observational precipitation datasets and de-

tails of MODE-TD. Section 3 contains results, and sec-

tion 4 contains a summary and discussion.

2. Data and methodology

The simulations were initialized at 0000 UTC and

integrated 30 h over a CONUS domain (Fig. 1) with

4-km grid spacing using the ARW model version 3.1.1.

Initial and lateral boundary conditions (3-h updates)

were from North American Mesoscale (NAM; Rogers

et al. 2009) model analyses and forecasts, respectively.

Forecasts from all four members were available for 35

dates during spring 2010: 28–30 April; 3–6, 10–14, 17–21,

24–25, 27–28 May; and 1–4, 7–11, 14–18 June. Radial

velocity and reflectivity data from up to 140 Weather

Surveillance Radar-1988 Dopplers (WSR-88Ds) and

other high-resolution observations were assimilated into

the NAM analyses using the Advanced Regional Pre-

diction System (ARPS) three-dimensional variational

data assimilation (3DVAR; Xue et al. 2003; Gao et al.

2004) data and cloud analysis system (Xue et al. 2003;

Hu et al. 2006; Xue et al. 2008). Physics parameteriza-

tions included theMellor–Yamada–Janji�c (MYJ;Mellor

and Yamada 1982; Janji�c 2002) boundary layer scheme,

the Noah land surface model (Chen and Dudhia 2001),

and the Goddard (Chou and Suarez 1994) shortwave

and Rapid Radiative Transfer Model (RRTM; Mlawer

et al. 1997) longwave radiation schemes. No cumulus

parameterization was used. As previously noted, the

four particular members examined in this paper differed

only by their microphysics parameterizations, which

included Thompson et al. (2004), WRF single-moment

six-class (WSM6; Hong and Lim 2006), WRF double-

moment six-class (WDM6; Lim and Hong 2010), and

Morrison et al. (2005).

We chose the varied-microphysics members for

MODE-TD analyses because there were a reasonable

number of members to allow for thorough but not over-

whelming statistical analysis of time-domain object at-

tributes. Furthermore, there is strong scientific interest

in examining different microphysics parameterizations

in high-resolution models, especially the two ‘‘double

moment’’ schemes, WDM6 and Morrison, which were

newly available in WRF version 3.1.1. Double-moment

schemes contain prognostic equations for both mixing

ratios and number concentrations of certain hydrome-

teor species, unlike single-moment schemes, which only

contain prognostic equations for mixing ratios. Recent

work indicates that double-moment schemes are nec-

essary for reproducing dual-polarization signatures in

ensemble Kalman filter analyses of supercells (Jung et al.

2012) and MCSs (Putnam et al. 2014). Additionally,

Dawson et al. (2010) obtained more accurate simulations

of a tornadic supercell with two- and three-moment

schemes, especially with the simulated cold pool. Com-

paring idealized simulations, Bryan and Morrison (2012)

found that a double-moment scheme produced a more

realistic depiction of a squall line than a single-moment

scheme. On the other hand, there has yet to be work

showing a distinct advantage to using double-moment

over single-moment schemes in convection-allowing

simulations for forecast lead times between 12 and 36h

(e.g., Clark et al. 2012a).

FIG. 1. WRF model domain (black outline) and mask (gray

shading) within which forecast and observed time-domain objects

were analyzed. The black-shaded area within the gray mask is the

area covered by an example time-domain object along with its

corresponding bounding box.
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During SFE2010, one daily model evaluation activity

involved subjectively examining simulated composite

reflectivity forecasts from the four varied-microphysics

members (Clark et al. 2012a). One interesting result was

that, in the latter portions of the 30-h forecasts, the non-

Thompson schemes tended to generate stronger (i.e.,

colder) cold pools and associatedMCSs that propagated

too quickly toward the east and/or south, while the

Thompson forecasts had weaker, more realistic cold

pools relative to the non-Thompson members that were

associated with smaller MCS displacement errors. Thus,

one goal of this study is to examine whether these dif-

ferences are reflected in average time-domain object

translation speeds. For the verification dataset, the Na-

tional Centers for Environmental Prediction (NCEP)

stage IV (Baldwin and Mitchell 1997) multisensor rain-

fall estimates were used. The 4-km stage IV grids were

remapped onto the 4-km model grid using a neighbor-

budget interpolation (e.g., Accadia et al. 2003).

Identifying objects in MODE-TD involves a smooth-

ing and thresholding step as in traditional MODE, but

with the added time dimension. First, hourly precip-

itation fields are smoothed by taking a simple average of

the precipitation at all grid points within a specified ra-

dius of influence of each grid point. The appropriate

value for the smoothing radius is application dependent

and user defined. The main purpose of smoothing is to

make areas of rainfall more contiguous than in the

original field, as well as to filter out small or weak pre-

cipitation objects the user is not interested in (Davis

et al. 2009). The thresholding step involves creating

a binary mask where grid points that do not exceed the

minimum value for object classification are set to zero,

which allows object boundaries to be detected. After

thresholding, each contiguous region of nonzero grid

points in space and time is considered a separate object,

and the grid points within each object are assigned a

unique nonzero integer. For any particular point, con-

tiguous points include those that are immediately adja-

cent in space, as well as those at the nearest previous and

subsequent times that either overlap or are immediately

adjacent in space. Because this study only examines

average object attributes, fuzzy-logic-based algorithms

for matching–merging forecast and observed objects

were not applied.

MODE-TDwas applied to forecast andobserved hourly

precipitation fields using smoothing radii of 8, 16, and

32km, as well as precipitation thresholds of 0.10- and

0.25-in. (1 in. 5 2.54 cm), yielding six unique combina-

tions of parameters. Additionally, objects were required

to contain at least 10 grid points. Finally, the entire area of

each forecast and observed time-domain object ‘‘bounding

box’’ was required to fall within themask pictured inFig. 1.

The bounding box of an object is the rectangular area

created using the farthest west and south point within the

object as the lower-left corner and the farthest north

and east point as the upper-right corner. An example

bounding box and the area covered by its corresponding

time-domain object are also shown in Fig. 1. Themaskwas

constructed to encompass regions over which the stage IV

observations were most reliable (i.e., east of the Rockies,

within the United States, and over land). The smoothing

radii chosen represent a range of scales near the lower

bound of what the simulations can resolve and, when

combined with the precipitation thresholds that were

chosen, effectively capture precipitation associated with

organized MCSs as well as smaller and shorter-duration

convective storms. Using the smallest radii and pre-

cipitation thresholds retains many of the smaller and

shorter-duration precipitation objects along with the

more intense MCSs, while the largest ones mainly only

retain objects associated with organized MCSs. The cri-

terion that the objects contain at least 10 grid points was

imposed so that only objects approximately large enough

to be easily identifiable by a human would be retained.

For each time-domain object identified by MODE-

TD, 69 attributes were computed (i, j, and t refer to east–

west, north–south, and time model grid coordinates,

respectively): 1) the object volume (total number of grid

points within an object); 2–4) i, j, and t centroid co-

ordinates, respectively; 5) minimum i; 6) maximum i;

7) minimum j; 8) maximum j; 9) minimum t; 10) maximum

t; 11) ratio of object volume to bounding-box volume,

where the bounding box is defined using the maximum–

minimum i, j, and t coordinates; 12) u-velocity component

at forecast hour 2 [i.e., (i-centroidt52 – i-centroidt51)/

1 h]; 13) y-velocity component at forecast hour 2 [i.e.,

(j-centroidt52 – j-centroidt51)/1 h]; 14) u-velocity compo-

nent at forecast hour 3 [i.e., (i-centroidt53 – i-centroidt52)/

1 h]; 15) y-velocity component at forecast hour 3 [i.e.,

(j-centroidt53 – j-centroidt52)/1 h], . . . ., 68) u-velocity

component at forecast hour 30 [i.e., (i-centroidt530 –

i-centroidt529)/1 h], and 69) y-velocity component at

forecast hour 30 [i.e., (j-centroidt530 – j-centroidt529)/

1 h]. For the first hour an object was present and when

the object did not exist, missing values of 29999.0 were

assigned to the u- and y-velocity components. Centroid

coordinates were computed using themean i, j, and t over

the object volume.

3. Results

a. MODE-TD example

Figure 2 shows example time-domain precipitation

objects from the four microphysics parameterizations
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FIG. 2. Example time-domain precipitation objects defined using a threshold of 0.25 in. and a smoothing radius of 8 km forWRFmodel

simulations initialized at 0000 UTC 19 May 2010 using (a) Thompson, (b) WDM6, (c) WSM6, and (d) Morrison microphysics parame-

terizations. (e) Shows the stage IV observations. Each top panel shows the maximum precipitation (mm) over the lifetime of the object

and bottom ones show the time–longitude diagrams of the corresponding precipitation object indicated by colored shading with the plus

signs (1) marking the centroid longitudes at each time the object was present. The black–gray–white shading is for precipitation not

included in the object. A color bar for the spatial plots is provided in (a) and color bars for the time–longitude plots are below (d). In

(c), the labels 1, 2, and 3 denote three distinct rainfall systems composing the single time-domain object (discussed in the text). (f) The

outer object contours for each simulation and observations are overlaid in the top panel. In the bottom panel, the lines indicate paths of

model and observed object centroids in time–longitude space with a legend provided to the left.
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and stage IV observations for a long-lived MCS that

occurred on 19 May 2010 over Texas and Oklahoma. At

the top of each panel in Fig. 2, the maximum value of

precipitation at each i, j point over the lifetime of the

object is shown, and at the bottom, time–longitude plots

(latitudinally averaged) illustrate the zonal translation

of the objects. The objects depicted by Thompson (Fig.

2a), WDM6 (Fig. 2b), and Morrison (Fig. 2d) each have

a duration of about 17 h, while the stage IV object (Fig.

2e) has a duration of about 22 h. The object in WSM6

(Fig. 2c) is noticeably different, as it lasts for the entire

30-h forecast period. However, the long duration for

the WSM6 object was not the result of a single rainfall

system. Rather three clearly distinct rainfall systems

translating west to east happened to be ‘‘connected’’ in

space and time, composing a single time-domain object.

The approximate initiation times and locations for each

of these distinct systems are marked 1, 2, and 3 in Fig. 2c.

In such a case of merging precipitation systems, the ve-

locity components can be inconsistent with the move-

ment of the individual systems composing the single

time-domain object because the velocity calculations

consider all grid points within the object at each time

regardless of whether these points are from separate

systems. For example, system 2 in Fig. 2c is clearly

translating west to east during the 14–23-h forecast pe-

riod, but the object centroids remain at about the

same longitude because they are influenced by the grid

points of systems 1 and 3, which are also present during

these times. This type of problem is fairly common in

object-based applications and in the future could be al-

leviated by applying more complex image-processing

algorithms like watershed transforms (e.g., Lakshmanan

et al. 2009), which can separate single objects into dis-

tinct regions based on their spatial patterns. Separation

of the objects would increase the object frequencies and

result in an improved depiction of the translation speeds

for individual objects. However, to the best of our

knowledge, there is not a tendency for any particular

microphysics parameterization to exhibit these dis-

tinctly different but connected objects more than the

other schemes; thus, we do not believe there is any

systematic impact on the comparisons presented in

subsequent sections.

b. Spatial distribution of time-domain objects

Locations of precipitation object tracks over the en-

tire 35-day analysis period are shown by lines connecting

object centroids at their first and last time for Thompson

and stage IV observations in Fig. 3, and object track

frequencies within 0.58 3 0.58 latitude–longitude grid

boxes are shown in Fig. 4. The non-Thompson schemes

are not shown to simplify the plots, but their spatial

distributions of object tracks were very similar to those

of Thompson. In the simulations and observations, the

total number of tracks (indicated at bottom right of each

panel in Figs. 3 and 4) decreases with increasing smooth-

ing radius. For example, in stage IV objects identified

using the 0.10-in. rainfall threshold (Figs. 3a–c), the total

numbers of objects are 5302, 2805, and 1194, for 8-, 16-,

and 32-km smoothing radii, respectively. This reduction

is consistent with smoothing reducing the precipitation

amplitude so that fewer areas reach the criteria for ob-

ject classification. Additionally, smoothing can cause

closely separated areas of precipitation to combine into

one, further reducing object numbers. On the other

hand, in certain cases smoothing could increase the

number of objects. For example, consider one object

composed of two areas of relatively heavy precipitation

separated by light–moderate precipitation. If smooth-

ing damps the amplitude of the light–moderate precip-

itation enough so that it falls below the threshold

required for object classification, the two areas of heavy

precipitation would no longer be ‘‘connected’’ and

would thus compose two separate time-domain objects.

The different smoothing radii also impact the spatial

distribution of object tracks. For the smallest radius, in

simulations and observations there is a clear maximum

in object frequencies over the southeast United States

(e.g., Figs. 4a,d,g,j). However, as the smoothing radius

increases, the southeast U.S. maximum disappears and

the spatial distribution of objects becomes quite uni-

form. The reduction over the southeast United States

implies that, although precipitation may be more fre-

quent, objects here tend to be smaller, shorter lived, and

less intense than those over other regions and thus more

easily filtered out by a large smoothing radius. This be-

havior is consistent with the precipitation climatology

over the southeast United States during spring and

summer when short-lived thunderstorms driven by di-

urnal heating are common. Furthermore, at the largest

smoothing radius and in particular for time-domain

objects identified using the 0.25-in. precipitation thresh-

old (Figs. 3i,l), there is a broad region of the central

United States roughly centered over Iowa, Nebraska,

Kansas, Missouri, and Illinois, where relatively long

object tracks are concentrated. These long tracks likely

reflect long-lived MCSs, which are climatologically fa-

vored over this west–east corridor during the spring and

summer (e.g., Ahijevych et al. 2004; Tuttle and Davis

2006).

At all thresholds and smoothing radii, all four micro-

physics parameterizations overpredict the total number

of time-domain objects. This result is not surprising as

the tendency for convection-allowing models to over-

predict precipitation is well documented (e.g., Schwartz
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et al. 2010; Clark et al. 2009; Skamarock and Weisman

2009), and Johnson and Wang (2013) and Johnson et al.

(2013) also found substantial overprediction of objects

in convection-allowing forecasts. Generally, Thompson

overpredicts the most, while Morrison overpredicts the

least.

c. Object duration statistics

Object number as a function of duration for each

threshold and smoothing radii is shown in Figs. 5a–c and

5g–i. Additionally, to eliminate the impact of overpre-

diction on the shape of the distributions, the object

numbers for each duration were normalized by the total

number of objects for each threshold–radius (Figs. 5d–f

and j–l). For the 0.10-in. rainfall threshold and the 8-km

smoothing radius (Fig. 5a), the number of objects in the

models and observations peak at 3-h duration and then

quickly tail off for longer durations. The overprediction

of object numbers is apparent as well, with the peak at

3 h in the Thompson and WDM6 schemes almost twice

that of the stage IV observations. However, considering

the normalized object frequencies, all the simulations

replicate the shape of the observed distribution well

(Fig. 5d).

As the smoothing radius is increased to 32 km at the

0.10-in. threshold, the peak in stage IV frequencies shifts

to 2-h duration (Fig. 5c). Furthermore, as can be seen

by examining the normalized plots (Figs. 5d–f), as the

smoothing radius increases, the amplitude of the peak

decreases and the distributions broaden in both the

simulations and stage IV observations. Also, while

the peak is clearly at 2-h duration for stage IV with the

32-km smoothing radius, the peak in WDM6 is at 3-h

duration. For the 0.25-in. rainfall threshold, the patterns

of behavior of the simulations and observations are

similar to that from the 0.10-in. threshold. However,

there is a more dramatic shift in peak object frequencies

to shorter durations with increasing smoothing radius. In

the stage IV dataset, 1 h is the most frequent object

duration using the 32-km smoothing radius and there

is a notable discrepancy with Thompson, WDM6, and

WSM6, which have peak durations of 2 or 3 h. At the

0.25-in. threshold, Morrison stands out for matching

the stage IV distributions much better than the other

schemes, in particular, using a 16-km smoothing radius

(Figs. 5h,k). The shift to shorter object durations with

increasing smoothing radius results from the increased

smoothing dampening the precipitation magnitudes.

Thus, when using a small smoothing radius, times within

an object with relatively light precipitation may be

completely removed when using a larger smoothing ra-

dius. If these times occur at the beginning or end of the

object lifetime, the object duration will be shortened,

and if they occur within the middle of the object lifetime

(e.g., object with two precipitation peaks), the object

will be split into two shorter-duration objects. It is likely

that the peak object frequencies at the highest smooth-

ing radius and rainfall threshold in the Thompson,

WDM6, and WSM6 simulations do not match well with

observations because their precipitation objects are too

intense. Thus, there are fewer times at which a portion of

the objects are eliminated by a larger smoothing radius.

d. Diurnal cycle of object frequencies

The total number of time-domain objects present at

each forecast hour identified using the 0.10-in. threshold

and 8-km smoothing radius is shown in Figs. 6a–d. Be-

cause MODE-TD provides object start and end times, it

is also possible to separate the objects present at each

forecast hour according to the hour at which the objects

initiated. Thus, at each hour in Figs. 6a–d, the height of

individual segments composing each histogram bar in-

dicate the number of objects initiating at a specific

forecast hour, with the color of the segments indicating

the hour the objects originated. For example, at forecast

hour 21 in Figs. 6a–d, the top segment colored dark red

indicates the number of observed objects that initiated

at that hour. The white segment immediately below in-

dicates the number of observed objects that initiated the

previous hour (forecast hour 20) and still present at hour

21. The light pink segment below the white segment

indicates objects initiating 2 h before (i.e., forecast hour

19) and still present at hour 21, and so on. The segments

are stacked so that the most recent forecast hour is al-

ways on top and forecast hour 1 is always at the bottom.

This pattern allows one to follow segments with a par-

ticular color forward in time to visualize how quickly

objects initiating from a particular hour dissipate. For

example, following the dark red color forward in time

corresponding to observed objects initiating at forecast

hour 1, it is apparent that these objects have mostly

dissipated by forecast hour 12.

Generally, for the 0.10-in. rainfall threshold and 8-km

smoothing radius, the simulations depict the shape of

the diurnal cycle in object frequencies quite well, with

a gradual decrease from a relative peak at the initial

hour to a relative minimum between forecast hours 9

and 14, followed by a sharp increase to a peak at forecast

hours 21 and 22. However, consistent with previous re-

sults, the simulations overpredict object frequencies

quite uniformly across all hours, with Thompson over-

predicting the most and Morrison the least, which is

most apparent when comparing the magnitude of the

forecast hour 21–22 peak.

The frequency of object initiation and dissipation can

also be computed and is shown in Figs. 6e and 6f,
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respectively. Consideration of initiating–dissipating ob-

ject frequencies is important because they control the

rate of change in the object numbers at a particular

forecast hour [i.e. more (less) initiating relative to dis-

sipating objects results in an increase (decrease) in total

objects]. The number of initiating objects is simply de-

fined as the number of objects with their first time at

a given forecast hour. In Figs. 6a–d, the number of ini-

tiating objects at each hour is indicated by the height of

the top bar in each set of stacked histograms.3 The

FIG. 5. The number of time-domain precipitation objects as a function of duration (h) in forecasts and corresponding observations using

the 0.10-in. rainfall threshold and smoothing radii of (a) 8, (b) 16, and (c) 32 km. (d)–(f) As in (a)–(c), but the number of objects at

each duration for each dataset is normalized by the total number of objects across all durations in each dataset. (g)–(i), (j)–(l)As in (a)–(c),

(d)–(f), respectively, but the objects are identified using the 0.25-in. rainfall threshold.

3 Time-domain objects with their start time at forecast hour 1 are

not counted as ‘‘initiating’’ objects because most of these objects

would have actually initiated before the model initialization.
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number of dissipating objects at a particular forecast

hour is defined as the number of objects from the pre-

vious hour no longer present.

For the stage IV observations, the number of initiating

objects remains nearly constant between forecast hours

2 through 15, begins increasing at forecast hour 16, reaches

a peak at forecast hour 20, and then decreases until

flattening again at about forecast hour 27 (Fig. 6e). The

peak in initiating objects lags the peak in total objects by

about 1–2 h because the number of dissipating objects

remains less than the number of initiating ones until

about forecast hour 22. In the simulations, the shape of

the diurnal cycle in initiating objects is similar to that of

the stage IV observations. However, instead of a relatively

FIG. 6. The height of the stacked histogram bars indicates the total number of time-domain precipitation objects at each forecast hour

identified using the 0.10-in. rainfall threshold and 8-km smoothing radius for (a) Thompson, (b) WDM6, (c) WSM6, and (d) Morrison. In

(a)–(d), histogram bars for the stage IV objects are shaded pink to red and overlaid on those of themodel, which are shadedwhite to black.

For each forecast hour along the x axis, the height of the individual segments composing each ‘‘stack’’ indicates the number of objects

originating during the forecast hour asmarked by the color of the segment. The segments on top always indicate the number of objects that

initiated at the marked forecast hour and those on the bottom are always for forecast hour 1. A legend for the colored histogram bars is

provided in (a). (e),(f) The number of objects that initiated and dissipated, respectively, at each forecast hour (explained further in text).
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constant number of initiating objects between forecast

hours 2 and 15, there is a gradual decrease in the simu-

lations. Additionally, although the peak in initiating

objects in the simulations occurs at about the same time

as the stage IV observations, the amplitude of the peak is

too high in the simulations.

The pattern in the diurnal cycle of dissipating objects

for the simulations and stage IV observations (Fig. 6f)

generally follows that of initiating objects, except there

is a small maximum in dissipating objects near the be-

ginning of the forecast period and the maximum near

forecast hour 24 lags that of initiating objects by about

3–4 h. The 3–4-h lag between initiating and dissipating

object frequencies is consistent with the peak in ob-

served and simulated object lifetimes at the 0.10-in.

threshold and 8-km smoothing radius of 3 h (Fig. 5a).

The object frequencies for the same 8-km smoothing

radius as in Fig. 6, but for a higher rainfall threshold of

0.25-in., are shown in Fig. 7. In the observations, peak

object frequencies occur at forecast hour 22, which is 1 h

later compared to the 0.10-in. rainfall threshold. Addi-

tionally, the observations have a small peak at forecast

hour 12, which likely reflects the semidiurnal signal, as

discussed by Carbone et al. (2002). Similar to the 0.10-in.

FIG. 7. As in Fig. 6, but for the 0.25-in. rainfall threshold and 8-km smoothing radius.
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threshold, the simulations depict the general pattern of

the diurnal cycle in object frequencies for the 0.25-in.

threshold quite well. However, the overprediction dur-

ing the first 6 h of the forecast is more dramatic than at

the 0.10-in. threshold for all four simulations, which is

likely simply related to these simulations having a higher

bias at the larger rainfall thresholds during the peaks in

the diurnal cycle. Also, inWDM6,WSM6, andMorrison

(Figs. 7b–d), the peak object frequencies occur at fore-

cast hour 23, which is 1 h later than the stage IV obser-

vations, while the peak frequencies in Thompson (Fig. 7a)

are the same as those for stage IV. The amplitude of the

afternoon–evening peak is overpredicted in Thompson,

WDM6, andWSM6, but inMorrison the amplitude is very

close to that of the stage IV observations. None of the

simulations has as clear of a semidiurnal peak at forecast

hour 12 as the stage IV observations, but Thompson and

Morrison at least have 1h near or at forecast hour 12 with

slightly higher object frequencies than adjacent hours.

For the frequencies of initiating objects (Fig. 7e), the

pattern in stage IV observations is again quite similar to

that from the 0.10-in. threshold, but the peak for 0.25 in.

occurs at forecast hour 21, which is 1 h later than the

peak using the 0.10-in. threshold. In the simulations,

the initiating object frequencies are too high at the

start of the forecast period, but gradually decrease and

approximately fall in line with the observations by about

forecast hour 8. Similar to the peak in total object fre-

quencies, all simulations except for Morrison over-

predict the peak in initiating object frequencies. Also,

the timing of the peak in initiating object frequencies

from the simulations matches that of the observations.

For the dissipating object frequencies at the 0.25-in.

threshold and 8-km smoothing radius (Fig. 7f), the

simulations have a noticeable peak at forecast hours

3 and 4 that is not nearly as pronounced in the stage IV

observations. This peak reflects the dissipation of ob-

jects that were overpredicted during the first 1–2 h of

the simulations. Furthermore, for the late afternoon–

evening peak in dissipating objects, the peak in the

simulations occurs 1–2 h later than in the observations,

which is consistent with the peak in total object fre-

quencies from the simulations occurring about 1–2 h

later relative to the observations.

To examine the impact of increased smoothing radii

on the diurnal object frequencies, Figs. 8 and 9 are the

same as Figs. 6 and 7, respectively, but for a smoothing

radius of 16km instead of 8 km. For the 0.10-in. threshold

(Fig. 8), the afternoon–evening peak in the stage IV

observations occurs at forecast hour 22, which is 1 h later

than the observed peak using an 8-km smoothing ra-

dius. This shift in the peak suggests that the increased

smoothing eliminates more times at the beginning of an

object’s lifetime than at the end, whichwould occur given

an asymmetric evolution in intensity with time (i.e., ob-

jects reach peak intensity after the midpoint in their

lifetime). The relative amount of overprediction in the

object frequencies from the simulations is less when us-

ing the 16-km smoothing radius compared to the 8-km

radius. In fact, the Morrison simulation in particular

has a pattern and amplitude in object frequencies that

matches the stage IV observations very well (Fig. 8d).

Similarly, for frequencies of initiating and dissipating

objects, the overprediction is not as dramatic when using

the 16-km smoothing radius compared to the 8-km

smoothing radius. The timing of the peak initiating–

dissipating object frequencies in the simulations is gen-

erally within 1 h of the observations.

For the 0.25-in. rainfall threshold and 16-km smooth-

ing radius (Fig. 9), the peak in stage IV object frequencies

during the afternoon–evening occurs at forecast hour 22,

which is the same as that using the 8-km smoothing ra-

dius. However, in the Thompson, WSM6, and Morrison

simulations the peak shifts 1–2h later compared to the

peak using the 8-km smoothing radius, so that the peak in

these simulations lags that of the observations by 2h. For

WDM6, the timing of the peak lags the observations by

1 h. For the frequencies of initiating objects (Fig. 9e), the

behavior in the simulations is similar to the previously

discussedplots, but for dissipating objects the spurious peak

in the simulations near forecast hour 4 is more dramatic.

e. Time-domain object velocities

The u and y components as well as the total speed

(velocity magnitude) of the objects are shown as a func-

tion of forecast hour in Fig. 10. At each hour, average

velocity components are computed over all the objects

that were present and had valid velocity components.4

Additionally, at eachhour, the distribution of velocities in

each of the simulations was compared to that of the ob-

servations to determine whether the difference in means

was statistically significant at level a 5 0.05. For the sig-

nificance test, a Welch two-sample t test was employed

using the t.test function in the R statistical software

package (R Development Core Team 2013). The pres-

ence of colored bars along the x axis in each Fig. 10 panel,

where a specific color corresponds to a particular micro-

physics scheme, indicates that differences in the mean

velocity component of the simulation were significantly

different than those of the stage IV observations.

For the average u-velocity components (Figs. 10a,d,g,j),

there is a clear diurnal cycle in both the simulations and

4Only objects with duration .1 h and that are $2 h old at the

forecast hour of interest have valid velocity components.
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observations with a broad peak centered near forecast

hour 12 and a broadminimum around forecast hours 21–

23. We believe this diurnal cycle is related to the large

peak in initiating objects around forecast hour 21 (e.g.,

Fig. 6e). At this time, which corresponds to maximum

insolation, airmass thunderstorms commonly occur in

moist environments with weak upper-level flow that

results in slow movement. Rainfall systems existing at

other times within the diurnal cycle are more likely to be

associated with a synoptic-scale weather system and/or

be driven by mesoscale processes that require stronger

vertical wind shear; thus, these types of systems would

have faster speeds than the rainfall systems tied to solar

heating.

Generally, average u components in the simulations are

slower than in observations. The differences are particu-

larly large during the first 6–9h of the forecasts when the

simulations are too slow by anywhere from 4 to 8kmh21,

depending on which microphysics scheme, rainfall

threshold, and smoothing radius is considered. This slow

bias during the first part of the forecast has been docu-

mented for convection-allowing simulations that do not

use radar data assimilation (Kain et al. 2010a). How-

ever, for simulations that use the radar-data-assimilating

FIG. 8. As in Fig. 6, but for the 0.10-in. rainfall threshold and 16-km smoothing radius.
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3DVAR and cloud analysis system like those examined

herein, only anecdotal evidence of a slow bias during the

first few forecast hours has been documented during

annual SFEs. The slow bias likely at least partially results

from the 3DVAR and cloud analysis system not ade-

quately depicting the mesoscale dynamics–circulations

driving the movement of convective systems existing at

the model initialization time. We have observed through

model evaluations conducted for the annual SFEs that

even when convection is well depicted in the initial

conditions (ICs) of these simulations, there is often

a period of time during the first hour or two of model

integration when storms lose coherence but then

‘‘spin up’’ again as the model dynamics begin to take

control. This spinup is likely reflected in the slow bias

seen here.

To evaluate howmuch time-domain objects beginning

from rainfall systems present in the ICs impact the av-

erage velocity components, Fig. 11 is constructed simi-

larly to Fig. 10, except the averages do not include any

observed or simulated objects that begin at forecast hour

1. For the average u components (Figs. 11a,d,g,j) and

FIG. 9. As in Fig. 6, but for the 0.25-in. rainfall threshold and 16-km smoothing radius.
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FIG. 10. Average velocity component and totalmagnitude at each forecast hour for time-domain objects in observations and simulations

defined using the 0.10-in. rainfall threshold and 8-km smoothing radius: (a) u, (b) y, and (c) total magnitude. (d)–(f) As in (a)–(c), but for

objects defined using a 16-km smoothing radius. (g)–(i), (j)–(l)As in (a)–(c), (d)–(f), respectively, except for objects defined using the 0.25-

in, rainfall threshold. A legend is provided in the left panels. The colored boxes just above the x axis in each panel indicate that the

differences at the particular hour between the simulation and observations are statistically significant. The colors indicated in the legend

also apply to the filled boxes.
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FIG. 11. As in Fig. 10, except observed and simulated objects that start at forecast hour 1 are not included in the averages.

JUNE 2014 C LARK ET AL . 535



magnitudes (Figs. 11c,f,i,l), the differences between

forecasts and observations at forecast hours 4–9 are

much less relative to the corresponding Fig. 10 plots,

which include the objects beginning at forecast hour 1.

This confirms that rainfall systems assimilated into the

ICs through the radar-data-assimilating 3DVAR system

[used at a single time without cycling; Xue et al. (2010)]

are contributing much of the slow bias near the begin-

ning of the forecast period. Thus, even though the radar

data assimilation is beneficial during the first 0–12 h

of the forecast, more sophisticated data assimilation

methods like ensemble Kalman filters (e.g., Snyder and

Zhang 2003; Tong and Xue 2005) may be needed to

better depict storm and rainfall system dynamics at

model initialization. Additionally, when used in a con-

tinuously cycled mode, assimilating radar data at higher

frequencies (e.g., Hu and Xue 2007) is also likely to be

beneficial.

The average y components (Figs. 10b,e,h,k) in the

simulations and observations generally fall within the

range 24 to 4 kmh21, which is much smaller than

the average u components that vary between about

4 and 20 kmh21. Although there are a few times with

statistically significant differences between the various

simulations and observations, there do not appear to be

any systematic differences with the exception of perhaps

forecast hours 21–27 when the average y-velocity com-

ponents in the simulations are generally smaller than

those in the stage IV observations.

The average velocity magnitudes (Figs. 10c,f,i,l) gen-

erally follow the same pattern as the u components, but

with larger values—generally in the range 8–30 kmh21.

Similar to the u components, the simulations have a slow

bias at most forecast hours. The Thompson scheme, on

average, has the largest slow bias, and at each smoothing

radius and rainfall threshold considered, Thompson has

the most statistically significant differences.

To examine the evolution of the average wind com-

ponents over the lifetime of time-domain objects, the

average components are presented as a function of ob-

ject duration in Fig. 12. This is equivalent to setting the

initiation time of each object to a common hour and then

computing the average components at each hour within

the object’s lifetime. Note that because the number of

objects decreases sharply with increasing duration, the

sample sizes used to compute the averages have a cor-

responding decrease with increasing duration. Thus,

average velocities in the first few hours of object life-

times are much more heavily weighted to objects with

shorter lifetimes. In Fig. 12, the underlain gray bars in-

dicate the sample size of the time-domain objects in the

observations for each of the durations, and similar to

Figs. 10 and 11, the colored bars along the x axis of each

panel show the object durations at which significant

differences in average velocities between the simula-

tions and observations were present.

For the average u components (Figs. 12a,d,g,j), there

is a clear upward trend in both simulations and obser-

vations with increasing object duration. Overall, the

average u velocities in the simulations are too slow, with

the WDM6, WSM6, and Morrison simulations rough-

ly clustered together and the Thompson simulations

slower, which is reflected in there being more times at

which the average u velocities in Thompson are signifi-

cantly different compared to the observations. The slow

bias in all simulations ismost pronounced during the first

8 h of an object’s lifetime and for the 0.25-in. rain-

fall threshold. The slow bias could be related to several

factors, but we speculate that it is likely caused by an

overprediction in the number of relatively slow-moving

objects, and for the Thompson scheme, underprediction

of cold pool strength, which would tend to slow simu-

lated MCS propagation speeds.

For the average y components (Figs. 12b,e,h,k), the

observations generally stayed near zero, indicating that,

on average, time-domain objects have no preference for

northward or southward movement. For the 0.10-in.

rainfall threshold, there is a slight tendency for systems

to move more southerly with increasing lifetime, but for

the 0.25-in. threshold, the average y velocities for ob-

served time-domain objects stayed fairly constant and

near zero. In general, the average y velocities in the

simulations were slightly less (i.e., more southerly) than

the observations. In particular, at hours 6–10 for the

0.10-in. rainfall threshold and 16-km smoothing radius

(Fig. 12e) and hours 6–14 for the 0.25-in. threshold and

16-km smoothing (Fig. 12k), the average y velocities in

the WSM6 and WDM6 simulations were noticeably less

than the observations indicating too much southerly

movement.

Despite the aforementioned biases in the individual

velocity components, theWSM6,WDM6, andMorrison

simulations follow the observed average magnitudes

very closely with only a few times near the beginning of

the average time-domain object lifetime when the dif-

ferences relative to the observations are significant (Figs.

12e,i,f,l). On the other hand, the average Thompson

magnitudes are clearly outliers relative to the other runs,

exhibiting obvious slow biases of about 6–8kmh21.

Thompson also has the most times at which differences

relative to the observations are statistically significant.

Furthermore, there is acceleration with increasing object

lifetime similar to that observed in the average u veloci-

ties, except the acceleration is even more pronounced.

This acceleration could be real, or, if there is a tendency

for shorter-lived objects to have slower speeds, it could
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FIG. 12. Colored lines indicate average velocity components (kmh21) for observations and simulations over the lifetime of time-domain

objects. Gray histogram bars indicate the number of stage IV time-domain objects equal to or exceeding each value of duration. The y axis

for the velocities (number of objects) is on the lhs (rhs) of each panel. The colored boxes just above the x axis in each panel indicate that the

differences at the particular hour between the simulation and observations are statistically significant. The colors indicated in the legend in

the middle column panels also apply to the filled boxes. For the 0.10-in. rainfall threshold and 8-km smoothing radius, the (a) u, (b) y, and

(c) total magnitudes are shown. (d)–(f) As in (a)–(c), but for the 16-km smoothing radius. (g)–(i), (j)–(l) As in (a)–(c), (d)–(f), respectively,

but for the 0.25-in. rainfall threshold.
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simply be an artifact of these objects having more weight

during the first few hours of the average object’s lifetime.

To test the impact of time-domain object lifetime, Fig. 13

is constructed similarly to Fig. 12, except average speeds

are computed separately for objects with total durations

greater than 4, 7, 10, and 13 h. As longer durations are

considered in Fig. 13, the average speeds during the

beginning of the average object’s lifetime increase,

which eliminates much of the apparent acceleration.

Thus, most of the apparent acceleration is, in fact, an

artifact of the shorter-lifetime objects having slower

speeds and more weight during the first few hours of the

average object’s lifetime. However, even just consider-

ing objects with duration greater than 13 h, it appears

that there is still an upward trend in object speed (i.e.,

acceleration) with increasing duration. This acceleration

may reflect the typical evolution of organized convective

systems. The beginning stages of these systems are often

marked by the initiation of relatively small individual

storms or multicell clusters of storms whose cold pools

eventually merge to form one organized system. In the

beginning stages of storm development, the movement

of storms is largely determined by the mean wind;

however, as storms merge and cold pool dynamics begin

to dominate, convective systems can accelerate and

propagate forward at speeds faster than the mean wind.

The simulated cold pool dynamics are dependent on and

very sensitive to the depiction of microphysical processes.

Thus, the translation speed and evolution of simulated

MCSs can vary greatly depending on the specific scheme

(e.g., Adams-Selin et al. 2013).

4. Summary and discussion

In this study, a beta version of the Method for Object-

Based Diagnostic Evaluation (MODE) that incorporates

the time dimension [known as MODE time-domain

(MODE-TD)] was applied to 30-h precipitation fore-

casts from four members of the 2010 Storm-Scale Ensem-

ble Forecast (SSEF) system with different microphysics

parameterizations run by CAPS in support of the 2010

NOAA/HWTSpringForecastingExperiment. InMODE-

TD, contiguous regions of grid points exceeding a specified

threshold encompassing both space and time are re-

ferred to as time-domain objects. The inclusion of time

allows for the calculation of object attributes that pro-

vide information on object evolution such as lifetime,

timing of initiation–dissipation, and translation, all of

which would be difficult to diagnose by considering the

spatial dimension alone. MODE-TD was applied to

stage IV rainfall observations and the SSEF members

using smoothing radii of 8, 16, and 32 km for rainfall

thresholds of 0.10 and 0.25 in. Our main findings are

summarized below.

For the spatial distribution of time-domain objects, it

was found that for the smallest smoothing radius there

was a clear maximum in both models and observations

over the southeast United States. However, for larger

smoothing radii, the spatial distribution of time-domain

objects across the United States became more uniform.

The elimination of the southeast U.S. maximum implied

that objects there tend to be smaller, shorter lived, and

less intense than those over other regions of the United

FIG. 13. Average speeds over the lifetime of time-domain objects defined using a rainfall threshold of 0.10 in. and smoothing radius of

8 km in (a) stage IV, (b) Thompson, (c) WDM6, (d) WSM6, and (e) Morrison. (f)–(j) As in (a)–(e), but for a 16-km smoothing radius.

Black, red, green, and blue lines indicate averages computed only for objects that have lifetimes$ 4, 7, 10, and 13 h, respectively. A legend

is provided at the bottom right of (a),(f).
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States and thus more easily filtered out by a large

smoothing radius. Additionally, for the largest smooth-

ing radius and rainfall threshold, there was a broad re-

gion over the central United States where relatively long

object tracks were concentrated, which likely reflects

long-lived mesoscale convective systems, which are com-

mon in this region during spring and summer. All simu-

lations overpredicted the total number of time-domain

objects, with the Thompson scheme overpredicting the

most and Morrison the least.

Examining distributions of object duration, it was

found that for the smallest smoothing radius and rainfall

threshold, themost common durationwas 3 h in both the

models and observations. With increased smoothing

radius and rainfall threshold, the peak in the distribu-

tions shifted to shorter durations. TheMorrisonmember

stood out for matching the stage IV distributions much

better than the other schemes, in particular, when the

16-km smoothing radius was examined.

Examining the diurnal cycle of time-domain object

frequencies, it was found that the simulations depict the

shape of the diurnal cycle quite well, especially for the

smallest smoothing radii and rainfall threshold, but

overpredict object frequencies quite uniformly across all

forecast hours. Using information provided by MODE-

TD on time-domain object start and end times, it was

also possible to examine the diurnal cycle of object ini-

tiation and dissipation frequencies. The simulations

tended to have a spurious maximum in initiating objects

during the first few hours of the forecast and a corre-

sponding spurious maximum in dissipating objects a few

hours later around forecast hours 3–5. Other than the

spurious maxima, the phase of the main maxima in ini-

tiating and dissipating objects occurring at the latter part

of the forecast period was well depicted.

Average u (east–west) and y (north–south) object

movement velocity components as well as the total ve-

locity magnitude were computed at each forecast hour

for observed and simulated time-domain objects. For

the average u components and total magnitudes, the

simulations tended to have a slow bias, which was most

pronounced during the first 6 h of the forecasts. Much of

this slow bias could be attributed to the inability of the

noncycled 3DVAR and cloud analysis system that gen-

erates the model ICs to properly depict the mesoscale

dynamics driving the movement of convective systems

existing at the model initialization time. The slow bias

was most dramatic in the Thompson member. Average

velocity components were also computed over the life-

time of time-domain objects; that is, the start time of

each object was set to a common hour and then averages

were computed at each subsequent hour. Again, a slow

bias in the simulations was found, with the bias in the

Thompsonmember themost pronounced. Furthermore,

in both models and observations, an upward trend in the

u-velocity components and total magnitudes was ob-

served. The upward trend was mainly an artifact of

shorter-duration objects having slower speeds and more

weight during the first few hours of the average object’s

lifetime. However, after only considering the longer-

duration objects in the average speeds, there still ap-

peared to be a slight acceleration with increasing object

duration. It is possible that the acceleration reflects the

typical evolution of organized convective systems that

start with discrete storms or multicell storm clusters that

move with the mean wind and then merge–grow upscale

into a single forward-propagating system that moves

faster than the mean wind.

The slow bias observed in the Thompson member was

somewhat of a surprise given the subjective findings

from the 2010 Spring Forecasting Experiment, which

suggested that Thompson did not have any systematic

bias in translation speed. As discussed earlier, as part of

the model evaluations during SFE2010 it was noted that,

in the latter portions of the 30-h forecasts, the non-

Thompson schemes tended to generate stronger (i.e.,

colder) cold pools and associatedMCSs that propagated

too quickly east and/or south, while the Thompson

member had weaker cold pools that appeared to be as-

sociated with MCSs that propagated more slowly, which

better matched the observations. The subjective finding

that the Thompson member did not move MCSs as

quickly east and/or south as the non-Thompson mem-

bers is consistent with the findings herein that Thomp-

son had the slowest-moving rainfall systems. However,

rather than having systems that translated too quickly,

the non-Thompson members were found to have trans-

lation speeds that were on average about the same or

slightly slower than the observations. We suspect this

discrepancy is simply a result of the narrow focus of the

subjective Spring Forecasting Experiment comparisons,

which were conducted for a limited number of cases and

over relatively small subdomains of the model simula-

tions, whereas the objective results from MODE-TD

considered much more data.

The addition of the time dimension in theMODE-TD

software allowed for relatively straightforward evalua-

tion of rainfall system attributes that should be very

useful to model users and developers. In the future, we

believe that MODE-TD concepts will continue to have

particularly useful applications to convection-allowing

(i.e., sub-4-km grid spacing) forecast systems, because it

will allow for an efficient and objective method for eval-

uating explicitly depicted convective phenomena such

as supercells, MCSs, and flash-flood-producing rainfall

systems. This future work will require the adaptation of
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fuzzy-logic-based algorithms used for matching and/or

merging spatial objects (e.g., Davis et al. 2009; Johnson

et al. 2011a; Johnson and Wang 2013) to time-domain

objects, which was not attempted in this study.
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