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ABSTRACT

An experiment has been designed to evaluate and compare precipitation forecasts from a 5-member, 4-km

grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20) Weather Research and Forecasting

(WRF) model ensemble, which cover a similar domain over the central United States. The ensemble fore-

casts are initialized at 2100 UTC on 23 different dates and cover forecast lead times up to 33 h. Previous work

has demonstrated that simulations using convection-allowing resolution (CAR; dx ; 4 km) have a better

representation of the spatial and temporal statistical properties of convective precipitation than coarser

models using convective parameterizations. In addition, higher resolution should lead to greater ensemble

spread as smaller scales of motion are resolved. Thus, CAR ensembles should provide more accurate and

reliable probabilistic forecasts than parameterized-convection resolution (PCR) ensembles.

Computation of various precipitation skill metrics for probabilistic and deterministic forecasts reveals that

ENS4 generally provides more accurate precipitation forecasts than ENS20, with the differences tending to

be statistically significant for precipitation thresholds above 0.25 in. at forecast lead times of 9–21 h (0600–

1800 UTC) for all accumulation intervals analyzed (1, 3, and 6 h). In addition, an analysis of rank histograms

and statistical consistency reveals that faster error growth in ENS4 eventually leads to more reliable pre-

cipitation forecasts in ENS4 than in ENS20. For the cases examined, these results imply that the skill gained

by increasing to CAR outweighs the skill lost by decreasing the ensemble size. Thus, when computational

capabilities become available, it will be highly desirable to increase the ensemble resolution from PCR to

CAR, even if the size of the ensemble has to be reduced.

1. Introduction

Because of inherent errors in modeling and observa-

tional systems, perfect deterministic forecasts of atmo-

spheric states are impossible. However, if uncertainty in

observations and model processes is properly accounted

for by constructing an ensemble of forecasts, the en-

semble members can be viewed as sampling a proba-

bility density function (PDF) from which reliable (i.e.,

events occur at frequencies corresponding to their fore-

cast probabilities) probabilistic forecasts can be derived

(e.g., Hamill and Colucci 1997; Eckel and Mass 2005;

Clark et al. 2008; and many others). In addition, deter-

ministic forecasts computed from the ensemble mean

can perform better than individual members because

the most uncertain aspects of the forecast are filtered

out (e.g., Leith 1974; Holton 2004), which is especially

true when considering large-scale features.

In current global ensemble forecast systems [e.g., the

National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS; Toth and Kalnay 1993)

Ensemble Prediction System; European Centre for

Medium-Range Weather Forecasts (ECMWF; Molteni

et al. 1996) Ensemble Prediction System], various methods
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of generating initial condition (IC) perturbations (e.g.,

Toth and Kalnay 1997; Palmer et al. 1992; Molteni et al.

1996) and model perturbations yield reliable medium-

range (2–10 day) forecasts of synoptic-scale parameters

like 500-hPa geopotential height and mean sea level

pressure. For the purpose of medium-range synoptic

forecasting, IC errors make much larger relative con-

tributions than model errors after the synoptic-scale

error growth becomes nonlinear [;24 h; Gilmour et al.

(2001)]. However, for short-range forecasts of small-

scale phenomena like warm-season precipitation, which

is the focus of this study, accounting for model error

by using different combinations of physical parameter-

izations (e.g., Houtekamer et al. 1996; Stensrud et al.

2000; Du et al. 2004; Jones et al. 2007) and numerical

models (e.g., Wandishin et al. 2001; Du et al. 2004; Eckel

and Mass 2005) becomes very important in generating

sufficient model dispersion. Unfortunately, even in

these ensembles that include IC, model formulation,

and physics perturbations, short-range forecasts for

sensible weather phenomenon like convective precipi-

tation remain underdispersive (Eckel and Mass 2005).

Several factors are probably contributing to this lack of

spread including coarsely resolved and temporally in-

terpolated lateral boundary conditions (LBCs; Nutter

et al. 2004), inappropriate IC perturbation strategies for

short ranges (Eckel and Mass 2005), and an inability to

capture small-scale variability because of insufficient

resolution (Eckel and Mass 2005).

Because of computational limitations, regional-scale

short-range ensemble forecast (SREF) systems like

those run at NCEP (Du et al. 2004), the University of

Washington (UW; Eckel and Mass 2005), and Stony

Brook University (SBU; Jones et al. 2007) have been

forced to use relatively coarse grid spacing (32–45 km

for NCEP’s SREF system, 12 km within a 32-km outer

nest in UW’s system, and 12 km for SBU’s system) and,

thus, must use cumulus parameterization (CP). In en-

semble systems, using different CPs is an effective way

of generating spread in rainfall forecasts (e.g., Jankov

et al. 2005), but using CPs introduces systematic errors

in rainfall forecasts (e.g., Davis et al. 2003; Liu et al.

2006; Clark et al. 2007), and models using CPs cannot

resolve finescale features in rainfall systems. Because of

these limitations, significant improvements in rainfall

forecasts may be realized by running an ensemble using

the explicit representation of convection (i.e., no CP).

Although there is still some debate regarding the grid

spacing needed to adequately resolve convection (e.g.,

Bryan et al. 2003; Petch 2006), results from idealized

tests (Weisman et al. 1997) indicate that 4 km is about

the coarsest grid spacing at which midlatitude mesoscale

convective systems (MCSs) can be resolved. Further-

more, ongoing experiments that began in 2003 in sup-

port of the Bow Echo and MCV Experiment (BAMEX;

Davis et al. 2004) using various 4-km grid-spacing con-

figurations of the Weather Research and Forecasting

(WRF; Skamarock et al. 2005) model to aid convective

forecasting have been rather successful (see Kain et al.

2008 for a thorough review). For example, simulations

using convection-allowing resolution (CAR) have been

found to more accurately depict the diurnal precipita-

tion cycle (Clark et al. 2007; Weisman et al. 2008), as

well as MCS frequency and the convective system mode

(Done et al. 2004; Weisman et al. 2008) relative to

simulations using parameterized-convection resolution

(PCR).

Although increasing to CAR may not necessarily in-

crease the forecast skill for deterministic forecasts as

measured by traditional ‘‘grid based’’ metrics [e.g., eq-

uitable threat score (Schaefer 1990) and bias] because

of small displacement errors in small-scale features

leading to large errors (Baldwin et al. 2001; Davis et al.

2006a), it is possible that significant improvements in

probabilistic precipitation forecasts may be obtained

from an ensemble using CAR because of superior spa-

tiotemporal representation of statistical properties of

convective precipitation in the CAR members (e.g.,

Fritsch and Carbone 2004; Kong et al. 2006, 2007a).

Also, because error growth occurs more rapidly at

smaller scales, ensembles using CAR may have a better

representation of forecast uncertainty. However, be-

cause of current computational limitations, it is difficult

to create a CAR ensemble in real time with a domain

size and number of members comparable to ensembles

that are currently being used operationally. Although,

given the potential advantages of CAR, an ensemble

composed of a relatively small number of CAR mem-

bers could potentially outperform an ensemble com-

posed of a large number of PCR members, in which case

there will be an incentive for future operational en-

semble systems to reduce the numbers of members in

order to increase the CAR.

Given these computational considerations, this study

aims to compare warm-season precipitation forecast

skill between a small (5 member) CAR ensemble using

4-km grid spacing (ENS4) and a relatively large

(15-member) PCR ensemble using 20-km grid spacing

(ENS20), each covering a similar domain over the cen-

tral United States (Fig. 1). Because these ensembles

have different numbers of members, special care is taken

to properly compare probabilistic skill metrics. Although

ENS4 has fewer members than ENS20, the computa-

tional expense should not be considered equal. In fact,

because of the time-step reduction and 3D increase in

the number of grid points, a reduction in grid spacing
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from 20 to 4 km increases the computational expense

by a factor of ;125. Thus, because ENS4 has 1/3 the

members as ENS20, it is still about 42 times more com-

putationally expensive than ENS20 (125 3 1/3 5 42), and

to conduct the comparison between ensembles with

equal computational expense would require ENS20 to

have 125 3 5 5 625 members. So, the purpose of this

study is not to compare ensembles with similar compu-

tational expense, but to determine if at some point when

computational capabilities allow, it would be advanta-

geous to reduce ensemble size in order to use CAR. The

remainder of this paper is organized as follows: section 2

describes model configurations and cases examined.

Section 3 describes the data and methodology, including

verification methods. Section 4 provides analyses of de-

terministic and probabilistic precipitation forecast skill,

as well as spread and reliability. Finally, section 5 pro-

vides a summary and suggestions for future work.

2. Ensemble descriptions and cases examined

The ENS4 ensemble was obtained from a real-time

ensemble forecasting experiment conducted as part

of the National Oceanic and Atmospheric Administra-

tion (NOAA) Hazardous Weather Test Bed (HWT)

Spring Experiment (Kain et al. 2008) during April–June

2007 (Xue et al. 2007; Kong et al. 2007b). A 4-km grid-

spacing CAR WRF-ARW (version 2.2.0) model ensem-

ble was run by the Center for Analysis and Prediction

of Storms (CAPS) of the University of Oklahoma,

which was composed of 10 members initialized daily at

2100 UTC and integrated for 33 h over an approxi-

mately 3000 km 3 2500 km domain covering much of

the central United States (Fig. 1). Four of the members

used both perturbed ICs and mixed physical parame-

terizations (mixed physics), while six members, includ-

ing the control member, used only mixed physics so that

the effects of changing the model physics could be iso-

lated. In this study, only the four members with both

mixed physics and perturbed ICs plus the control

member—a five-member ensemble (ENS4 ensemble)—

are used because the ensemble using mixed physics

alone ignores initial condition uncertainty, an important

source of forecast uncertainty. For the control member,

the 2100 UTC analyses from NCEP’s operational North

American Mesoscale (NAM; Janji�c 2003) model (at 12-

km grid spacing) are used for ICs and the 1800 UTC

NAM 12-km forecasts are used for LBCs. For the initial

perturbed members, perturbations extracted from the

2100 UTC NCEP SREF WRF-ARW and WRF-NMM

members are added to the 2100 UTC NAM analyses,

and the corresponding SREF forecasts are used for LBCs

(3-h updates). Xue et al. (2007) and Kong et al. (2007b)

have more details on the configurations.

The ENS20 ensemble was generated at Iowa State

University and is also composed of WRF-ARW (ver-

sion 2.2.0) members with perturbed ICs–LBCs and

mixed physics. Different sets of ICs for each ENS20

member are obtained directly from NCEP SREF mem-

bers (listed in Table 2), rather than adding perturbations

to the 2100 UTC NAM analyses, and, similar to ENS4,

SREF forecasts are used for LBCs.

All ENS4 and ENS20 members use the rapid radia-

tive transfer model (RRTM) short-wave radiation

scheme (Mlawer et al. 1997) and the Goddard longwave

radiation scheme (Chou and Suarez 1994), along with

FIG. 1. Domains for (a) SREF ensemble members, (b) ENS4 and ENS20 ensemble members,

and (c) the analyses conducted in this study.
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the Noah land surface model physics scheme (Ek et al.

2003). Varied planetary boundary layer parameteriza-

tions in both ensembles include the Mellor–Yamada–

Janji�c (MYJ; Mellor and Yamada 1982; Janji�c 2002) and

Yonsei University (YSU; Noh et al. 2003) schemes; the

microphysics schemes include Thompson et al. (2004),

WRF single-moment six-class (WSM-6; Hong and Lim

2006), and Ferrier et al. (2002); surface layer schemes

include Monin–Obukhov (Monin and Obukhov 1954;

Paulson 1970; Dyer and Hicks 1970; Webb 1970) and

the Janji�c Eta Model (Janji�c 1996, 2002); and CPs in

ENS20 include the Betts–Miller–Janji�c (BMJ; Betts

1986; Betts and Miller 1986; Janji�c 1994), Kain–Fritsch

(KF; Kain and Fritsch 1993), and Grell–Devenyi (Grell

and Devenyi 2002) schemes. Note that ENS4 does not

use a CP. The ENS4 and ENS20 specifications are listed

in Tables 1 and 2, respectively.

Forecasts were examined for 23 cases during April–

June 2007 (Fig. 2). These cases were chosen based on

the availability of the ENS4 real-time forecasts and

represent a variety of convective precipitation events

[e.g., isolated convection (19 April), heavy rainfall as-

sociated with a cutoff upper low (22–25 April), and

many nocturnal MCSs (late May–early June)].

3. Data and methodology

This study examines forecasts of 1–3- and 6-hourly

accumulated rainfall. Although the 1- and 3-hourly ac-

cumulation periods are examined starting at initializa-

tion, the 6-h periods begin with forecast hours 3–9,

corresponding to the 0000–0600 UTC period. The stage

IV (Baldwin and Mitchell 1997) multisensor rainfall

estimates available at 1- and 6-hourly accumulation in-

tervals on a 4-km polar stereographic grid are used to

verify rainfall forecasts. Both stage IV rainfall estimates

and ENS4 rainfall data are remapped to a 20-km grid

covering the central United States (Fig. 1), which is just

a subdomain of the ENS20 members, using a neighbor-

budget interpolation that conserves the total liquid

volume in the domain (a procedure typically used at

NCEP). The ENS4 forecasts were coarsened to allow

direct comparisons to ENS20; additional and potentially

useful information on the finer-scale details in the forecast

TABLE 1. ENS4 Ensemble member specifications. NAMa and NAMf indicate NAM forecasts and analyses, respectively; em_pert and

nmm_pert are perturbations from different SREF members; and em_n1, em_p1, nmm_n1, and nmm_p1 are different SREF members

that are used for LBCs. The remaining table elements are described in the text.

Ensemble member ICs LBCs

Microphysics

scheme

Surface layer

scheme

Boundary layer

scheme

CN 2100 UTC NAMa 1800 UTC NAMf WSM-6 Janji�c Eta MYJ

N1 CN – em_pert 2100 UTC SREF em_n1 Ferrier Janji�c Eta MYJ

P1 CN 1 em_pert 2100 UTC SREF em_p1 Thompson Janji�c Eta YSU

N2 CN – nmm_pert 2100 UTC SREF nmm_n1 Thompson Monin–Obukhov YSU

P2 CN 1 nmm_pert 2100 UTC SREF nmm_p1 WSM-6 Monin–Obukhov YSU

TABLE 2. ENS20 Ensemble member specifications. The IC–LBC table elements represent various SREF members. The asterisks (*)

and plus signs (1) denote the combination of 5 and 10 ensemble members, respectively, with the best statistical consistency. The

remaining table elements are described in the text.

Ensemble member ICs–LBCs Cumulus scheme Microphysics scheme Surface layer scheme Boundary layer scheme

11 em_ctl BMJ Thompson Janji�c Eta MYJ

2*1 em_p1 BMJ WSM-6 Janji�c Eta MYJ

31 em_n1 BMJ WSM-6 Monin–Obukhov YSU

4 nmm_ctl BMJ Thompson Monin–Obukhov YSU

51 nmm_p1 BMJ Ferrier Monin–Obukhov YSU

6* nmm_n1 KF Thompson Janji�c Eta MYJ

7 eta_ctl1 KF WSM-6 Janji�c Eta MYJ

81 eta_n1 KF WSM-6 Monin–Obukhov YSU

91 eta_n2 KF Thompson Monin–Obukhov YSU

10 eta_n3 KF Ferrier Monin–Obukhov YSU

11*1 eta_n4 Grell Thompson Janji�c Eta MYJ

12 eta_p1 Grell WSM-6 Janji�c Eta MYJ

13*1 eta_p2 Grell WSM-6 Monin–Obukhov YSU

141 eta_p3 Grell Thompson Monin–Obukhov YSU

15*1 eta_p4 Grell Ferrier Monin–Obukhov YSU
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precipitation fields could be gained using the ENS4 data

on its original 4-km grid.

Probabilistic and deterministic forecasts derived from

each ensemble were verified. Deterministic forecasts

were obtained using the probability matching technique

(Ebert 2001), which is applied by assuming that the best

spatial representation of rainfall is given by the en-

semble mean and that the best frequency distribution

of rainfall amounts is given by the ensemble member

quantitative precipitation forecasts (QPFs). To apply

probability matching, the PDF of the ensemble mean is

replaced by the PDF of the ensemble member QPFs,

which is calculated by pooling the forecast precipita-

tion amounts for all n ensemble members, sorting the

amounts from largest to smallest, and keeping every nth

value. The ensemble mean precipitation amounts are

also sorted and the rank and location of each value are

stored. Then, the grid point with the highest precipita-

tion amount in the ensemble mean is replaced by the

highest value in the distribution of the ensemble mem-

ber QPFs, and so on. The ensemble mean obtained from

the probability matching procedure (PM) can help cor-

rect for large biases in areal rainfall coverage and the

underestimation of rainfall amounts that are typically

associated with using a standard ensemble mean, and

results in a precipitation field with a much more realistic

distribution.

Forecast probabilities (FPs) for precipitation were

obtained by finding the location of the verification

threshold within the distribution of ensemble member

forecasts. The reader is referred to Hamill and Colucci

(1997, 1998) for a thorough description of the applica-

tion of this technique for assigning FPs. Similar to

Hamill and Colucci (1998), the FPs for thresholds be-

yond the highest ensemble member forecast are ob-

tained by assuming that the PDF in this region has the

shape of a Gumbel distribution (Wilks 1995). Note that

this method assumes the rank histograms generated

from the ensembles are uniform and forecast uncer-

tainty is accurately represented. These assumptions may

not be valid for precipitation forecasts (e.g., Hamill and

Colucci 1997, 1998; Jankov et al. 2005; Clark et al. 2008).

Thus, in an operational setting, the FPs should be cali-

brated based on the shape of the rank distribution from

past model forecasts (Hamill and Colucci 1998). In ad-

dition, Eckel and Mass (2005) recommend adjusting

individual ensemble member forecasts based on known

biases before FP calibration is performed to obtain

maximum ensemble utility. Because the 23 cases ex-

amined in this study constitute a relatively small sample

from which a useful ‘‘training period’’ cannot be ob-

tained, this type of calibration is not performed.

To verify deterministic forecasts, the equitable threat

score (ETS; Schaefer 1990) is used, which is computed

using contingency table elements representing possible

forecast scenarios including hits (observed event correctly

predicted), misses (event occurred but not predicted),

false alarms (event predicted that did not occur), and

correct negatives (event correctly predicted not to oc-

cur). A complete description of ETS in terms of con-

tingency table elements can be found in Hamill (1999).

ETSs range from 21/3 (ETS , 0 has no skill) to 1

(perfect). Average ETSs were calculated by summing

contingency table elements from all cases for each

forecast hour and rainfall threshold, and computing

the scores from the summed elements. This aggregate

method gives greater weight to widespread precipitation

events than if the ETS for each case was simply averaged.

To verify probabilistic forecasts, the area under the

relative operating characteristic curve [ROC score;

Mason (1982)] is used, which is closely related to the

economic value of a forecast system (e.g., Mylne 1999;

Richardson 2000, 2001). The ROC score is computed

from members of a contingency table for probabilistic

forecasts. To construct the ROC curve, the probability

of detection (POD) is plotted against the probability of

false detection (POFD) for a set of specified ranges of

FPs. The area under this curve is computed using the

trapezoidal method (Wandishin et al. 2001). Because

the method used to compute FPs in this study allows for

FIG. 2. Dates when SSEF ensemble runs were conducted (light gray) and used in this study

(dark gray).
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continuous (rather than discrete) values of FPs between

0% and 100%, the same set of FP ranges that make up

the points on the ROC curve can be used to verify both

ensembles, and problems associated with comparing

ROC scores between ensembles of different sizes are

avoided. The FPs used are P , 0.05, 0.05 # P , 0.15,

0.15 # P , 0.25 . . . 0.85 # P , 0.95, and 0.95 # P , 1.00.

The range of values for the ROC score are 0 to 1 with

scores above 0.5 showing skill, and a score of 0.7 con-

sidered to represent the lower limit of a useful forecast

(Buizza et al. 1999).

The resampling methodology described in Hamill

(1999) was used to determine whether differences in the

ETS and ROC scores were statistically significant (a 5

0.05; resampling repeated 1000 times). For ETS com-

parisons, the biases from both ensembles were adjusted

to the average bias between them, which minimized the

adjustments made to precipitation forecasts to account

for bias. Because the ROC score is insensitive to bias

(e.g., Harvey et al. 1992; Mason and Graham 2002),

no adjustments were made to forecasts prior to its

computation.

4. Results

a. Analysis of diurnally averaged
Hovmöller diagrams

Warm-season precipitation in the central United

States tends to form at similar times of day and prop-

agate over similar longitudes so that when diurnally

averaged time–longitude (Hovmöller) diagrams of pre-

cipitation are constructed, coherent and propagating

rainfall axes are observed (Carbone et al. 2002). These

coherent axes, which are often composed of long-lived

convective ‘‘episodes.’’ suggest that an intrinsic pre-

dictability is associated with propagating rainfall systems

over the central United States, so that predictability

limits that have been suggested by past theoretical

studies (e.g., Smagorinsky 1969; Lorenz 1969) may be

longer than previously thought. However, partly because

of shortcomings associated with CPs (e.g., Molinari and

Dudek 1992; Kain and Fritsch 1998; Davis et al. 2003;

Bukovsky et al. 2006), it is believed that numerical models

will not be able to take advantage of this inherent pre-

dictability until CAR is utilized. Evidence from some

preliminary studies comparing data from CAR and

PCR simulations (e.g., Liu et al. 2006; Clark et al. 2007;

Weisman et al. 2008) supports this idea. An ensemble of

CAR members with a better depiction of the propa-

gating rainfall axis over the central United States than a

PCR ensemble should have a considerable advantage

because individual CAR members will be more likely to

fall within the range of likely solutions if they have

an accurate ‘‘model climatology,’’ whereas many of the

PCR solutions may be very unlikely to verify because of

consistent biases in the timing and location for propa-

gating rainfall systems.

To examine whether differences in the diurnal cycle

representation exist for the ensemble members in this

study, 1-hourly diurnally averaged Hovmöller diagrams

for all ensemble member forecasts and stage IV obser-

vations are constructed following procedures described

in Clark et al. (2007), with latitudinal averages (along

constant-longitude slabs) computed between 328 and

488N latitude. The Hovmöller diagram for the stage IV

observations (Fig. 3c) shows that coherent propagating

rainfall axes exist even for the relatively small number

of cases examined. A primary axis of observed rainfall

begins around 2200 UTC (forecast hour 1) at about

1028W and ends around 1500 UTC (forecast hour 18) at

about 948W, while a weaker secondary rainfall axis be-

gins a few hours before model initialization (perhaps

1900 UTC) at 988W and ends around 0900 UTC (fore-

cast hour 12) at about 908W. Note that both axes begin

to repeat during the second diurnal cycle within the

forecast period. Each of the 23 cases examined con-

tributed to 0%–15% of the rainfall within the primary

axes, while one case contributed about 25% of the

rainfall to the secondary axes and the remaining cases

contributed 10% or less rainfall to the secondary axes

(not shown). Thus, the primary rainfall axes are more

representative of all 23 cases than the secondary axes.

The primary rainfall axis is similar to that observed in

studies examining longer time periods (e.g., Carbone

et al. 2002; Tuttle and Davis 2006), while the secondary

axis has not been observed in the studies examining the

longer time periods. However, Clark et al. (2007) did

observe a secondary rainfall axis during February–April

2007 over the northern portion of the central United

States.

The Hovmöller diagrams for the five members of

ENS4 (not shown) all reveal coherent propagating rain-

fall axes resembling both the primary and secondary axes

from stage IV observations. The ENS4 ensemble mean

(computed using PM; Fig. 3a) also exhibits the propa-

gating axes showing that the averaging process retains

the propagating signal and may actually improve its

representation relative to individual members. This im-

provement is suggested by the spatial correlation coeffi-

cients computed in Hovmöller space (Fig. 3e), which are

higher for the ENS4 ensemble mean than all of its

members during forecast hours 4–18, and all but one of

its members during forecast hours 19–33.

Some of the Hovmöller diagrams for the members

of the ENS20 ensemble (not shown) have propagating

1126 W E A T H E R A N D F O R E C A S T I N G VOLUME 24



signals resembling those in the observations during the

first diurnal cycle within the forecast period (before

forecast hour 18), in particular the BMJ members. In

fact, the spatial correlation coefficients for the ENS20

BMJ members are comparable to the ENS4 members

during this first period (Fig. 3e). However, all ENS20

members, except for BMJ members 1 and 2 (Table 2),

lack a clear propagating signal during the 19–33-h fore-

cast period. It is worth noting the good relative perfor-

mance of ENS20 members 1 and 2; perhaps, these two

configurations are especially conducive to propagating

convective systems despite their relatively coarse grid

spacing, which would agree with the results from

Bukovsky et al. (2006) in which propagating features

were noted and examined in the NCEP operational

NAM model containing a similar configuration as ENS20

members 1 and 2. However, note that the propagation

mechanism for the features noted by Bukovsky et al.

(2006) was not physically realistic, and further examina-

tion of these ensemble member forecasts is beyond the

scope of this study.

Generally, Hovmöller diagrams and spatial correla-

tion coefficients show that ENS4 has a better diurnal

cycle depiction and representation of the propagating

rainfall axes than ENS20, especially during forecast

hours 19–33. The larger differences during this later

forecast period appear to result from the ENS20 mem-

bers simulating the rainfall maximum that occurs during

the second simulated diurnal cycle too early and too

intensely, which is reflected in the ENS20 ensemble

mean Hovmöller diagram and diurnally averaged time

series of the domain-averaged rain volume for ENS4

and ENS20 members (Fig. 3d). These results imply that

ENS4 has an inherent advantage over ENS20. The fol-

lowing sections will use various standard verification

metrics to determine whether this advantage is enough

to compensate for the smaller ensemble size of ENS4

relative to ENS20.

b. Comparison of ensemble equitable threat scores

The skill of deterministic forecasts derived using PM

from each ensemble is compared by constructing time

series of ETSs for 1-, 3-, and 6-h intervals at the 0.10-,

0.25-, and 0.50-in. rainfall thresholds (Fig. 4). For the

ENS20 ensemble, in addition to computations using all

15 members, the ETSs computed using the ensemble

FIG. 3. Diurnally averaged Hovmöller diagrams of ensemble mean (computed using probability matching) 1-hourly precipitation

forecasts from (a) ENS4, (b) ENS20, and (c) 1-hourly stage IV observed precipitation. Spatial correlation coefficients computed in

Hovmöller space for the ensemble means during forecast hours 4–18 are indicated at the middle left of (a) and (b), and those for forecast

hours 19–33 are indicated at the bottom left of (a) and (b). The maps at the tops of (a)–(c) indicate the domains over which the Hovmöller

diagrams were computed. (d) Domain-averaged precipitation from the ENS4 members (thin black lines), ENS20 members (thick gray

lines), and stage IV observations (thick black line). (e) Spatial correlation coefficients computed in Hovmöller space for the ENS4 and

ENS20 members during forecast hours 4–18 (P1) and 19–33 (P2).
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mean from the 5 and 10 members with the best statis-

tical consistency, as described by Eckel and Mass (2005)

for a finite ensemble, are also examined [these members

are noted in Table 2 and referred to as ENS20(5m) and

ENS20(10m) hereafter]. Thus, comparisons between

ensembles with the same number of members can be

made, and the impacts of the additional members on

ENS20 can be examined. The range of ensemble mem-

ber ETSs for ENS4 and ENS20 are also shown in Fig. 4.

Generally, both ENS4 and ENS20 tend to have max-

ima in ETSs between forecast hours 9 and 15 when both

models have had sufficient time to ‘‘spin up’’ (e.g.,

Skamarock 2004) and synoptic-scale error growth should

still be relatively small. In addition, these forecast hours

correspond to the times at which the propagating rainfall

axis in the Midwest is at its maximum amplitude, sug-

gesting some enhanced predictability associated with

long-lived MCSs, which occur most frequently at times

corresponding to these forecast hours (e.g., Maddox

1983). To verify that the maxima in ETS are not simply

artifacts of relatively high biases (Hamill 1999), time

series of average 3-hourly biases to which both ensemble

mean forecasts were adjusted during computation of

ETS are shown in Fig. 5, along with the total number of

grid points in which the observed precipitation above the

specified threshold occurred. Time series of bias are

actually opposite in phase to those of ETS, implying that

the maxima in ETS are truly a reflection of skill. In fact,

FIG. 4. Time series of average ETSs for the ENS4, ENS20, ENS20(5m), and ENS20(10m) ensemble mean precipitation forecasts at the

0.10-in. precipitation threshold for (a) 1-, (b) 3-, and (c) 6-hourly accumulation intervals; at the 0.25-in. precipitation threshold for (d) 1-,

e) 3-, and (f) 6-hourly accumulation intervals; and at the 0.50-in. precipitation threshold for (g) 1-, (h) 3-, and (i) 6-hourly accumulation

intervals. ENS20(5m) and ENS20(10m) represent ensembles composed of the combination of 5 and 10 members, respectively, of ENS20

that have the best statistical consistency. The light (dark) shaded areas depict the range of ETSs from the ENS20 (ENS4) ensemble

members. Times at which differences between the ETSs from the ENS4 and ENS20 ensemble mean precipitation forecasts were

statistically significant are denoted by bars near the bottom of the panels. The highest (middle) (lowest) bars correspond to times at which

differences between ENS4 and ENS20 [ENS20(10m)] [ENS20(5m)] were statistically significant.
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it appears that ETS values are more dependent on ob-

served points above the threshold analyzed, with larger

observed rainfall areas corresponding to higher ETSs,

than they are bias (Fig. 5). This dependence suggests that

widespread precipitation events are more predictable

than isolated events, and that the aggregate method for

computing average ETS, which gives more weight to

widespread precipitation events, should be associated

with higher values of ETSs than those computed by

simply averaging over all cases.

ENS20(5m) appeared to generally have lower ETSs

than ENS20, while ENS20(10m) generally had very

similar ETSs to ENS20, indicating that most of the skill

realized from increasing ensemble size was obtained

with an increase from 5 to 10 members, while very little

skill was obtained with the increase from 10 to 15 mem-

bers. Similar behavior illustrating a ‘‘point of diminish-

ing returns’’ has been observed in previous studies (e.g.,

Du et al. 1997; Ebert 2001), and it is likely that additional

model diversity (e.g., addition of members with a dif-

ferent dynamic core) would result in a larger increase in

skill as demonstrated by the NCEP SREF system (Du

et al. 2006). In addition, note that ensemble mean ETSs

from both ensembles are greater than the highest cor-

responding ensemble member ETSs, illustrating that the

ensemble mean forecasts do represent an improvement

relative to ensemble member forecasts, which is ex-

pected behavior in an ensemble.

After about forecast hour 9, at virtually all forecast

lead times, accumulation intervals, and rainfall thresh-

olds examined, ENS4 has higher ETSs than ENS20,

with differences that are statistically significant occur-

ring for 1-hourly accumulation intervals at all rainfall

thresholds examined, and for 3- and 6-hourly accumu-

lation intervals at the 0.50-in. rainfall threshold. The

statistically significant differences generally occur be-

tween forecast hours 12 and 21, corresponding to the

times near and just after the maxima in ETS. Further-

more, between forecast hours 9 and 12 at the 0.25- and

0.50-in. rainfall thresholds for 1- and 3-hourly accumu-

lation intervals (Figs. 4d, 4g, 4e, and 4h), all of the ENS4

members have higher ETSs than the maximum ETS of

the ENS20 members. Also, there appears to be a trend

for the differences in ETS between ENS4 and ENS20 to

become smaller as increasing accumulation intervals are

examined, which implies that timing errors may explain

much of the differences, because timing errors decrease

as longer accumulation intervals are examined (e.g.,

Wandishin et al. 2001). The implied influence of timing

errors is also supported by the Hovmöller diagrams of

diurnally averaged rainfall from each ensemble (Figs. 3a

and 3b), and the diurnally averaged time series of the

domain-averaged rainfall for all ensemble members

(Fig. 4d), which were discussed in the previous section.

To determine which cases contributed the most to

the statistically significant differences in ETSs between

ENS4 and ENS20, and to determine whether ENS4

consistently performs better than ENS20 over all cases,

ETS differences for the 0.50-in. rainfall threshold for

3-hourly accumulation intervals at forecast hours 12–21

(corresponding to Fig. 4h), when differences were sta-

tistically significant, are examined (Fig. 6a). Note that

these differences [ETS(ENS4) 2 ETS(ENS20)] were

calculated after the bias-correction procedure discussed

in section 3 was applied. While the differences from

each case do not truly reflect the contributions to the

average differences in ETS because rainfall events cov-

ering large areas are weighted more than events covering

small areas in the averaging procedure used, the larger

differences did tend to be associated with relatively

widespread rainfall events (not shown). Thus, these

larger differences (e.g., highlighted cases in Fig. 6a) are

likely making large relative contributions to the average

ETS differences.

As revealed in Fig. 6a, ENS4 consistently performs

better than ENS20 during forecast hours 12–21 for the

0.50-in. rainfall threshold, and there are only a few times

when ENS20 has a higher ETS than ENS4. Two par-

ticular cases with relatively widespread precipitation

amounts greater than 0.50 in. that were initialized on

29 and 31 May (highlighted in Fig. 6a) were observed to

have relatively large differences in ETS. Hovmöller

FIG. 5. Time series of 3-hourly bias and total number of grid points in which the observed precipitation occurred above the

(a) 0.10-, (b) 0.25-, and (c) 0.50-in. thresholds.
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FIG. 6. (a) Difference between ETSs of ENS4 and ENS20 during forecast hours 12–21 at the

0.50-in. rainfall threshold. Hovmöller diagrams of forecast precipitation from ENS4 (black

contour), ENS20 (light gray contour), and stage IV observations (light gray shading) are shown

for (b) 29 May and (c) 31 May 2007 [cases shaded dark gray in (a)]. The areas outside of the

hatching correspond to the forecast hours plotted in (a). Images of the observed composite

reflectivity centered on the mesoscale convective systems contributing to the observed pre-

cipitation during the cases plotted in (b) and (c) are shown in (d) and (e), respectively.
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diagrams of ENS4 and ENS20 forecast and stage IV

observed rainfall for these cases are plotted in Figs. 6b

and 6c, revealing that ENS4 was better able to simulate

the eastward propagation of rainfall systems from these

cases than ENS20. Composite reflectivity images (Figs.

6d and 6e) corresponding to times when large errors

were observed in ENS20 show that the errors were as-

sociated with mature, nocturnal MCSs. In addition, it

was found that out of the 15 cases in which ETS dif-

ferences were greater than 0.05 during at least one of

the periods between forecast hours 12 and 21 (gray

shaded cases in Fig. 6a), 7 contained mature MCSs

during forecast hours 12–21 (asterisks mark cases in

Fig. 6a). These seven MCS cases accounted for 66% of

the total number of grid points (over all 23 cases) with

observed precipitation greater than 0.50 in. during

forecast hours 12–21. These results are a strong indica-

tion that the ability of the CAR members in ENS4

to properly simulate propagating MCSs explains the

statistically significant differences in ETS between

ENS4 and ENS20 observed in Fig. 4.

c. Comparison of ROC scores

The skill levels of probabilistic forecasts derived from

each ensemble are compared by constructing time series

of ROC scores for 1-, 3-, and 6-h intervals at 0.10-, 0.50-,

and 1.00-in. rainfall thresholds (Fig. 7). Similar to ETS,

ROC scores for the 5 and 10 members of the ENS20

ensemble with the best statistical consistency are also

plotted. Because statistically significant differences be-

tween ENS4 and ENS20 ROC scores were confined to

higher precipitation thresholds than in the ETS analysis,

higher thresholds than those shown for ETS are shown

for ROC scores in Fig. 7. In general, maxima in ROC

scores from both ensembles are observed at forecast

hours 9–15. However, the amplitude of the ROC score

oscillations is much larger, especially in ENS4, as the

rainfall threshold examined increases. The timing of this

FIG. 7. As in Fig. 4, but for ROC scores at different sets of precipitation thresholds, and ranges among members are not indicated.
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ROC score maximum likely is again due to enhanced

predictability because of the high relative frequencies of

MCSs at these times. There also appears to be a sec-

ondary maximum in ENS4 ROC scores at the 0.50- and

1.00-in. rainfall thresholds for all accumulation intervals

examined around forecast hour 27 (Figs. 7d–i). This

secondary maximum also appears in the ENS20 ROC

scores, but only at 6-hourly accumulation intervals

(Figs. 7f and 7i). The timing of the secondary ROC

score maximum corresponds to the secondary propa-

gating rainfall axis noted in the Hovmöller diagram of

the observed precipitation during forecast hours 24–33

(Fig. 3c). Thus, it is also possible that ROC scores are

enhanced around forecast hour 27 because of a ten-

dency for propagating MCSs to occur during this time.

Similar to trends seen with ETS, ENS20(5m) gen-

erally has lower ROC scores than ENS20, while

ENS20(10m) ROC scores are very similar to those of

ENS20. Thus, most of the increase in ROC scores re-

alized from increasing the ensemble size is obtained

with an increase from 5 to 10 members, with the in-

crease from 10 to 15 members having little impact.

At the 0.10-in. rainfall threshold, at most forecast lead

times, ENS20 has similar or slightly higher ROC scores

than ENS4. However, the differences are statistically

significant only before forecast hour 9, at 1- and

3-hourly accumulation intervals, and at forecast hours

20 and 21 at 1-hourly accumulation intervals (Figs. 7a

and 7b). Note that before forecast hour 9, model

‘‘spinup’’ processes are still on going and ENS4 takes

longer than ENS20 to generate areas of rainfall because

grid-column saturation must occur before rainfall is

generated in ENS4 members, while grid-column satu-

ration is not required in ENS20 members because a CP

is used. At 0.50- and 1.00-in. rainfall thresholds for

1-hourly accumulation intervals, ENS4 ROC scores are

higher than ENS20, with differences statistically signif-

icant at many forecast lead times (Figs. 7d and 7g). For

3-hourly accumulation intervals, ENS4 ROC scores are

higher than ENS20 ROC scores, with differences sta-

tistically significant occurring only at the 1.00-in. rainfall

threshold (Figs. 7e and 7h), while for 6-hourly accu-

mulation intervals, there are no statistically significant

differences (Figs. 7f and 7i). It should be noted that,

although there are not statistically significant differ-

ences between ENS4 and ENS20 for any of the rainfall

thresholds at 6-hourly accumulation intervals, and for

the 0.50-in. rainfall threshold for 3-hourly accumulation

intervals (Figs. 7e, 7f, and 7i), statistically significant

differences between ENS4 and ENS20(5m) ROC scores

do occur.

In general, statistically significant differences oc-

curred around forecast hours 9–15 and 24–30, corre-

sponding to the times at which maxima in ROC scores

were observed. Also, similar to ETS, there was a trend

for the differences between ENS4 and ENS20 to de-

crease with increasing accumulation intervals, implying

the decreasing influence of timing errors with increasing

accumulations intervals.

d. Ensemble spread and statistical consistency

1) RANK HISTOGRAM ANALYSIS

Rank histograms are a useful tool for assessing en-

semble spread (Hamill 2001) and are constructed by

repeatedly tallying the rank of the rainfall observation

relative to forecast values from an ensemble sorted from

highest to lowest. A reliable ensemble will generally

have a flat rank histogram, while too little (much)

spread is indicated by a u-shaped (n shaped) rank his-

togram (Hamill 2001). Furthermore, the skewness of a

rank histogram indicates bias, with right skewness (left

skewness) indicating a tendency for members to over-

forecast (underforecast) the variable being examined.

For an ensemble composed of n members, precipita-

tion observations can fall within one of any n 1 1 bins.

The bars that compose a rank histogram represent the

fraction of observations that fall within each of these

bins. Thus, the ENS4 rank histograms are composed of

6 bars while those of ENS20 are composed of 16 bars.

The different numbers of rank histogram bars make it

difficult to compare rank histograms from each ensem-

ble. For example, it is obvious that the right skewness of

the rank histograms from both ENS4 (gray shaded bars

in Fig. 8a) and ENS20 (Fig. 8b) indicates a tendency for

members to overpredict precipitation, but it is not clear

which rank histogram indicates the greater tendency for

overprediction. To allow for a more convenient com-

parison, the 16 bins composing the ENS20 rank histo-

gram are regrouped into 6 bins, which each contain an

equal portion of the original 16 bins (Fig. 8a). Care

should be taken when interpreting the regrouped rank

histograms. For example, the outer bins in the re-

grouped ENS20 rank histogram cannot be interpreted

as the fraction of observations that fall completely

outside the range of all ensemble members, as they are

in ENS4, because they contain fractions from 3 of the

original 16 bins. Rather, the regrouped rank histograms

should be viewed as the rank histogram that would re-

sult from ENS20 if it was composed of 5 members, as-

suming these 5 members had about the same reliability

and bias as the 15-member ENS20.

At all forecast lead times, the right skewness of the

rank histograms from both ensembles indicates a ten-

dency for members to overpredict precipitation (Figs.

8a and 8b). The right skewness appears to be the most
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FIG. 8. Rank histograms at various forecast lead times for 6-hourly accumulated precipitation from (a) ENS4 (gray shaded bars) and

ENS20 (regrouped; black outlined bars) and (b) ENS20. (c),(d) As in (a),(b), respectively, but with the rank histograms computed using

bias-corrected precipitation forecasts from ENS4 and ENS20. The sum of the absolute value of the residuals from fitting a least squares

line to the observed frequencies in each rank histogram is indicated above each rank histogram set.
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pronounced at forecast hours 21 and 27, which agrees

with the time series of observed and forecast domain-

averaged rainfall (Fig. 3d) also showing the most pro-

nounced overprediction during these times. A comparison

between the ENS4 and ENS20 (regrouped) rank his-

tograms (Fig. 8a) reveals that ENS20 members more

severely overpredict precipitation than the ENS4 mem-

bers. Both ensembles have a slight u shape, indicating a

lack of spread (i.e., underprediction of forecast uncer-

tainty), but the right skewness of each ensemble’s rank

histograms makes it difficult to diagnose which ensemble

suffers most severely from this lack of spread. Thus, a

procedure is devised to remove the bias from the mem-

bers of the ensembles. The biases are removed using the

PM method applied to each ensemble member forecast,

so that forecast precipitation amounts are reassigned

using the corresponding distribution of observed pre-

cipitation amounts. Thus, the modified forecast precipi-

tation fields have the same patterns and locations as the

original forecasts, but the forecast rainfall amounts are

adjusted so that their distribution exactly matches that

of the observed precipitation. After the modification is

applied, a computation of bias at all precipitation thresh-

olds yields a value of 1. An example of a precipitation

forecast before and after this procedure is applied is

displayed in Fig. 9.

Bias-corrected ENS4 and ENS20 ensemble member

forecasts (ENS4* and ENS20* hereafter; see Figs. 8c

and 8d) still appear to be slightly right skewed at all

forecast lead times. This skewness may result because

observations are not drawn from a normal (Gaussian)

distribution, while the ensemble FP distributions are

assumed to be Gaussian. A more detailed discussion of

rank histogram behavior when observations and fore-

casts are not drawn from the same PDF is found in

Hamill (2001). In addition, Wilks (1995) notes that

precipitation distributions often fit gamma distributions

that are right skewed and do not allow negative values.

Thus, the right-skewed rank histograms (Figs. 8c and

8d) may result from observations being drawn from a

gamma distribution. Figure 8c reveals that ENS4* and

ENS20* have very similar representations of the fore-

cast uncertainty, with both ensembles exhibiting a slight

lack of spread, especially up to forecast hour 21. How-

ever, there appears to be a trend for the ENS4* rank

histograms to become flatter with increasing forecast

lead time, while those of ENS20* become slightly more

u shaped. By forecast hours 27 and 33, it is clear that

ENS4* has a better representation of forecast uncer-

tainty than ENS20*, as indicated by ENS4*’s flatter

rank histogram than ENS20*. In addition, in an attempt

to quantify rank histogram ‘‘flatness,’’ summed abso-

lute values of residuals from least squares fits to the

FIG. 9. Example from an ENS4 ensemble member of a (a) raw

precipitation forecast and (b) bias-corrected precipitation forecast,

along with (c) the stage IV observed precipitation analysis. The

forecast was initialized 23 Apr 2007 and valid for forecast hours

27–33.
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observed relative frequencies in each rank histogram set

(Fig. 8) verify these visual interpretations (i.e., smaller

summed residuals indicate flatter rank histograms).

2) STATISTICAL CONSISTENCY ANALYSIS

Ensembles correctly forecasting uncertainty are con-

sidered statistically consistent, and the mean-square

error (MSE) of the ensemble mean will match the

ensemble variance when averaged over many cases

(Talagrand et al. 1999; Eckel and Mass 2005). In this

study, the MSE and variance are computed according to

Eqs. (B6) and (B7), respectively, in Eckel and Mass

(2005), which account for an ensemble with a finite

number of members. An analysis of statistical consis-

tency compliments that from rank histograms because

the forecast accuracy (i.e., MSE of ensemble mean) and

error growth rates (i.e., ensemble variance) between

ensembles can be compared, attributes that cannot be

inferred from rank histograms. However, note that rank

histograms provide information on ensemble bias, while

an analysis of statistical consistency does not. The im-

portance of recognizing bias when interpreting statisti-

cal consistency is illustrated in this section.

The trends in the MSE of the ensemble mean and

ensemble variance of both ensembles follow the diurnal

precipitation cycle (Fig. 10). It appears that ENS20

underpredicts forecast uncertainty at most forecast lead

times, except around forecast hours 21–24, corre-

sponding to the minimum in the diurnal precipitation

cycle. However, the ENS4 ensemble variance increases

FIG. 10. Time series of average ensemble variance and MSE of the raw ENS4 and ENS20

ensemble mean precipitation forecasts for (a) 1-, (b) 3-, and (c) 6-hourly accumulation intervals,

and for bias-corrected ensemble mean precipitation forecasts for (d) 1-, (e) 3-, and (f) 6-hourly

accumulation intervals.
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at a much faster rate than that in ENS20, and the ENS4

MSE of the ensemble mean becomes similar to its en-

semble variance around forecast hours 9, 12, and 15 for

1-, 3-, and 6-hourly accumulation intervals, respectively

(Figs. 10a, 10c, and 10e). After about forecast hour 21,

the ENS4 MSE of the ensemble mean becomes smaller

than the ensemble variance for all accumulation inter-

vals, implying overprediction of forecast uncertainty,

contradicting rank histogram results.

The discrepancy between the rank histogram and

statistical consistency results (Figs. 10a, 10c, and 10e)

highlights the importance of recognizing the effects of

bias when interpreting statistical consistency analyses.

When bias is removed using the adjustment process

described in the previous section, and MSEs of the en-

semble mean and ensemble variance are recomputed

(Figs. 10b, 10d, and 10f), the results are consistent with

those obtained from rank histogram analyses (i.e., in-

creasing statistical consistency with increasing forecast

lead time in ENS4*, with little change in ENS20* sta-

tistical consistency as lead time increases). To clearly

illustrate the effects of bias on ENS4 and ENS20, dif-

ferences between the ensemble variance and MSE of

the ensemble mean before and after bias correction for

3-hourly accumulation intervals are shown in Fig. 11a.

Generally, there are larger-magnitude differences in the

ensemble variance than in the MSE of the ensemble

mean, which is likely because both quantities used to

compute variance (ensemble mean and member fore-

casts) get adjusted, while only one of the two quantities

used to compute the MSE of the ensemble mean is

adjusted. Furthermore, the differences between the

ENS4 and ENS4* ensemble variances before and after

bias correction are usually larger than those of ENS20

(i.e., ensemble variance usually decreases more in

ENS4* than in ENS20*). The larger differences be-

tween the ENS4 and ENS4* ensemble variances likely

result because ENS4 has larger biases than ENS20 at

relatively high rainfall thresholds. Because differences

between forecasts and the ensemble mean are squared

during the computation of the ensemble variance, the

biases at relatively high rainfall thresholds have a larger

impact on ensemble variance relative to lighter rainfall

thresholds. This effect of biases at high rainfall thresh-

olds is supported by Fig. 11b, which shows biases at

increasing rainfall thresholds for forecast hours 18 and

27. When the differences in ensemble variance were

similar at forecast hour 18 (Fig. 11a), biases at rainfall

thresholds above 0.25 in. were also similar (Fig. 11b).

However, at forecast hour 27 when the ENS4–ENS4*

ensemble variance was much larger than that of ENS20–

ENS20* (Fig. 11a), biases above the 0.25-in. precipita-

tion threshold were much larger in ENS4 than in ENS20

(Fig. 11b).

Error growth rates (i.e., rate of increase in spread) can

be directly analyzed using the ensemble variance from

ENS4* and ENS20* (Figs. 10b, 10d, and 10f). First, note

that the faster error growth inferred from the ensemble

variance in ENS4 relative to ENS20 up to forecast hour 9

(at 1- and 3-hourly accumulation intervals), and after

forecast hour 21 (all accumulation intervals; Figs. 10a,

10c, and 10e), is largely an artifact of bias. After the

biases are removed, it becomes clear that the error

growth rates of ENS4* and ENS20* are much more

similar than was implied by the ensemble variance from

ENS4 and ENS20. However, there are still noticeable

differences. An approximation of average error growth

rates computed by fitting a least squares line to the

ensemble variance (displayed in Figs. 10b, 10d, and 10f)

for ENS4* (ENS20*) yields slopes of 0.016 (0.010),

0.255 (0.145), and 0.959 (0.527) for 1-, 3-, and 6-hourly

accumulation intervals, respectively. So, although the

ENS20* ensemble variance begins higher than that

of ENS4*, faster error growth likely resulting from

FIG. 11. (a) Time series of differences between ensemble variance and MSE of the ensemble

mean before and after bias correction at 3-hourly accumulation intervals for ENS4 and ENS20.

(b) Average bias of ENS4 and ENS20 ensemble mean forecasts (generated using probability

matching) at increasing precipitation thresholds at forecast hours 18 and 27.
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resolving smaller scales in ENS4* than in ENS20* leads

to higher ensemble variance in ENS4* after forecast

hour 21. Because ENS20* has one more set of varied

physics parameterizations (namely, the CP) than

ENS4*, it is likely that the larger ensemble variance in

ENS20* during the first part of the forecast period re-

sults from larger model uncertainty than in ENS4*,

which is supported by time series of average ensemble

variance from the ENS4* and ENS20* runs with only

mixed physics for a set of 20 cases (Fig. 12). The mixed-

physics-only ENS4* simulations consisted of five of the

ten 4-km grid-spacing ensemble members described in

section 2 that were not examined in detail for this study

because they neglected IC uncertainty, and the mixed-

physics-only ENS20* simulations consisted of fifteen

20-km grid-spacing members with identical configura-

tions as those described in Table 2, but rerun without

IC perturbations. Future work is planned to explore

the contributions to ensemble spread from different

error sources for the CAR and PCR ensembles in more

detail.

5. Summary and future work

Precipitation forecast skill from a 5-member, 4-km

grid-spacing ensemble (ENS4) was compared to that

from a 15-member, 20-km grid-spacing ensemble (ENS20)

for 23 warm-season cases during April–June 2007 over

the central United States. The goal of this work was to

examine, through the use of deterministic and proba-

bilistic skill metrics and Hovmöller diagrams, whether

the advantages realized by refining to CAR in ENS4,

would outweigh the disadvantages resulting from being

forced to use a smaller ensemble size relative to ENS20

due to computational expenses. The main results are

summarized below.

Analysis of diurnally averaged Hovmöller diagrams

revealed that, as expected, most ENS4 members and the

ENS4 ensemble mean had a better diurnal precipitation

cycle depiction than ENS20 members and the ENS20

ensemble mean. In addition, the ENS4 ensemble mean

diurnal cycle depiction appeared to represent an im-

provement relative to that of individual members. These

results confirmed that ENS4 members should have an

inherent advantage over ENS20 with respect to fore-

casting the timing and location of rainfall systems.

ENS4 ensemble mean precipitation forecasts derived

using probability matching generally performed better

than those of ENS20, as measured by ETSs, especially

at increasing rainfall thresholds. The ENS4 ETSs were

higher than those of ENS20 with differences that were

statistically significant at all rainfall thresholds exam-

ined for 1-hourly accumulation intervals, and at the

0.50-in. rainfall threshold, for 3- and 6-hourly accumu-

lation intervals. The statistically significant differences

tended to occur between forecast hours 9 and 15 (0600

and 12000 UTC), corresponding to the times at which

MCS occurrence in the central United States is most

frequent. In addition, it was found that the biggest dif-

ferences in ETSs for individual cases occurred when

mature MCSs were present.

It was found that ENS4 probabilistic forecasts also

generally performed better than those of ENS20, as

measured by ROC scores. In addition, similar to ETS, at

increasing rainfall thresholds, the differences between

ENS4 and ENS20 became larger. However, statistically

significant differences tended to be confined to heavier

rainfall thresholds than in the ETS analysis.

Bias-corrected rank histograms revealed that both

ensembles had an approximately similar representa-

tion of forecast uncertainty up to forecast hour 21, but

after forecast hour 21, ENS4* rank histograms ap-

peared flatter than those of ENS20*, implying a supe-

rior depiction of forecast uncertainty. An analysis of the

statistical consistency complemented the rank histo-

grams, also showing a superior depiction of forecast

uncertainty in ENS4*. Furthermore, ENS4* had higher

error growth rates (i.e., spread increased faster) than

ENS20*, but ENS20* had greater spread during the first

part of the forecast, probably due to larger model un-

certainties associated with the use of multiple CPs in

ENS20*. The higher growth rates of the spread in

ENS4* likely occurred because smaller scales were be-

ing resolved in ENS4* than in ENS20*, and perturba-

tions grow faster on these smaller scales (e.g., Nutter

et al. 2004).

Generally, the results from this work are very en-

couraging for CAR, and the improvements realized

from utilizing a CAR ensemble should provide incentive

for operational SREF systems to refine their ensemble

FIG. 12. Time series of average ensemble variance at 3-hourly

accumulation intervals for ENS4 and ENS20 using only mixed-

physics perturbations.
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resolution to explicitly resolve convection, even if the

numbers of members must be reduced due to computa-

tional limitations. However, because of the limited time

period examined (April–June) and relatively small sam-

ple sizes of the cases, it is not clear whether these results

are representative of other periods with different flow

regimes. For example, the midsummer months (i.e., July–

August), characterized by a dominant upper-level ridge

over the central United States and ‘‘weakly forced’’

convective events, may be even more advantageous to

CAR ensembles relative to PCR ensembles because of

a stronger diurnal signal during midsummer relative to

spring.

Future work should explore CAR ensembles using

more members and larger sets of cases for convective

and nonconvective precipitation events. In addition,

contributions to errors from models and analyses should

be quantified at convection-allowing scales because

of the implications for ensemble design. Furthermore, it

is recommended that entity-based verification tech-

niques (e.g., Ebert and McBride 2000; Davis et al.

2006a) that have been shown to be useful for verifying

deterministic CAR simulations (Davis et al. 2006b) be

applied to CAR ensembles. In particular, object-based

techniques provide an alternative method for examining

statistical consistency by comparing average displace-

ment errors between ensemble members to the average

displacement error between a mean forecast and ob-

servations.
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