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ABSTRACT

Standard turbulence closures for large-eddy simulations of atmospheric flow based on finite-difference or
finite-volume codes use eddy-viscosity models and hence ignore the contribution of the resolved subfilter-
scale stresses. These eddy-viscosity closures are unable to produce the expected logarithmic region near the
surface in neutral boundary layer flows. Here, explicit filtering and reconstruction are used to improve the
representation of the resolvable subfilter-scale (RSFS) stresses, and a dynamic eddy-viscosity model is used
for the subgrid-scale (SGS) stresses. Combining reconstruction and eddy-viscosity models yields a sophis-
ticated (and higher order) version of the well-known mixed model of Bardina et al.; the explicit filtering and
reconstruction procedures clearly delineate the contribution of the RSFS and SGS motions. A near-wall
stress model is implemented to supplement the turbulence models and account for the stress induced by
filtering near a solid boundary as well as the effect of the large grid aspect ratio. Results for neutral
boundary layer flow over a rough wall using the combined dynamic reconstruction model and the near-wall
stress model show excellent agreement with similarity theory logarithmic velocity profiles, a significant
improvement over standard eddy-viscosity closures. Stress profiles also exhibit the expected pattern with
increased reconstruction level.

1. Introduction

In large-eddy simulation (LES), the fluid field is spa-
tially filtered to separate large eddies from smaller mo-
tions; the larger scales are simulated accurately, while
the effect of the smaller, subfilter scales on the large
scales is modeled. The construction of an appropriate
subfilter-scale (SFS) turbulence model for LES has
been the subject of decades of research. In this paper,
we adopt a velocity partitioning approach (Carati et al.
2001), which facilitates the proper modeling of the SFS
stresses when finite-difference or finite-volume meth-
ods are used. This approach has proven advantageous
in low Reynolds number flows (Gullbrand and Chow

2003). We extend the velocity partitioning idea to large-
eddy simulation of the atmospheric boundary layer,
where the situation is complicated by high Reynolds
number flow and a rough lower boundary. The effect of
the latter must be dealt with by use of a wall model.
This paper focuses on neutrally stratified flow over flat
terrain, but the method can be used for general flow
situations.

The definition and application of the LES filters dif-
ferentiate the velocity partitioning approach from tra-
ditional methods. The traditional LES approach treats
the grid as the filter that separates large and small mo-
tions. The nature of this filter is both unknown and
different for each term in the equations. The effect of
the small motions on the larger scales is modeled as one
piece, usually with an eddy-viscosity model. In contrast,
the velocity partitioning approach applies a smooth ex-
plicit filter (such as a tophat or a Gaussian filter) to
separate resolved and SFS motions. It furthermore rec-
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ognizes that the presence of the numerical grid divides
the subfilter-scale motions into resolved and unre-
solved portions. The resolvable subfilter-scale (RSFS)
motions can be reconstructed using series expansions,
while the unresolvable subfilter-scale (USFS) motions
[also called subgrid scale (SGS)] are modeled sepa-
rately, typically with an eddy-viscosity model. This
method is also known as “explicit filtering and recon-
struction” (Gullbrand and Chow 2003). Both the RSFS
and SGS models rely on knowledge of the resolved-
scale behavior alone, but the RSFS portion can be ob-
tained directly by an inverse filtering operation, as ex-
plained in detail later.

Reconstruction of the RSFS stresses requires the
definition and application of an explicit filter in the
LES computation. The filter must be smooth (in wave
space) and have a width larger than the grid spacing.
The explicit filter is used in the series expansions in the
reconstruction procedure and also serves to damp fi-
nite-difference and aliasing errors (Lund 1997; Chow
and Moin 2003). Thus, explicit filtering and reconstruc-
tion are especially useful for finite-volume or finite-
difference codes, which are easily applied to flows over
complex geometries of interest in atmospheric bound-
ary layer studies. For de-aliased spectral methods, ex-
plicit filtering and reconstruction provide no advantage
over the traditional approach (see Winckelmans and
Jeanmart 2001) because numerical errors are easily
controlled.

A well-known problem in atmospheric boundary
layer simulations is their lack of agreement with simi-
larity theory in the near-wall region. In this region of
the flow, the grid resolution is not adequate to resolve
energy-containing scales and the contribution of the
SFS model dominates that of the resolved terms [see
the discussions in Sullivan et al. (1994); Khanna and
Brasseur (1997); Kosović (1997); Juneja and Brasseur
(1999)]. Standard turbulence closures for atmospheric
boundary layer flows use eddy-viscosity models alone
(ignoring the contribution of the resolvable subfilter-
scale stresses) and do not have correct near-wall behav-
ior. In this paper we explore whether explicit filtering
and reconstruction can improve LES results, as dem-
onstrated in low Reynolds number flows (Gullbrand
and Chow 2003). The rough bottom boundary in the
atmospheric boundary layer requires special treatment
(e.g., specifying a log law approximate boundary con-
dition); this will be addressed in the context of velocity
partitioning.

We examine a specific test case: the neutral, rotation-
influenced, large-scale boundary layer flow considered
by Andren et al. (1994). A state-of-the-art atmospheric
mesoscale and small-scale simulation model is used,
namely, the Advanced Regional Prediction System
(ARPS; Xue et al. 1995, 2000, 2001). ARPS is a finite-
difference LES-capable code designed for flow over ir-
regular terrain, so spectral methods and sharp Fourier
cutoffs in filters are not viable options. The enhance-

ments to the code are those associated with the new
subfilter-scale models [see also Chow and Street (2002)
and Chow (2004)].

Our goal is to learn what logical steps and procedures
are required for subfilter-scale modeling to bring the
simulated flow fields into agreement with theoretical
expectations in the near-wall region. This includes de-
termining appropriate turbulence models and treat-
ments for the rough lower boundary. As a test case for
the traditional LES approach, we use the Smagorinsky
model (Smagorinsky 1963), which despite its deficien-
cies, remains commonly used in atmospheric applica-
tions. For the explicit filtering and reconstruction ap-
proach, we use the approximate deconvolution ap-
proach of Stolz and Adams (1999) for the RSFS stresses
with the dynamic eddy-viscosity model of Wong and
Lilly (1994) to represent SGS motions; these are the
components of our dynamic reconstruction model
(DRM), similar to that used by Gullbrand and Chow
(2003). The properties of the reconstruction model are
also discussed by use of the Taylor series expansion
model of Katopodes et al. (2000a,b). We also compare
results using explicit filtering but ignoring the RSFS
term, using the dynamic eddy-viscosity model (Wong
and Lilly 1994) alone. Three-dimensional filters are
used so that our approach is general enough for flow
over complex terrain where horizontal planar averages
are not applicable. The dynamic eddy-viscosity models
require augmentation near the lower boundary, so the
near-wall shear stress term of Brown et al. (2001) is
included to account for the stress induced by filtering
near a solid boundary and for the effect of the large grid
aspect ratio typically found near the boundary (Du-
brulle et al. 2002; Nakayama and Sakio 2004). This
near-wall stress term can be considered part of the SGS
model.

Combining reconstruction and eddy-viscosity models
yields a generalized (and higher order) version of the
well-known mixed model of Bardina et al. (1983), but
now the explicit filtering and reconstruction procedures
delineate clearly the contribution of the RSFS and SGS
motions. We advocate the general explicit filtering and
reconstruction approach. The specific components of
the models can vary, and there remains room for much
further research, particularly for SGS (including near-
wall) models. The RSFS component, as will be shown,
can be successfully recovered by series expansion meth-
ods. To the authors’ knowledge, explicit filtering and
reconstruction approaches have not previously been
applied to large-scale flows over rough surfaces.

The following sections summarize the framework for
construction of a hybrid, or mixed, LES SFS closure
model using separate RSFS and SGS components. We
also describe the implementation of the models and
results from LES simulations of the neutral boundary
layer. The results using the combined DRM and near-
wall stress models show excellent agreement with simi-
larity theory logarithmic velocity profiles, which is a
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significant improvement over standard eddy-viscosity
closures.

2. Decomposition of subfilter-scale stresses

To facilitate our understanding of the requirements
in SFS modeling and especially to improve turbulence
models in the near-wall region, it is useful to consider
velocity partitioning schemes such as those of Carati et
al. (2001), Zhou et al. (2001), and Hughes et al.
(2001a,b). Figure 1 shows a schematic similar to that of
Carati et al. (2001) of a typical energy spectrum from a
turbulent flow. The application of a filter (which is
smooth in wave space) and a discretization operator
(needed to solve the LES equations on a discrete grid)
separates the spectrum into three parts. The low wave-
numbers are filtered and well resolved on the grid.
They are contained in the velocity ũi, where the tilde
operator represents the effect of discretization and the
overbar an explicit smooth filter. The middle portion
(shaded) represents subfilter-scale motions that are be-
tween the filter and grid cutoffs and hence resolvable
on the grid. These resolved subfilter-scale motions can
theoretically be reconstructed by an inverse filter op-
eration. Reconstruction is limited, however, by numeri-
cal errors (NE), which increase near the grid cutoff
because of the modified wavenumber effect on finite-
difference evaluation of derivatives (Moin 2001). In ad-
dition, there are errors due to aliasing effects, though
these are not as important in finite difference as in
spectral codes (Chow and Moin 2003). [Note that the
explicit filter damps these numerical errors so that rep-
resentation of the resolved field is more accurate
(Chow and Moin 2003).] The portion to the right of the

vertical dashed line contains subgrid-scale motions that
cannot be resolved on the grid and must be modeled.
These are motions that are smaller than the Nyquist
wavenumber cutoff, kg � 2�x. The amount of energy
contained in the SGS portion depends on grid resolu-
tion and the distance from the wall (Khanna and Bras-
seur 1997). In our chosen notation, the tilde operator
includes all effects due to numerics (the Nyquist cutoff
and numerical errors); we use the symbol loosely be-
cause discretization effects are not exactly known. We
also emphasize that Fig. 1 is an instantaneous represen-
tation of the separation of scales; time evolution will
alter the extent to which RSFS motions can be accu-
rately reconstructed, as discussed later.

ARPS employs the spatially filtered compressible
nonhydrostatic Navier–Stokes equations. For this pa-
per, ARPS was operated in a quasi-incompressible
mode (Xu et al. 1996). Using the notation defined
above, the LES governing equations for the resolved
velocity are

�ũi

�t
�

�ũiũj

�

�xj
� �

1
�

�p̃

�xi
� g�i3 � �imnfnũm �

��̃ij

�xj
�1�

�ũi

�xj
� 0, �2�

where viscous terms have been neglected. Here ũi are
the velocity components, p̃ the pressure, � the density,
and f the Coriolis parameter. While the discretization
effects are different for every term in the equation (due
to the various finite-difference schemes used), the same
explicit filter is applied to all variables. It is assumed
that the filtering and discretization operations commute
with the spatial derivatives, which is true for spatially
homogeneous filters. Some error is introduced if this is
not so (Ghosal and Moin 1995). Further details on the
equations used by ARPS are given in Xue et al. (2000)
and Chow (2004, appendices C and D). The configura-
tion used for this work is described further in section 5a.

We define the total SFS stress as

�ij � uiuj � ũiũj. �3�

Note that when the SFS stress appears in the filtered
and discretized Navier–Stokes equations, it appears as
(	
̃ij /	xj), where the tilde indicates the added effect of
the discretization, as in the advection terms. [The dis-
cretization operation is essentially a de-aliasing step as
well (Chow and Moin 2003)]. The full turbulent stress
can be decomposed into resolved and unresolved por-
tions:

�SFS � �ij � uiuj � ũiũj � �uiuj � ũiũj�
�

SGS

� �ũiũj � ũiũj�
�

RSFS

.

�4�

The first two terms on the right-hand side are the sub-
grid-scale stresses, 
SGS. They depend on scales be-

FIG. 1. Schematic of velocity energy spectrum (with linear axes)
showing partitioning into resolved, RSFS, and SGS motions. The
NE region is also shown above the dotted line. The grid is indi-
cated by the vertical dashed line at wavenumber kg (correspond-
ing to the minimum resolvable wavelength), and the explicit filter
by the curved dashed line.
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yond the resolution domain of the LES and contain the
unclosed nonlinear term uiuj, which must be modeled.
The last two terms are the filtered-scale stresses, 
RSFS,
which depend on the differences between the exact and
filtered velocity fields within the resolution domain.
This resolved subfilter-scale component, 
RSFS, can
theoretically be reconstructed because it is a function of
ũi, which can be obtained by deconvolution (inverse
filtering).

Currently available SGS models do not represent the
true SGS motions well. It is hoped that by reconstruct-
ing the RSFS portion, the overall representation of the
SFS stress will be improved, as the SGS contribution
will decrease overall. However, near a rough wall, eddy
sizes decrease much faster than any grid stretching, and
the bulk of the stress contribution comes from SGS
terms (Sullivan et al. 2003). In general, the total stress
is given by

�total � �Resolved � �RSFS � �SGS, �5�

where 
Resolved is the resolved-scale stress defined in
section 5c3. Because eddies scale roughly as distance
from the boundary and the filter and grid cutoffs are
fixed, as we approach the wall (z → 0), it must be that

Resolved → 0 and 
RSFS → 0 because there are no eddies
in their respective spectral areas and all of the eddies
are subgrid, so 
total → 
SGS as z → 0. The stress on the
wall is given by a wall model such as the log law. Thus

SGS supports the total stress at the wall, suggesting the
use of a specific near-wall stress model that represents
the stress induced by the rough boundary. We employ
a separate near-wall stress model as a supplement to
the general SGS models used in this work.

3. Reconstruction models: Series expansion
approach

Using this velocity partitioning framework for the
turbulence closure, the RSFS and SGS components can
be modeled separately. We first focus on the RSFS
components, which can be reconstructed in terms of the
resolved velocity. Several methods have been proposed
to represent such subfilter-scale motions. Bardina et al.
(1983) made a seminal contribution by introducing
scale-similarity models, which create an approximation
to the full velocity field to estimate the RSFS stress.
In Bardina’s model, the discrete full velocity is ap-
proximated by the filtered velocity, ũi � ũi, to obtain

RSFS � ũiũj � ũi ũj.

Later models have included those of Yeo and Bed-
ford (1988), Shah and Ferziger (1995), Geurts (1997),
Stolz and Adams (1999), Zhou et al. (2001), and Du-
brulle et al. (2002) [see the review of Domaradzki and
Adams (2002)]. All of these methods, except the last
two, rely on approximate filter inversion. The method
of Zhou et al. (2001) models motions beyond a sharp
filter cutoff with an evolution equation; in our context,

this approach may be useful as an SGS closure. Du-
brulle et al. (2002) also model scales smaller than the
grid using a separate dynamic equation. Here, we focus
on velocity reconstruction approaches using Taylor se-
ries expansions (Katopodes et al. 2000b) and the van
Cittert iterative method used in the approximate de-
convolution model of Stolz et al. (2001a). These series
expansions rely on the application of a smooth explicit
filter; a spectral cutoff filter cannot be used.

a. Recursive Taylor series expansions

Katopodes et al. (2000a,b) used successive inversion
of a Taylor series expansion to express the unfiltered
(but resolvable) velocity in terms of the filtered veloc-
ity. For an isotropic tophat filter applied on a uniform
grid, the expansion reduces to

ũi�x, y, z� � ũi�x, y, z� �
�f

2

24
�2 ũi

�
7�f

4

5760��4 ũi

�x4 �
�4 ũi

�y4 �
�4 ũi

�z4 �
�

5�f
4

1728� �4 ũi

�x2�y2 �
�4 ũi

�y2�z2 �
�4 ũi

�x2�z2�
� O��f

6�, �6�

to fourth order in the explicit filter width, �f. An aniso-
tropic filter is used in simulations, but the isotropic ver-
sion is shown here for simplicity. Odd powers of x, y, or
z disappear because of symmetry. Other spatially com-
pact filters give similar results, with a change in the
expansion coefficients. The expansion can be extended
to an arbitrary order of accuracy by including more
terms in the series, though these become cumbersome
to compute. Note that the series expansion only recov-
ers scales up to the grid cutoff. The approach can simi-
larly be applied to the scalar transport equation, as
done by Katopodes et al. (2000a).

b. Approximate deconvolution method

High-order reconstruction of the RSFS stress tensor
can also be achieved with the iterative deconvolution
method of van Cittert (1931). This reconstruction is
used by Stolz and Adams (1999) and Stolz et al. (2001a)
who call their RSFS model the approximate deconvo-
lution model (ADM). The unfiltered quantities can be
derived by a series of successive filtering operations (G)
applied to the filtered quantities with

ũi � ũi � �I � G� * ũi � �I � G� * ��I � G� * ũi
 � . . . ,

�7�

where I is the identity operator, and G is the explicit
filter. This expansion can also be extended to an arbi-
trary order of accuracy by including more terms in the
series, though it is not immediately obvious what the
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order of magnitude of the next set of terms is. Level-n
reconstruction includes the first n � 1 terms of the
series. Computation of higher-order terms is straight-
forward, as it simply requires repeated application of
the same filter operator.

c. Generation of the 
RSFS models

We derive models for 
ij by substituting a series ex-
pansion for the reconstructed velocity (ũ*i ) directly into
(4) to obtain

�RSFS � ũ*i ũ*j � ũ*i ũ*j . �8�

The series expansions for ũi could also be substituted
directly into the filtered advection terms of the filtered
Navier–Stokes equations, without moving the filtered
terms to the right-hand side. This was done by Gull-
brand and Chow (2003) and Stolz et al. (2001a), while
the SGS contribution was added to the right-hand side
as usual. In our implementation, we have both the se-
ries expansions and the SGS models on the right-hand
side for ease of implementation in ARPS.

For the ADM approach, nothing further is required.
In the Taylor series approach, we expand Eq. (8) to
derive RSFS models of arbitrary order of accuracy in
the (isotropic) filter width, �f, giving (to fourth order):

�RSFS � ũiũj � ũiũj �
�f

2

24
ũi�

2 ũj �
�f

2

24
ũj�

2 ũi

�
�f

2

24
ũi�

2 ũj �
�f

2

24
ũj�

2 ũi. �9�

The first two terms are analogous to the Leonard terms
in the SFS stress; the higher-order derivative terms can
be shown to be dissipative (Clark et al. 1977). To sec-
ond order in the filter width, Eq. (9) reduces to the
Bardina scale similarity model, as does the ADM at
lowest order.

The series model in Eq. (9) can be rearranged by
expanding the higher derivatives and using the filter
definition to “unfilter” a few terms. We obtain

�RSFS �
�f

2

12
�ũi

�xm

�ũj

�xm
, �10�

which is equivalent to Eq. (9) to fourth order in the
filter width [see Katopodes et al. (2000b); Chow (2004)
for details]. Equation (10) is similar to the model pro-
posed by Clark et al. (1977) [also known as the tensor-
diffusivity model, see, e.g., Winckelmans et al. (2001)]
but with an extra filter. This modified Clark model is
considerably simpler than Eq. (9) to implement nu-
merically. We have not, however, presented results for
this model here because it can be shown to be equiva-
lent to the ADM (see below) and does not perform
better than the ADM, which is easier to implement.
The Taylor series method is, however, useful for relat-
ing the truncation error to the filter width, which leads

to the important property that the series models satisfy
the 
ij evolution equations (see below). [For results us-
ing Eq. (10), see Chow (2004); see Winckelmans et al.
(2001) and Iliescu and Fischer (2003) for other imple-
mentations of the tensor-diffusivity model.]

d. Properties of the reconstructed 
RSFS

A few observations about both reconstruction meth-
ods [Eqs. (6) and (7)] are worthwhile. First, neither
model has parameters other than the filter width and
the number of terms to keep in each series, and no
assumptions are made about the form of the RSFS mo-
tions. The models should thus be able to capture aniso-
tropic motions. Scale-similar models are also invariant
under Galilean transformations (Speziale 1985), and
they exhibit correct near-wall behavior in smooth-wall
flows when used in a mixed model (Sarghini et al.
1999). Their scale-similarity properties have desirable
effects in a priori tests (Katopodes et al. 2000b; Stolz et
al. 1999). Furthermore, the evolution equation devel-
oped by Katopodes et al. (2000b) for the approximate

ij indicates that these resolvable subfilter-scale stresses
are influenced by buoyancy, Coriolis, diffusion, pres-
sure, and advection terms, just as the resolved velocities
are. Thus the expressions in Eqs. (9) and (10) for 
ij

(and as noted below, the equivalent ADM expressions)
capture the effects of all of the relevant physical mecha-
nisms, to fourth order in the filter width.

While it is not as easy to relate the truncation error of
the ADM approach to the filter width, the van Cittert
iterative method can easily be related to the Taylor
series reconstruction method. For example, appendix B
of Stolz et al. (2001a) shows how the tensor-diffusivity
model can be derived from the ADM. Using finite-
difference representations, it is also easy to show the
equivalence of these two reconstruction approaches
(Chow 2004). A difference in implementation arises
when the reconstructed velocities are substituted back
into the RSFS stress expressions. In the Taylor series
approach, terms of fourth-order or higher are explicitly
disregarded, for example, in the computation of the
product terms. That is, we are careful to maintain the
order of the final expression even after it has been sub-
stituted into 
ij. Discretization is applied only after the
final form has been obtained. When the ADM recon-
struction terms are used, the discretely reconstructed
velocities are substituted directly into the RSFS expres-
sion. Therefore, higher-order terms are implicitly con-
tained in the RSFS expressions. The difference in the
ADM (n � 1) versus Taylor series (fourth order) ap-
proaches is in the fourth order truncation terms. The
use of the Taylor series expansions more easily pre-
serves the desired order of the reconstruction, but the
ADM approach is much simpler to implement numeri-
cally.

In summary, the series expansion representations of
the RSFS stresses are theoretically excellent [further
discussion can be found in Gullbrand and Chow (2003)
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and Chow (2004)]. They perform well in a priori tests
and can be used up to any order of accuracy desired,
within the grid resolution limitations. The computa-
tional cost does, however, increase with increasing lev-
els of reconstruction. Furthermore, interaction with nu-
merical errors in a posteriori tests is not easy to predict;
results are examined in the later sections. In the next
section, we describe approaches to modeling SGS mo-
tions, which become increasingly important at coarse
grid resolutions such as those present near the lower
surface in atmospheric boundary layer flow simula-
tions.

4. SGS and wall models

Aside from the discretization errors in the numerical
model and in the reconstruction procedure itself, the
above reconstruction methods are exact to within the
chosen truncation error. Unfortunately, the turbulence
closure problem remains in the SGS terms. Equation
(4) still has the unclosed term uiuj in the SGS portion of
the total SFS stress. The interaction of the SGS and
RSFS motions is also hard to predict and may create
errors that limit the reconstruction as well. The SGS
term must account for any such errors in the RSFS
term.

Carati et al. (2001) suggest that there is a separation
of scales of sorts between the resolved component and
the subgrid component of the velocity field (see Fig. 1)
that perhaps makes an eddy-viscosity model a good
choice for the SGS motions. Unfortunately, they find
very poor correlations between eddy-viscosity model
quantities and those calculated from direct numerical
simulation (DNS) data. For lack of a better framework,
a simple eddy-viscosity form is also assumed in this
work for modeling the unclosed SGS term:

�SGS � �2�TS̃ij, �11�

where �
T

is the eddy viscosity, and S̃ij � (1/2)(	ũi /	xj �
	ũj /	xi) is the resolved strain rate tensor. The closure
problem shifts to determining the best representation
for �

T
. Despite the known shortcomings of this class of

models, they are convenient to use when energy trans-
fer to the subgrid scales is desired. The variations of
eddy-viscosity models are too numerous to describe
them all, so we focus on the models we have chosen for
our study. These particular SGS models have been used
before to represent the complete SFS stress, but none
have been previously used with explicit filtering and
reconstruction in large-scale flows. Near the lower
boundary, the SGS closure requires special treatment,
as described in section 4d below.

a. Smagorinsky-based eddy-viscosity models

One of the most commonly used eddy-viscosity mod-
els is the Smagorinsky model (Smagorinsky 1963),
which assumes

�T � �CS�g�2�2S̃ij S̃ij�
1	2, �12�

where CS is the Smagorinsky coefficient, and �g is the
grid spacing. The Smagorinsky model has several draw-
backs, especially near the surface, where it overpredicts
the stresses (see the discussion in Juneja and Brasseur
1999). All eddy-viscosity models fail to allow for back-
scatter of energy from small to large scales. Atmo-
spheric measurements show that backscatter is present
near the surface and should be included in LES turbu-
lence closure schemes [see Porté-Agel et al. (2001) and
Sullivan et al. (2003)]. Correlations from a priori tests
show that the eddy-viscosity stress tensors are not
aligned with calculations from DNS data (Katopodes et
al. 2000b). Furthermore, Mason and Thomson (1992)
showed that the failure of the Smagorinsky model near
the surface could not be cured by increasing grid reso-
lution. There will always be a region near the rough
bottom boundary where the flow is underresolved. Sev-
eral modifications and alternatives to improve perfor-
mance near the surface have been proposed [see e.g.,
Sullivan et al. (1994)], but we use the Smagorinsky
model in its standard form to simplify the comparisons.

b. Dynamic eddy-viscosity models

The standard Smagorinsky model requires the use of
a predetermined coefficient, CS. An alternative is the
dynamic Smagorinsky model (DSM), where the Sma-
gorinsky coefficient CS is determined automatically by
applying the same models at the test filter level (Ger-
mano et al. 1991). The assumption is that the same
Smagorinsky coefficient could be used if the same
equations were applied on a coarser grid. The DSM is
widely used as the eddy-viscosity SGS model in small-
scale turbulence studies (see e.g., Germano et al. 1991;
Meneveau and Katz 2000). The DSM has been used
with explicit filtering in small-scale flows by Winckel-
mans et al. (2001) and Gullbrand and Chow (2003); this
requires special attention to the application of the test
filters.

Applications of dynamic models to high Reynolds
number flows have been few. Balaras et al. (1995) used
the DSM in simulations of high Reynolds number chan-
nel flow with rough walls (though still at laboratory
scales). Esau (2004) simulated the large-scale neutral
atmospheric boundary layer using the DSM and the
dynamic mixed model (DMM) of Zang et al. (1993)
with some improvement over the standard Smagorin-
sky model. Porté-Agel et al. (2000) developed a scale-
dependent dynamic Smagorinsky model to account for
the near-wall region where motions are underresolved.
When applied to a neutral atmospheric boundary layer,
they achieved improved logarithmic velocity profiles,
but at the cost of an extra filtering step in the dynamic
procedure and an empirical function to determine the
scale dependence.

Because of sensitivities of the DSM to the bottom
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boundary condition (see section 5b), as well as for ease
of implementation, we instead use the dynamic model
of Wong and Lilly (1994), who simulated the convective
boundary layer. Wong and Lilly (1994) present a sim-
plified base model that requires no calculations of S̃ij

during the dynamic procedure. Instead, the base model
is derived from Kolmogorov scaling, which expresses
the eddy viscosity as

�T � C2	3�f
4	3�1	3, or �T � C��f

4	3, �13�

where C� � C2/3�1/3 is the coefficient of interest; hence
the traditional requirement that the dissipation rate �
be equal to the SGS energy production rate (including
the buoyancy term) is avoided. This base model re-
duces computational cost because the derivatives in Eq.
(12) (at grid and test levels) are no longer required. In
the dynamic Wong–Lilly (DWL) formulation, the coef-
ficient is determined using the least squares method of
Lilly (1992):

2C��f
4	3 �

�Lij S̃ij

c�
�

�1 � ��t 	�f�
4	3
�S̃ij

c�
S̃ij

c�
�

. �14�

Here, the brackets � � denote local averaging, ∧ denotes
the test filter, and

Lij � ũiũj

��c

� ũi
c� ũj

c��c

�15�

S̃ij

c�
�

1
2
��ũi

c�

�xj
�

�ũj
c�

�xi

� . �16�

We use the notation of Carati et al. (2001) to define the
test-filtered terms; the �c operator denotes the effect of
the discretization operator at the coarser test-level grid.
The discrete forms of the explicit and test-filter opera-
tors are given in Eqs. (23)–(25).

c. Combined RSFS and SGS models

We use the ADM (for the RSFS) and the DWL (for
the SGS) to obtain the total SFS stress:

�ij � ũ*i ũ*j � ũ*i ũ*j � 2C��f
4	3S̃ij, �17�

which we call the dynamic reconstruction model (simi-
lar to Gullbrand and Chow 2003). We also use ADM
reconstruction series from levels zero through ten, de-
noted DRM-ADM0–DRM-ADM10. Note that DRM-
ADM0 is similar to the DMM with explicit filtering as
implemented by Vreman et al. (1994), but with the
DWL substituted for the DSM. The standard Smagor-
insky model without an RSFS component is our refer-
ence case.

The eddy-viscosity coefficient in this combined
RSFS/SGS approach is determined dynamically from

2C��f
4	3 �

��Lij � Hij�S̃ij

c�
��

�1 � ��t 	�f�
4	3
�S̃ij

c�
� S̃ij

c�
, �18�

where we define (shown here for level-zero reconstruc-
tion only)

� �
��

Hij � �ũi
c� ũj

c�
�c

� ũi
c�

�
ũi

c�
�c

� � �ũi ũj

�c
� ũiũj

�c

�, �19�

and ask for the reader’s indulgence for the use of such
compact notation. This derivation again uses the least
squares approach and is similar to that of Zang et al.
(1993) and Vreman et al. (1994), thus taking into ac-
count the contribution of the scale-similarity portion (in
Hij) while computing the dynamic coefficient. The grid
cutoff (�, �c) operators are not explicitly applied be-
cause no robust means exist for applying a cutoff filter
in a finite-difference simulation like ours. The notation
serves as a reminder of the effect of the discretization
operators. The finite-difference schemes on the coarser
grid level limit aliasing effects because of the modified
wavenumbers that decay to zero near the grid cutoff.
Our combined RSFS and SGS models constitute a
mixed model that represents both backscatter of small-
scale energy to the larger scales and forward scatter
(dissipation) of large-scale energy by the small scales.
Both processes are essential for reasonable representa-
tion of subfilter-scale effects.

Finally, we note that the mixed model (RSFS/SGS)
approach could be used with other SGS models, such as
static Smagorinsky, the modified version of Sullivan et
al. (1994), or 1.5-order turbulent kinetic energy–based
(Deardorff 1980; Moeng 1984) closures commonly used
in cloud-scale simulations with parameterizations of
stability effects. The values of the turbulent kinetic en-
ergy (TKE) equation coefficients are often debated
(see e.g., Takemi and Rotunno 2003; Deardorff 1971),
so a dynamic procedure like that of Wong and Lilly
(1994) is more desirable. Stolz et al. (2001a) use the
ADM reconstruction with a relaxation term to drain
energy at the smallest scales and also include a dynamic
procedure for determining the coefficient. This combi-
nation has performed well in simulations of small-scale
incompressible channel flows (Stolz et al. 2001a), and
compressible flows such as shock–turbulent-boundary
layer interaction (Stolz et al. 2001b). For this work, we
chose familiar eddy-viscosity formulations for their
known performance in large-scale flow simulations.

d. Enhanced near-wall stress model

Very near the rough lower boundary, the physics of
the flow, the grid aspect ratio, and the effect of filtering
(in three dimensions) lead to the requirement for spe-
cial treatment in the turbulence model. In this near-wall
region, the eddy size decreases much more rapidly than
the grid spacing (Zhou et al. 2001; Sullivan et al. 2003).
The vertical grid spacing is invariably smaller than the
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horizontal one. Scotti et al. (1997) examined the dy-
namic Smagorinsky model in the context of high-aspect
ratio grids where two directions are poorly resolved
compared to a third (x, y compared to z in our case).
They suggest that for such grids, higher-wavenumber
modes do not have access to all of the local triadic
interactions and that this affects the energy spectrum.

Thus, while eddies may be relatively well resolved in
the vertical, they are not so in the horizontal, hence
introducing errors. Because 2�x is the minimum eddy
size resolved in the horizontal (arguably 4�x is the
smallest well-resolved eddy), over a vertical distance of
2�x, eddies of this size are still underresolved. This lack
of resolution implies that an additional stress term may
be needed near the wall to represent these motions
because the chosen SGS models (described above) are
inadequate in this very near surface region.

Furthermore, the filtering process and the physical
existence of subgrid roughness alter the distribution of
stresses near the surface. Dubrulle et al. [2002, see their
Eq. (16)] show that the filtering process near a smooth
solid boundary generates extra stress terms in the mo-
mentum equations near the wall. Nakayama and Sakio
(2002) also investigated this filtering process by exam-
ining the effects of subgrid roughness with DNS of flow
over a wavy bottom boundary consisting of small and
large wavelengths. Filtering the DNS flow field and the
wavy DNS boundary produced a snapshot of an ideal
LES solution over the large wavelength boundary with
subgrid roughness. The filtered velocities at the surface
in the LES domain were then apparently only influ-
enced by the larger wavelength topography, but the
subfilter-scale roughness elements (the smaller wave-
lengths in the original DNS boundary) had generated
extra stress near the new, smoother boundary. The sur-
face stress, originally distributed over the DNS bound-
ary, became distributed over a finite vertical layer
above the smoother LES boundary. Nakayama and
Sakio (2004) and Nakayama et al. (2004) used formal
explicit filtering in the neighborhood of the rough wall
boundary to derive the extra stresslike terms that ap-
pear in the equations. Use of DNS data allowed them to
examine the distributions of these terms and to suggest
useful ideas to formulate the near-boundary conditions.

The issues of near-wall resolution and physics and of
the near-wall filtering point to the need for a near-wall
stress model that distributes stresses generated at the
rough wall over a region near the wall. Somewhat simi-
lar behavior arises in flow through and over vegetation
canopies (see e.g., Shaw and Schumann 1992; Patton et
al. 2001). The solution in these cases is a canopy model
to distribute fluxes over the plant canopy height to ac-
count for the increased drag from the vegetation.
Brown et al. (2001) extended the idea of plant canopy
models to flow over rough surfaces, to distribute
stresses generated at the rough surface over a finite
distance from the wall.

In accordance with the effects described above, our

near-wall stress term is limited to the near-wall region,
so we model it separately from the main SGS closure.
We have implemented the model of Brown et al.
(2001), which can be expressed as a forcing term in the
horizontal momentum equations, �Cca(z) | ũ | ũi, where
i � 1, 2. Here, Cc is a scaling factor and the function
a(z) allows for a smooth decay of the forcing function
as the specified cutoff height, hc, is approached; a(z) is
set equal to cos2(�z/2hc) for z � hc and is zero other-
wise. When implemented numerically, the enhanced
stress is included in the turbulence closure stress term,
and therefore is integrated numerically using the trap-
ezoidal rule:

�i,near-wall � �� Cca�z� | ũ | ũi dz, �20�

where the integration constants are chosen so that

i,near-wall � 0 at the top of the enhanced stress layer.
This stress is then directly added to the 
i3 terms from
the other model components. The recent work of Na-
kayama et al. (2004) and the successful simulation of
the stable boundary layer over flat, rough terrain by
Cederwall (2001) suggest that this form is both physi-
cally and mathematically reasonable.

5. Large-eddy simulations of neutral boundary
layer flow

To test the performance of the RSFS/SGS partition-
ing approach, we use the ARPS code to simulate a
rotation-influenced neutral boundary layer flow case
similar to that of Andren et al. (1994). For the laminar
case, or with a constant eddy viscosity, this flow has the
Ekman spiral as an analytical solution (see Stull 1988,
pp. 210–212). The fully turbulent solution has been ex-
amined by several researchers, for example, Sullivan et
al. (1994), Andren et al. (1994), Kosović (1997), Cole-
man (1999; DNS), Porté-Agel et al. (2000; no Coriolis
forcing), Ding et al. (2001), Redelsperger et al. (2001),
Carlotti (2002), and Esau (2004). Using scale analysis,
Blackadar and Tennekes (1968) showed that the near-
wall region of the turbulent Ekman layer should follow
a logarithmic law. Traditional eddy-viscosity closures
do not give a good logarithmic region near the wall,
usually overpredicting the shear in the model with the
velocity too low at the wall, and too high further away
from it (Andren et al. 1994).

The following sections compare the explicit filtering
and reconstruction approach (RSFS plus SGS) with re-
sults from the standard Smagorinsky model available in
ARPS. The TKE 1.5 closure in ARPS gives results simi-
lar to the Smagorinsky model, so they are not shown.
The simulation setup and the effects of dynamic recon-
struction on the flow solution are described below.

a. Model details and flow setup

ARPS was developed at the Center for Analysis and
Prediction of Storms at the University of Oklahoma.
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Intended mainly for mesoscale and small-scale atmo-
spheric simulations, ARPS solves the three-dimen-
sional, compressible, nonhydrostatic, filtered Navier–
Stokes equations. ARPS is employed here in LES
mode by using appropriate turbulence closure models.
ARPS details can be found in Xue et al. (1995, 2000,
2001). As noted in section 2, the equations have been
slightly modified (as detailed in Xu et al. 1996) to make
them closer to the incompressible case studied by An-
dren et al. (1994). After this work was completed, we
performed tests with the original compressible ARPS
code; the results were essentially the same as those for
the quasi-incompressible case described here.

The flow is driven by a constant pressure gradient
corresponding to a geostrophic wind of (Ug, Vg) � (10,
0) m s�1. ARPS is run for thirty nondimensional time
periods tf, where f is the Coriolis parameter, set equal
to 1 � 10�4 s�1. This configuration results in an Ekman-
like spiral for the mean velocities. The initial conditions
are the analytical Ekman spiral solution with small per-
turbations that trigger instabilities so that the flow be-
comes fully turbulent (see Fig. 2 later).

The grid size for the control case is (43, 43, 43) with
grid spacings of 32 m in the horizontal. In ARPS this
corresponds to a domain size of �x(nx � 3) � 1280 m
in each horizontal direction. In the vertical, a stretched
grid is used, with �zmin � 10 m spacing near the bottom
and up to 65 m near the top of the domain. The average
spacing is 37.5 m and the domain height (H) is 1500 m.
Fourth-order spatial differencing was used for the ad-
vection terms. Temporal discretization uses a mode-
splitting technique to accommodate high-frequency
acoustic waves; the large time steps use the leapfrog

method, while first-order forward–backward explicit
time stepping is used for the small time steps (except
for terms responsible for vertical acoustic propagation,
which are treated implicitly). Higher and lower grid
resolutions as well as different grid aspect ratios were
also studied. Run parameters are given in Table 1 for all
the tests and the base case.

The top and bottom boundaries are treated as rigid
free-slip (also called semi-slip at the lower boundary).
Surface momentum fluxes (e.g., uw | s) are parameter-
ized to account for the influence of the rough bottom
surface with an instantaneous logarithmic drag law
(used here with constant drag coefficients) at each grid
point:

uw | s � CDũ�ũ2 � 
̃2, �21�

where ũ and �̃ are evaluated at the first grid point above
the wall (at height �zmin/2). The drag coefficient CD is
determined by

CD � �� ln�z � z0

z0
���2

, �22�

where � is the von Kármán constant (0.4) and z0 is the
bottom roughness height, set to 0.1 m, and again z is set
to �zmin/2. For the high-resolution and low-aspect ratio
grids used here, it may be useful to use fluctuating sur-
face-flux coefficients (as done by Wyngaard et al. 1998),
but they found little improvement from this step be-
cause of deficiencies in SGS models in the surface layer.
At the lateral boundaries, periodic conditions are used
for this idealized flat-terrain study.

TABLE 1. List of simulations and parameters. Standard grid sizes are followed by those with various grid aspect ratios.

Run name Grid size �x �zmin Large �t Small �t Cc hc

Smagorinsky* (43, 43, 43) 32 m 10 m 0.5 s 0.05 s — —
DWL (43, 43, 43) 32 m 10 m 0.5 s 0.05 s 0.5 4�x
DRM-ADM0 (43, 43, 43) 32 m 10 m 0.5 s 0.05 s 0.5 4�x
DRM-ADM1 (43, 43, 43) 32 m 10 m 0.5 s 0.05 s 0.5 4�x
DRM-ADM2 (43, 43, 43) 32 m 10 m 0.5 s 0.05 s 0.5 4�x
DRM-ADM5 (43, 43, 43) 32 m 10 m 0.5 s 0.05 s 0.5 4�x
DRM-ADM10 (43, 43, 43) 32 m 10 m 0.5 s 0.05 s 0.5 4�x
Smagorinsky (43, 43, 43) 64 m 10 m 1.0 s 0.1 s — —
Smagorinsky (43, 43, 43) 128 m 10 m 2.0 s 0.2 s — —
Smagorinsky (43, 43, 83) 32 m 5 m 0.5 s 0.05 s — —
Smagorinsky (83, 83, 83) 16 m 5 m 0.25 s 0.025 s — —
Smagorinsky (83, 83, 83) 32 m 10 m 0.5 s 0.05 s — —
DRM-ADM0 (43, 43, 23) 32 m 20 m 0.5 s 0.05 s 0.4 4�x
DRM-ADM0 (43, 43, 23) 64 m 20 m 1.0 s 0.1 0.6 4�x
DRM-ADM0 (43, 43, 23) 128 m 20 m 2.0 s 0.2 s 0.8 4�x
DRM-ADM0 (43, 43, 43) 16 m 16 m 0.25 s 0.025 s 0.4 4�x
DRM-ADM0 (43, 43, 43) 64 m 10 m 1.0 s 0.1 s 0.75 4�x
DRM-ADM0 (43, 43, 43) 96 m 10 m 1.0 s 0.1 s 0.83 2�x
DRM-ADM0 (43, 43, 43) 128 m 10 m 2.0 s 0.2 s 0.85 2�x
DRM-ADM0 (43, 43, 83) 32 m 5 m 0.5 s 0.05 s 0.7 2�x
DRM-ADM0 (43, 43, 83) 64 m 5 m 0.5 s 0.05 s 0.85 2�x
DRM-ADM0 (83, 83, 83) 16 m 5 m 0.25 s 0.025 s 0.5 4�x
DRM-ADM0 (83, 83, 83) 32 m 10 m 0.5 s 0.05 s 0.5 4�x

* Base case.
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b. Implementation of RSFS, SGS, and wall models

The Smagorinsky closure provides the base standard
against which we compare our new turbulence model-
ing approaches. The Smagorinsky coefficient is chosen
as CS � 0.18 (see e.g., Sullivan et al. 1994).

The anisotropic explicit filter for the reconstruction
models was applied at twice the grid spacing, 2�g; this
choice is consistent with the findings of Ghosal (1996)
and Chow and Moin (2003), which dictate that a mini-
mum filter-grid ratio of two should be used with fourth-
order advection schemes (as in ARPS). This filter ap-
pears in the calculation of the RSFS terms and in the
dynamic procedure. For ease of implementation, we
apply the van Cittert series expansion reconstruction
procedure in computational space, which has a uniform
grid (though still allowing for anisotropy); therefore the
filters are applied in computational space (Jordan 1999;
Stolz et al. 2001a). The greatest difficulty in implemen-
tation of the RSFS models is near-solid boundaries,
where care must be taken in representing higher-order
terms. The values at the wall can be sensitive to the
bottom boundary conditions due to the repeated filter-
ing that occurs there. We found, however, that when
RSFS models are used together with SGS models at the
wall, the RSFS contribution decays to zero (see section
2) regardless of the specified boundary conditions.

On the other hand, our tests of the dynamic Smago-
rinsky model (DSM) as the SGS model in ARPS
showed very strong sensitivity to the bottom boundary
conditions. Porté-Agel et al. (2000) also performed
tests with the standard DSM and obtained values of the
dynamic coefficient that were too low near the wall.
The dynamic DWL model was not as sensitive to the
chosen boundary conditions (because �T does not de-
pend on S̃13 explicitly). The stress provided by the
DWL model is still too small at the wall, but the result-
ing profile is better. In addition to giving more reason-
able profiles near the wall, the DWL is easier to imple-
ment and more computationally efficient than the
DSM. Wong and Lilly (1994) used a horizontal plane
average, which is not general enough to apply to flow
over terrain; we therefore use a local filter created by
applying the test filter twice. The dynamic eddy viscos-
ity is also clipped at �1.5 � 10�5 to prevent the eddy
viscosity from becoming too negative locally and caus-
ing instabilities (see Zang et al. 1993; Wong and Lilly
1994); further details are in Chow (2004).

The only input parameter required for the DWL is
the ratio of the test and explicit filters, �t/�f, which is
chosen to be two, consistent with the �f/�g ratio chosen
above (Gullbrand and Chow 2003). The resulting test
filter is thus 4�x, which differs from the usual test filter
used without explicit filtering. When no reconstruction
is used, the test filter is often chosen as twice the grid
spacing (see e.g., Zang et al. 1993). The choice of the
test filter width is a distinguishing, though subtle, fea-
ture of the explicit filtering approach (Winckelmans et

al. 2001; Gullbrand and Chow 2003). The resulting test
plus explicit filter must be similar in shape to the origi-
nal explicit filter (Winckelmans et al. 2001). The dis-
crete tophat explicit filter is applied (to the streamwise
velocity u, for example) with

ui � 0.25ui�1 � 0.5ui � 0.25ui�1, �23�

where i temporarily denotes the grid index; therefore
the test filter is

ûi � 0.5ui�1 � 0.5ui�1 �24�

to give a combined test plus explicit filter of

ûi � 0.125ui�2 � 0.25ui�1 � 0.25ui � 0.25ui�1

� 0.125ui�2, �25�

which is simply a tophat filter of twice the width of the
explicit filter (for further details see Gullbrand and
Chow 2003).

Following Brown et al. (2001), Cederwall (2001), and
Chow and Street (2002), we implement a near-wall
stress model, based on the model given previously in
Eq. (20). Brown et al. (2001) choose a constant Cc so
that the velocity at the top of the canopy matches ex-
perimental measurements. Cederwall (2001) selected
Cc such that the near-wall stress model augmented the
total stress at the first grid point above the wall to make
it equal to the total local bottom shear stress. We allow
Cc to be locally proportional to the bottom shear stress
in each horizontal direction. The proportionality factor
is chosen so that the near-wall stress model provides the
necessary augmentation that yields logarithmic mean
velocity profiles near the wall. The variation of Cc and
hc (the layer height) with grid spacing and aspect ratio
is described later. The near-wall stress model is part of
the SGS model component, but is treated separately
from the eddy-viscosity contribution because it is
present strictly very near the wall.

Finally, current turbulence models often do not pro-
vide enough dissipation at the highest frequencies, so
computational mixing terms may be added for stability
if desired. We follow the recommendations in ARPS
and use a small fourth-order term, which can be con-
sidered to be a type of hyper-viscosity. ARPS also in-
cludes a divergence damping term to control acoustic
noise. The impact of these damping terms has been
assessed and found to be minimal (see spectra plotted
in Chow 2004).

c. Simulation results

1) TIME EVOLUTION

Figures 2a and 2b show the evolution of the nonsta-
tionarity measures Cu and C� defined by [following An-
dren et al. (1994)]
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Cu � �
f

uws
�

0

H

�� 
̃� � Vg� dz �26�

C
 �
f


ws
�

0

H

�� ũ� � Ug� dz, �27�

where H is the stress-free top of the boundary layer and
simulation domain, and uws and �ws denote the total
surface stresses in the uw and �w planes, respectively.
The brackets � � here denote horizontal planar averag-
ing using data taken at each time step. At steady state,
both Cu and C� should be unity, but even after 100 000
s (tf � 10), inertial oscillations are apparent in Figs. 2a
and b. These oscillations have a period of 2�/f and
result from the change in balance of pressure gradient
and Coriolis forces (Cushman-Roisin 1994). Note that
the spin-up time is much shorter for the DRM-ADM0
run. Andren et al. (1994) state that the inertial oscilla-
tions affect primarily the first-order statistics of the
flow, but some of our comparisons are quite sensitive,
so we seek a solution as close to a statistically steady
state as possible. Unless otherwise indicated, we aver-

age from 200 000 to 300 000 s (tf � 20 to 30) where
oscillations in the C� curve especially have decayed sig-
nificantly. Our simulation and averaging times are
about 3 times as long as those of Andren et al. (1994).

2) FIRST-ORDER QUANTITIES

Figure 3a shows semilog plots of mean wind speed
from four different turbulence model configurations:
no model, static Smagorinsky, DWL, and DRM-

ADM0. The wind speed (U � � ũ
2

� �̃
2
) is normalized

by the (time averaged) friction velocity defined by u* �
(uw2

s � �w2
s)1/4 (found to be approximately 0.44). The

theoretical log law profile is also shown. The “no
model” and Smagorinsky results deviate considerably,
but the DWL and DRM results provide good agree-
ment. The no model simulation still incorporates the
rough-wall boundary condition; therefore the surface
stress contributes at the first point above the wall and
slows the wind speed.

FIG. 2. Comparison of nonstationarity parameters (a) Cu and
(b) C� for the Smagorinsky model and the DRM-ADM0 hybrid
model.

FIG. 3. Comparison of (a) mean wind speed and (b) nondimen-
sional mean shear � profiles for no model, the Smagorinsky
model, the dynamic Wong–Lilly model, and for the DRM-ADM0
hybrid model (level-0 reconstruction, DWL, and near-wall stress).
Theoretical log profile also shown in (a).
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A more sensitive measure of a model’s performance
is the nondimensional velocity gradient, �, defined as

� �
�z

u*
���� ũ�

�z �2

� ��� 
̃�
�z �2

. �28�

Here � is the von Kármán constant, chosen to be 0.4. In
a logarithmic region, � � 1, which we expect for ap-
proximately the first 150–250 m above the wall, or
10%–15% of the boundary layer depth (0.1–0.15 H)
(Sullivan et al. 1994). Profiles of �, shown in Fig. 3b,
have been smoothed to remove 2�z waves amplified by
the derivatives (and not visible in the original velocity
fields). We see that the overshoot in � reaches 1.6 for
the traditional Smagorinsky model, indicating the
model allows excessive shear near the surface. Similar
overshoots were observed in other studies (Andren et
al. 1994; Sullivan et al. 1994; Kosović 1997). It appears
that the Smagorinsky model behaves as a large viscosity
model that mimics the molecular viscosity dissipation
near a smooth wall. In large-scale flows, however, the
linear region is confined to a few millimeters above the
surface, and the log region should cover the entire
range near the wall in our simulation results. Our ef-
forts at improving near-surface � profiles are aimed at
replacing this gradient diffusion behavior near the wall.
Surprisingly, the results using no model appear fairly
logarithmic after the first point above the wall, but the
velocity magnitude is significantly overpredicted.

When reconstruction and dynamic eddy-viscosity
models are used with the near-wall stress term (DRM-
ADM0), values of � within 0.1 of the ideal value
(unity) are obtained. This represents a significant im-
provement over the standard Smagorinsky simulations.
It is better than several previous attempts to improve �
profiles, where agreement within about 0.2 from unity
was achieved by Sullivan et al. (1994), the backscatter
results of Mason and Brown in Andren et al. (1994),
Porté-Agel et al. (2000), and Ding et al. (2001), using
various SGS methods. Our results are comparable to
those of Kosović (1997), where � profiles were within
0.1 of unity. The simulations of Esau (2004) using a
dynamic mixed model (with two-dimensional filtering)
did not produce satisfactory results near the wall [see
Esau (2004), their Figs. 11a and 15d]; while the DMM
provides some reconstruction, it was not used with a
formal explicit filter, making the level of reconstruction
ambiguous. Sensitivity to the numerical formulation
with the Smagorinsky model as the base model for the
dynamic procedure (as opposed to DWL) and the ab-
sence of a near-wall stress model may also have limited
the improvement obtained by the DMM.

Our hybrid SFS model has the advantage that once
the filter has been selected, no adjustable parameters
are needed aside from those in the enhanced near-wall
stress, which is active only in the first few grid points
above the wall. The reconstruction component is of
scale-similar form, and thus allows backscatter, that is,

energy flux from the small to the large scales (within
the grid resolution). This is believed to be especially
important in the atmospheric boundary layer when the
large scales are not fully resolved and it aids in achiev-
ing a logarithmic mean velocity profile. The influence
of the enhanced near-wall stress is felt only near the
wall, where it helps to straighten the � profiles. The
impact of the near-wall stress model does not over-
whelm the near-wall results to the point where the tur-
bulence model becomes irrelevant. Tests with the same
level of near-wall stress added to the standard Smago-
rinsky model (without reconstruction) did not produce
encouraging results (see Fig. 4). Interestingly, the DWL
model without reconstruction also performs quite well
in these first-order comparisons.

Figure 5 shows the effect of increasing the level of
reconstruction in the DRM-ADM models. The � pro-
files indicate that while all the results remain within 0.1
of the ideal value, increasing reconstruction moves the
profiles slightly closer to unity very near the wall (z/H
� 0.05). Because the curves are so close together, there
is some sensitivity to the time averaging period; Figs.
2a,b showed that the deviations from stationarity dif-
fered in time with different turbulence models. We
found that taking a long averaging period (100 000 s)
after Cu and C� have decayed significantly gave the
most reasonable results. It is not clear, however, that �
should be the sole parameter used for comparisons as it
is quite sensitive to small wiggles, which are not readily
apparent from the mean velocity profiles in Fig. 3a. The
effects of adding reconstruction levels become clearer
when second-order statistics are examined.

3) SECOND-ORDER QUANTITIES

Figure 6 compares the uw stress distribution for the
Smagorinsky, DWL, and DRM-ADM0 cases from Fig. 3.

FIG. 4. Comparison of nondimensional mean shear � profiles
for the Smagorinsky model, also using the near-wall stress model,
and DRM-ADM0 (with near-wall stress).
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The resolved uw stress is defined as �(ũ � � ũ �)(w̃ �
�w̃ �)�. The Smagorinsky and DWL simulations show
similar contributions of the SFS stress, which is largest
near the wall. When reconstruction is added, the total
SFS stress increases compared to the eddy-viscosity
simulations, while the resolved stress decreases accord-
ingly. Similar behavior is observed for the other stress
tensor components. The magnitude of the total stress
(resolved and SFS) differs slightly between the differ-
ent simulations.

The contributions from each SFS stress component
for DRM-ADM0 are seen in the uw stress profiles in
Fig. 7. The profiles are also shown on a semi-log plot to
magnify the region near the wall. The total uw stress
(resolved plus SFS) is not linear because there is a com-
ponent in the �w direction because of Coriolis forcing.

The influence of the near-wall stress model decreases
with height, becoming zero at the hc � 4�x � 128 m for
this grid. This is equivalent to the minimum well-
resolved horizontal eddy size beneath the filter. We
obtain good results with a near-wall stress model pro-
portionality factor Cc � 0.5, so that the near-wall stress
model contributes an amount equal to half the wall
stress at the first grid point above the wall. The recon-
struction terms (RSFS stress components) decay to
zero naturally at the wall in the presence of the other
two model components (eddy viscosity and near-wall
stress; see section 2).

The effects of increasing reconstruction on the uw
stresses are shown in Fig. 8. The RSFS component of
the SFS stress increases with reconstruction level (lev-
els 0, 1, and 5), while the SGS component decreases
slightly. Thus, the total SFS contribution increases with
increasing reconstruction (primarily due to the contri-

FIG. 5. Comparison of nondimensional mean shear � profiles
for increasing reconstruction levels: dynamic Wong–Lilly, no re-
construction; DRM-ADM0; DRM-ADM1; and DRM-ADM5.

FIG. 6. Comparison of uw resolved (thin lines) and SFS (bold
lines) stress profiles for Smagorinsky, DWL, and DRM-ADM0.

FIG. 7. (a) Normalized vertical profiles of the uw total stress for
the DRM-ADM0 model (zero-level reconstruction, dynamic
Wong–Lilly model, and near-wall canopy stress), with each model
component shown separately in addition to the resolved stress. (b)
Same as (a) but with a logarithmic vertical axis to magnify the
region near the wall.
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bution of the reconstruction terms), and the resolved
contribution decreases accordingly (as seen in Fig. 6).
Note that the spacing between the level-0 and level-1
curves is about the same as that between level-1 and
level-5, indicating a trend toward convergence. This
trend was also observed in the small-scale channel flow
simulations of Gullbrand and Chow (2003). The slightly
decreasing contribution of the eddy-viscosity term is
also apparent in Fig. 9, which shows profiles of �T for
the same simulations as in Fig. 5. Near the wall, the
eddy viscosity is relatively constant with height. This is
the region where wall effects in the numerical proce-
dure are strongest and the eddy viscosity needs the aug-
mentation provided by the near-wall stress model.

For these high Reynolds number simulations, we
have no DNS result to provide exact values of the 
13

SFS stresses for comparison, as was done by Gullbrand
and Chow (2003). The turbulent stresses can, however,
be compared to finer grid resolution simulations
treated as estimates of an exact solution. These esti-
mates can then be used to calculate SFS stress values on
the coarser grid by using the definition of the turbulent
stress tensor in Eq. (3). The finer grid data come from
ARPS simulations of twice the resolution in each di-
rection (83, 83, 83). The horizontal spacing is 16 m and
the vertical resolution is 5 m near the wall, and
stretched above that to an average of 18.75 m over a
domain of the same size as the base case (43, 43, 43)
grid. The discrete quantities ũi can be obtained from the
instantaneous high-resolution fields a posteriori by us-
ing a sharp cutoff filter that matches the coarse grid
resolution (43, 43, 43) simulations, but we do not apply
the cutoff filter here for simplicity (and the inability to
apply it in the vertical direction); tests on the small-
scale channel flow code showed that the cutoff filter
applied in the horizontal directions did not change the
magnitude or shape of the resulting stress profiles sig-
nificantly. We have also reconstructed the velocity
fields to obtain ũ*I , which estimates the instantaneous
velocity fields from a twice-finer grid (163, 163, 163),
though the reconstruction is especially limited near the
wall. The high-resolution simulations also require a tur-
bulence model; DRM-ADM0 is used instead of a stan-
dard eddy-viscosity closure, because it yields good
mean velocity quantities (logarithmic near the wall).

Thus we calculate 
̃ij � ũ*i ũ*j � ũ*i
˜ ũ*j
˜. The explicit filter

is applied at twice the (43, 43, 43) cell spacing (i.e., 4
times the high-resolution spacing); a tophat filter is con-
structed using the trapezoidal rule for the fine grid
fields to match the filter width used in the LES simu-
lations. The same filters are applied in the vertical di-
rection. While this procedure provides only an estimate
of the true SFS stresses, at the very least the compari-
son shows how well we match highly resolved results
(which are much more expensive to compute because
of the 16-fold increase in computation time when the
reduced time step is taken into account).

The turbulent stresses predicted by the coarse reso-
lution simulations using dynamic reconstruction agree
well with the SFS stresses calculated from the finer
resolution data. Results from DRM-ADM0 up to
DRM-ADM10 are shown in Fig. 10 (without the near-
wall stress contribution). The first point above the wall
for the fine grid stress is not shown because it cannot be
calculated accurately; the boundary conditions affect
the application of multiple filters (especially in the ver-
tical direction). In fact, the values of the extracted stress
within 4�x of the wall are approximate because of the
limited resolution available. Stresses predicted by the
DWL model (as well as Smagorinsky, not shown) are
much too small. Increasing reconstruction on the coarse

FIG. 8. Comparison of uw SGS (thin lines) and RSFS (bold
lines) stress profiles for the dynamic Wong–Lilly SGS model with
increasing RSFS reconstruction levels: DRM-ADM0; DRM-
ADM1; and DRM-ADM5.

FIG. 9. Comparison of eddy-viscosity profiles for the dynamic
Wong–Lilly SGS model with increasing RSFS reconstruction lev-
els, shown for the bottom 200 m of the domain: DWL, no recon-
struction; DRM-ADM0; DRM-ADM1; and DRM-ADM5.
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grid improves agreement with the high-resolution re-
sults. This shows that the reconstruction procedure con-
tributes appropriately to the SFS stress, unlike the
models without reconstruction, which cannot capture
the RSFS motions. Because the reconstruction of the
RSFS and the eddy-viscosity representation of the SGS
stresses are imperfect, the near-wall stress model is
needed to contribute the necessary stress near the wall.

The optimal level of reconstruction is difficult to de-
termine. Clearly, the increase in the RSFS stresses is
not linear in the reconstruction level. The series expan-
sion models should converge to a fixed contribution.
Figure 10 shows the increase between levels 0 and 1 is
much larger than the difference between levels 5 and
10. In the small-scale simulations of Gullbrand and
Chow (2003), the improvement between levels 5 and 10
was also not very large. The higher reconstruction lev-
els appear to converge, but the results may still differ
from the exact results because of SGS effects. It is also
possible that numerical errors interact with the recon-
struction procedure to limit our ability to capture all of
the RSFS motions. Given the computation costs of re-
construction (see section 5c3 below), it appears that
level-2 reconstruction is a good compromise. The in-
creased cost from level 5 to 10 does not seem warranted
by the small difference in the results.

While the comparisons of mean velocity and � pro-
files did not clearly distinguish among the simulations,
these comparisons of second-order quantities show that
reconstruction of the RSFS stress is important. The
DWL results (without reconstruction) also produce
good mean velocity profiles (Fig. 3), but cannot achieve
correct stress profiles. The stress profiles are especially
important in predicting turbulent transport and mixing

of scalars, and it is only with the dynamic reconstruction
closure models that we are able to obtain accurate rep-
resentations of these stresses.

4) EFFECTS OF GRID RESOLUTION AND ASPECT
RATIO

A robust turbulence model should handle a variety of
different grid configurations. Figure 11 shows the effect
of doubling the grid resolution on the � profiles for the
Smagorinsky and DRM-ADM0 simulations. The high-
resolution grid uses twice as many points in each direc-
tion over the same domain size to give a horizontal
resolution of 16 m and �zmin of 5 m at the wall (see
Table 1). The near-wall stress model parameters were
not changed. The overshoot in the Smagorinsky simu-
lations does not decrease; it simply moves closer to the
wall. Similar behavior was observed for eddy-viscosity
models used by Mason and Thomson (1992) and
Khanna and Brasseur (1997). The DRM-ADM0 show
equally good results at both resolutions, giving in this
case a somewhat grid-independent result for �.

The comparisons in Fig. 11 use a constant aspect ratio
of �x/�z � 16/5 near the bottom wall. Larger aspect
ratios are common in LES applications where vertical
grid refinement is important for capturing the vertical
structure of the atmosphere (e.g., stratification). Aspect
ratios of 100:1 or larger are often used in mesoscale
simulations, sometimes with boundary layer parameter-
izations. Such large aspect ratios distort the minimum
resolvable eddies near the wall and place a large burden
on the SFS model which must compensate for this. An
aspect ratio of unity would be ideal (Kravchenko et al.
1996), but such computations are prohibitively expen-
sive. To better determine the contribution required of
the near-wall stress model, we have examined aspect
ratios ranging from 1.0 to 12.8. Larger ratios are not
feasible on our small domain and lead to instabilities.

FIG. 10. Turbulent stresses computed a posteriori from velocity
fields reconstructed from a fine resolution simulation [recon-
structed from (83, 83, 83)], and the sum of RSFS and SGS stresses
computed by coarse grid simulations (43, 43, 43): DWL, DRM-
ADM0, DRM-ADM1, DRM-ADM2, DRM-ADM5, and DRM-
ADM10. The near-wall stress contribution is not included in the
figure. Averaged over 100 000 to 120 000 s.

FIG. 11. Comparison of nondimensional mean shear � profiles
for the Smagorinsky model and DRM-ADM0 for 433 and 833 grid
sizes. Averaged from 75 000 to 100 000 s.
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Figures 12a,b show the effects of a sample of four
different grid spacings or aspect ratios on results using
the Smagorinsky and DRM-ADM0 models. The near-
wall stress contributions in the DRM-ADM0 simula-
tions have been adjusted to give � profiles that are
close to unity (see Table 1). The required contribution
of the near-wall stress model changes, as expected, be-
cause this model was in part developed to accommo-
date different grid aspect ratios near the wall.

The two independent near-wall stress layer param-
eters are the layer height (hc) and the proportionality
factor (Cc). We empirically determined the parameters
needed for good results over a range of grid sizes and
aspect ratios. “Good results” mean the ability to
achieve � profiles within 0.2 of unity near the wall.
Tests indicate that the aspect ratio is less of a control-
ling factor for the first parameter, the layer height, than
is the horizontal grid spacing. We argued earlier that
the underresolved region at the wall extends between
2�x (minimum resolved eddy size) and 4�x (minimum
well-resolved eddy size) from the wall. Most of the

simulations (of various grid sizes) give good results us-
ing a near-wall stress layer height equal to 4�x. Thus, hc

is different in the (83, 83, 83) versus the (43, 43, 43) grid
cases, for example, for the same flow conditions, em-
phasizing that the near-wall stress model is grid depen-
dent. Some simulations give better results using layer
heights of 2 or 3�x, as shown in Table 1. While the
near-wall stress layer thickness appears well deter-
mined by this simple rule, there is likely a limiting fac-
tor because the enhanced stress layer at coarse resolu-
tions should not grow to extend beyond the boundary
layer depth.

Figure 13 shows the variation of Cc with the aspect
ratio �x/�z. The �z dependence of Cc is not strong, but
a slightly better collapse of the data is obtained using
the aspect ratio as opposed to �x. The value of Cc

cannot exceed unity, where the near-wall stress model
would provide a stress at the first point above the wall
exactly equal to the local wall stress. The required con-
tribution of the near-wall stress model increases with
aspect ratio (and also with �x), confirming our hypoth-
esis that an enhanced stress layer is necessary to com-
pensate for the underresolved region near the wall. The
need for the near-wall stress layer does not disappear
when the aspect ratio is near unity, but its influence is
reduced. Numerous tests indicate that small deviations
from the values in Fig. 13 also give acceptable results.
Therefore, Fig. 13 provides reasonable guidelines.
While the near-wall stress model we have implemented
provides (with proper adjustment) the necessary
supplement to the total stress at the wall, this remains
an important topic for future research.

5) COMPUTATIONAL COST

The reconstruction models as well as the dynamic
eddy-viscosity model are straightforward to implement,

FIG. 12. Comparison of nondimensional mean shear � profiles
for (a) Smagorinsky and (b) DRM-ADM0 for different grid spac-
ings or aspect ratios: �x: �zmin � 32:10 (base case), 32:5, 64:10,
128:10. Note that the axes are scaled differently. Averaged from
75 000 to 100 000 s.

FIG. 13. Variation of near-wall stress model proportionality
constant with grid aspect ratio. A curve indicating the trend of the
data is also shown.
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but the resulting increase in computational cost is not
negligible. We performed simple comparisons to deter-
mine the computational costs of the new methods,
though no effort was made to optimize the changes in
the turbulence modeling sections of the ARPS code.
The base case simulations were performed using eight
processors in distributed memory mode (via MPI) on
an IBM SP Power4 system. The computation time tests
were performed for 20 000 s.

Table 2 shows the increased computational cost of
various turbulence closures compared to the standard
Smagorinsky model. From tests of DWL model with
and without the near-wall stress model, we estimate
that the near-wall stress model adds approximately 5%
to the total computation time. The reconstruction pro-
cedure also adds significantly to the computation time.
The increased cost of the turbulence model alone is also
shown.

While the increase in cost is considerable, it must be
compared with other means of obtaining equally accu-
rate results. If, for example, the resolution were
doubled in each direction, the increase in computa-
tional cost would be approximately 16 times, assuming
the time step were reduced by a factor of two. Even
with this increase in resolution, Fig. 11 showed that the
Smagorinsky model continues to overpredict the values
of � near the wall. Given this alternative, the increases
in computational time of the DRM-ADM approach
seem quite reasonable for the significant improvement
in the results obtained. A compromise solution might
be to use DRM-ADM0 up to DRM-ADM2, with an
increase in total computational cost of approximately
50% over standard closure models. Finally, the in-
creased cost of 50% seems reasonable when compared
to the factor of 2 increase in cost over static Smagorin-
sky observed by Esau (2004) using the DMM, and the
50% increase for using DMM over DSM observed by
Cui (1999), both in incompressible codes; the increased
cost of the turbulence model portion was not reported.
Further optimization (in the filtering subroutines espe-
cially) can make the code more efficient.

6. Summary and conclusions

The near-wall region in atmospheric boundary layer
flow simulations is plagued by poor resolution and em-

pirically based wall models for the bottom stress, in
addition to SGS and RSFS turbulence modeling errors.
This paper presented an approach to turbulence mod-
eling over rough boundaries that incorporates the ideas
of explicit filtering, velocity reconstruction, and near-
wall stress modeling. The velocity partitioning ap-
proach clearly delineates the required contributions
from each component. As a test case, we performed
simulations of the rotation-influenced neutral boundary
layer flow over flat terrain, similar to the case of An-
dren et al. (1994).

Traditional turbulence closure models fail to produce
the expected logarithmic region near the wall. We
therefore began with the context provided by Carati et
al. (2001), which led to insights about useful turbulence
model decompositions. With explicit filtering, the total
SFS stresses are separated into RSFS and SGS compo-
nents; the RSFS portion can be reconstructed, while the
SGS portion must be modeled, though its required con-
tribution is reduced because the RSFS stress is in-
cluded. Even traditional closure models without ex-
plicit filtering require reconstruction when finite-
difference or finite-volume schemes are used. In these
cases, the lack of an explicitly defined filter makes it
difficult to determine a method for reconstruction. Ex-
plicit filtering is also important for reducing numerical
errors from finite-difference schemes. Near the wall,
the SGS contribution requires enhancement by a near-
wall stress model to account for the effects of poor
resolution, high grid-aspect ratios, and filter-induced
stresses at solid boundaries (Nakayama and Sakio 2004;
Dubrulle et al. 2002). This framework aids understand-
ing of the required contributions to subfilter-scale
stresses, and simulation results show excellent agree-
ment with similarity theory in the logarithmic region.

Two specific alternatives were presented for velocity
reconstruction: the Taylor series expansion method of
Katopodes et al. (2000a) and Chow and Street (2002),
and the approximate deconvolution method of Stolz
and Adams (1999). The methods are equivalent within
the order of accuracy of the expansions. Truncation
error from the Taylor series approach is kept to the
desired order of the filter width by explicitly neglecting
higher-order terms in the reconstruction of 
ij. The
ADM procedure includes higher-order quantities in 
ij,
so the truncation error is less well defined, but the
ADM provides a simple iterative method for calcula-
tion of higher-order series expansions for reconstruc-
tion, so it is used for the neutral boundary layer simu-
lations in this work. Both methods reduce to the scale-
similarity model of Bardina et al. (1983) at lowest order
and provide backscatter of energy from small to large
scales. Both models also satisfy the full 
ij evolution
equations to a predefined order of accuracy (though
this is clearer when higher-order terms are neglected as
done when using the Taylor series approach).

While the series expansion approaches can be used
for the RSFS component of the SFS stresses, the SGS

TABLE 2. Computational cost of different turbulence models
compared to the Smagorinsky model.

Model
Turbulence model

cost factor Total cost factor

Smagorinsky 1.00 1.00
DWL (no near wall) 2.33 1.17
DWL 2.67 1.22
DRM-ADM0 4.59 1.52
DRM-ADM1 4.75 1.51
DRM-ADM2 5.10 1.57
DRM-ADM5 5.92 1.67
DRM-ADM10 7.29 1.85
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component must be modeled separately. We imple-
mented the dynamic eddy-viscosity procedure of Wong
and Lilly (1994), which requires only the test filter
width as a free parameter. The dynamic Wong–Lilly
model has been used to provide necessary dissipation,
without incurring the expected drawbacks of an eddy-
viscosity model, because it is used in conjunction with a
scale-similarity model. To enhance the near-wall stress,
we use a model based on the canopy stress model of
Brown et al. (2001).

The combinations of the ADM reconstruction, the
DWL, and the near-wall stress model significantly im-
proved first- and second-order statistics. Mean velocity
profiles and nondimensional shear profiles (�) showed
excellent agreement with similarity theory in the loga-
rithmic region. Examination of second-order statistics,
particularly the uw stress decomposition, revealed that
increasing reconstruction increases the contribution of
the RSFS as well as the total SFS stresses, while corre-
spondingly reducing the resolved uw stresses. This in-
crease in the SFS stress clearly distinguishes the DRM-
ADM models from the DWL and Smagorinsky results
without reconstruction. Using finer resolution data to
reconstruct a high-resolution velocity field for compari-
son, we showed that the increased SFS stresses (from
simulations at the base case low resolution) approach
the required SFS stress predicted by the finer resolution
data. The DWL and Smagorinsky results strongly un-
derpredict stresses. These observations are in agree-
ment with those of Gullbrand and Chow (2003) who
showed that the stresses from small-scale channel flows
using the DRM approached the predicted stresses from
DNS data. Accurate prediction of stresses is especially
important for atmospheric flows, where turbulent
transport and mixing of scalars such as temperature,
moisture, aerosols, and pollutants are of interest.

These results for high Reynolds number atmospheric
flow simulations over rough boundaries using explicit
filtering and reconstruction are very encouraging. Sev-
eral different grid resolutions and grid aspect ratios
have been tested, and reasonable results have been ob-
tained by accounting for the required variation in the
near-wall stress model as a function of horizontal grid
spacing and grid aspect ratio. We found that the near-
wall stress model alone is insufficient for correcting
large-eddy simulations near the lower boundary; it
must be used in conjunction with a sophisticated ex-
plicit filtering and reconstruction approach so that it
provides only the necessary near-wall SGS stress. The
improvements obtained from the near-wall stress
model point to the need for more sophisticated SGS
closures that account for the effects of a rough bound-
ary at the lower wall.

In summary, the steps required to achieve improved
neutral boundary layer simulations are as follows. First,
an explicit filter width must be chosen that is compat-
ible with the discretization scheme used in the code

(Chow and Moin 2003; Ghosal 1996). We chose the
explicit filter to be twice the grid size, in agreement with
the fourth-order central differencing used. The explicit
filter is the basis for the reconstruction procedure,
which is easiest to implement using the ADM ap-
proach. Level-0 reconstruction (DRM-ADM0) signifi-
cantly improves the mean quantities, and higher-order
reconstruction further improves the representation of
the SFS stresses especially. The reconstruction ap-
proach is used with a dynamic eddy-viscosity procedure
that requires a test filter, typically taken to be twice the
explicit filter. In our case, the test filter width was 4
times the grid spacing. The test filter is used to calculate
RSFS and SGS contributions at the test level; they are
then compared to their values at the explicit filter level
to determine the appropriate eddy-viscosity coefficient.
Finally, the SGS contribution from the dynamic eddy-
viscosity model is not sufficient near the wall, so a sepa-
rate near-wall stress model is added to enhance the
stress. The thickness of this near-wall stress layer is
typically chosen to be between 2 and 4�x. The propor-
tionality factor that determines the contribution of the
enhanced near-wall stresses varies between 0.4 and 0.9,
depending primarily on the grid aspect ratio. Thus, the
combined RSFS, SGS, and near-wall stress approach
requires two parameters for the enhanced near-wall
stress, plus a priori selection of the explicit and test
filter widths.

As LES is applied to problems where more of the
energy of the flow is unresolved, the accuracy of the
SFS model becomes increasingly important. Although
there is increased computational cost, the explicit fil-
tering and RSFS approach is warranted by the resulting
improvements in the simulation results. To our knowl-
edge, we have demonstrated for the first time that
scale-similarity or reconstruction models used with ex-
plicit filtering can dramatically improve results for high
Reynolds number, rough, atmospheric boundary layer
flows. While we have selected specific RSFS and SGS
model components, the velocity partitioning approach
can be used with other, simpler SGS closures (e.g., non-
dynamic eddy-viscosity models) to improve simulation
results. A low-order RSFS component can easily be
added to any code with zero-order reconstruction (the
Bardina term); this will improve total SFS stress repre-
sentations when the RSFS component is used with an
existing eddy-viscosity model. Further research is re-
quired to determine optimal SGS and near-wall stress
representations, and the RSFS/SGS approach should
also be tested for other flow conditions. The RSFS com-
ponent (obtained by series expansions) can remain un-
changed, but the SGS model may need adjustment de-
pending on the flow and grid resolution. Preliminary
tests on moderately convective boundary layer (Chow
2004, appendix F) and moderately stable boundary
layer simulations also show improved agreement with
similarity theory.
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