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Verification of precipitation is one of the major issues in evaluating numerical weather
prediction. In this study, a recently developed neighbourhood-based method in terms
of agreement scales is applied to characterize the scale-dependent spatial spread-skill
relationship of precipitation forecasts in a 3 km convection-allowing ensemble prediction
system (EPS) over the Yangtze-Huaihe river basin of China. Thirty cases during the
Meiyu season of 2013 are classified into two weather regimes, large coverage (LC) and
small coverage (SC), based on the precipitation fractional coverage. Overall, precipitation
distributions for these two weather regimes are reasonably forecast by the EPS. The results
show that the spatial spread-skill relationship depends highly on the weather regime. The
spatial spread-skill relationship under SC is poorer and shows more diurnal variation
compared to that under LC. In addition, this article extends the neighbourhood-based
method to investigate the relative influence of precipitation intensity and placement on
the spatial spread-skill relationship. With increasing precipitation threshold, the relative
impact of precipitation intensity on the relationship gradually decreases, and the influence
of precipitation placement becomes dominant.
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1. Introduction

Accurate precipitation forecasts have been particularly challeng-
ing for numerical weather prediction models. In the last decade,
as the convection-allowing models have been developed rapidly
(Kawabata et al., 2007; Baldauf et al., 2011; Seity et al., 2011),
convection-allowing ensemble prediction systems (EPSs), which
explicitly depict convection and take the uncertainties from
many sources into account, show advantages to improve pre-
cipitation forecasts (Roberts and Lean, 2008; Clark et al., 2010;
Schwartz et al., 2015). The convection-allowing EPSs have been
operational or quasi-operational at many forecasting centres,
such as MOGREPS-UK with 2.2 km resolution (Tennant, 2015),
AROME-EPS with 2.5 km resolution (Vie et al., 2011; Bouttier
et al., 2012, 2016; Nuissier et al., 2012), COSMO-DE-EPS with
2.8 km resolution (Peralta et al., 2012; Harnisch and Keil, 2015)
and the National Center for Atmospheric Research (NCAR)’s
experimental real-time convection-allowing EPS with 4 km res-
olution (Schwartz et al., 2015). These convection-allowing EPSs
provide important guidance in operational weather forecasting
(Iyer et al., 2016), especially when predicting high-impact weather
such as extreme heavy rain. However, the complexity of nonlin-
ear error growth and the predictability of moist convection on
a convective scale (Hohenegger and Schär, 2007; Zhang et al.,
2007; Clark et al., 2010; Melhauser and Zhang, 2012) pose great

challenges for the improvements and assessment of precipitation
forecasts in a convection-allowing EPS. Therefore, verification of
precipitation forecasts becomes one of the major issues in eval-
uating convection-allowing EPSs. This study aims to verify the
short-range precipitation forecasts in a convection-allowing EPS,
focusing on the scale-dependent spatial spread-skill relationship
using a new neighbourhood-based method (Dey et al., 2016a,
2016b).

Traditionally, the spread-skill relationship is used to depict
the agreement between the ensemble spread (standard deviation
between ensemble members that measures the uncertainty of
ensemble) and the expected forecast error of ensemble-mean or
control forecast (Grimit and Mass, 2007). Many studies use the
traditional spread-skill relationship (or spread-error relationship)
to evaluate ensemble precipitation forecasts (Ebert, 2001; Martin
et al., 2010; Bouttier et al., 2012; Su et al., 2014). However, the
traditional metrics of forecast error, such as root-mean-square
error (RMSE) and mean absolute error (MAE), are not suitable for
the convection-allowing EPSs due to the serious double penalty
(Mittermaier et al., 2013). In addition, the traditional error and
spread metrics using all statistical samples are scale-independent.
In order to address these problems, some spatial verification
methods (Gilleland et al., 2009), such as the Method for Object-
based Diagnostic Evaluation (MODE: Davis et al., 2006, 2009), the
neighbourhood-based method (Ebert, 2008, 2009), the method
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of Contiguous Rain Area (CRA: Ebert and McBride, 2000), the
method of Fractions Skill Score (FSS: Roberts and Lean, 2008)
and so on, have been developed for high-resolution weather
forecasts. Although these methods can reduce the double penalty
problem and provide more significant scale information than the
traditional ones, they are proposed for verifying deterministic
forecasts not for EPS. In order to extend these methods to verify
the convection-allowing EPS, some new methods are further
developed (e.g. Zacharov and Rezacova, 2009; Duc et al., 2013;
Dey et al., 2014).

Recently, Dey et al. (2016a, 2016b) have developed a new
neighbourhood-based method to identify agreement scales and
used it to evaluate the scale-dependent spatial spread-skill
relationship for ensemble precipitation forecasts in a convection-
allowing EPS developed over the United Kingdom. The spatial
spread-skill relationship refers to the comparison of the average

agreement scale for ensemble members, denoted as SA(mm)
ij ,

and the average agreement scale for ensemble members and

observations, denoted as SA(mo)
ij . Through a long-term routine

model evaluation, they got useful information about ensemble
performance and characteristics in summer 2013 over the United
Kingdom (Dey et al., 2016b). In order to test the feasibility
of this latest method under different climate conditions in
different regions, this study applies this neighbourhood-based
method to verify a convection-allowing EPS over the Yangtze-
Huaihe river basin of China. Also, Dey et al. (2016a, 2016b)
pointed out that three factors, including precipitation intensity,
precipitation placement and the distance from the precipitation,
influence the spatial spread-skill relationship in the EPS. However,
their articles did not compare the relative contributions of
these factors to the spatial spread-skill relationship. This study
extends a new application of this latest method to further
analyse the comparative importance of precipitation intensity and
placement on the spatial spread-skill relationship in a convection-
allowing EPS.

At the same time, the predictability and forecast skill vary
with weather regime. Previous studies show that the forecasts
under weak forcing regimes tend to produce poorer skill than
those under strong forcing regimes (Keil and Craig, 2011);
meanwhile the predictability and forecast skill on smaller scales
are usually worse than for larger-scale forecasts (Roberts, 2008;
Roberts and Lean, 2008; Surcel et al., 2015). Done et al. (2006)
proposed the convective adjustment time-scale (τ c) to classify
the weather forcing regime. However, many researchers (Zimmer
et al., 2011; Keil et al., 2014; Kuhnlein et al., 2014) investigated
τ c and found out that τ c actually is a weak indicator to classify
the precipitation forecasts in terms of predictability and forecast
skill of precipitation. Surcel et al. (2016) found out that the
precipitation fractional coverage is the best indicator associated
with precipitation predictability among three indicators (τ c, large-
scale forcing for ascent and precipitation fractional coverage).
Although Dey et al. (2016b) did not verify the spatial spread-
skill relationship for different weather regimes, their study
also suggested that this relationship is highly associated with
precipitation fractional coverage. Therefore, in this study, the
precipitation fractional coverage is selected as the classification
criterion of weather regime, and the cases during the Meiyu season
of 2013 over the Yangtze-Huaihe river basin are categorized to
large fractional coverage (LC) and small fractional coverage (SC)
groups, respectively.

The Meiyu season over the Yangtze-Huaihe river basin usually
spans from mid-June to mid-July (Ding and Chan, 2005),
while heavy rainfall often occurs under favourable synoptic
conditions, including the Meiyu front, southwesterly low-level
jet, low-level vortex and subtropical high (Luo and Chen, 2015).
There are several studies using convection-allowing EPS to
investigate the mechanism of precipitation during the Meiyu
season over the Yangtze-Huaihe river basin. For example, Luo
and Chen (2015) investigated the forecast uncertainties and
physical mechanisms of a quasi-linear extreme-rain-producing
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Figure 1. Domain of the convective-scale EPS with coastlines, province
boundaries and topography heights, and the verification domain of precipitation
forecasts (inside thick solid lines). [Colour figure can be viewed at
wileyonlinelibrary.com].

mesoscale convective system (MCS) along the Meiyu front in
east China using convection-permitting ensembles. Wang and
Zhong (2014) implemented multi-physics ensemble simulations
of a summertime heavy precipitation event and studied the
influence of large-scale urbanization on precipitation predictions
over the lower reaches of the Yangtze River valley. Due to the
expensive computer resources, most of the previous studies used
convection-allowing EPS to investigate specific weather cases.
Since the Meiyu season of 2013 was concentrated from 23 June
to 22 July 2013 over the Yangtze-Huaihe river basin, this study
evaluates daily precipitation forecasts of the total of 30 cases
and compares the forecast performance under the LC and SC
categories, based on a convection-allowing EPS.

The outline of this article is as follows. Section 2 describes the
model configurations, verification data, the classification method
of weather regimes and the neighbourhood-based method. The
averaged results and the comparison between the traditional
and spatial spread-skill relationship of one-month studies during
the Meiyu season of 2013 are presented in section 3. Section 4
provides the results about the relative influence of precipitation
placement and intensity on the spatial spread-skill relationship
of precipitation forecasts. Summary and conclusions are given in
section 5.

2. Data and method

2.1. Model configuration

The convection-allowing EPS over the Yangtze-Huaihe river
basin is based on the Weather Research and Forecasting (WRF)
model with the grid spacing of 3 km (single domain, 620 × 498
grid points) and 50 vertical model levels (Figure 1). It is driven
by the control forecast and 14 perturbed forecasts randomly
selected from the National Centers for Environmental Prediction
(NCEP) Global Ensemble Forecast System (GEFS: Su et al., 2014),
which output is archived with 6 h intervals at 1◦ horizontal
resolution (∼110 km). GEFS consists of a control forecast and
20 perturbed forecasts using the bred vector-ensemble transform
with rescaling (BV-ETR) method (Wei et al., 2008) and stochastic
total tendency perturbation (STTP) scheme (Hou et al., 2008).
Although there is a big gap between the resolutions of these
two EPSs, it is proved as an available way to directly conduct
the dynamical downscaling (Lawson and Gallus, 2016; Zhu and
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Table 1. Model configurations of the convective-scale EPS with different micro-
physical, land surface and planetary boundary-layer schemes (more details can be
found at https://www.mmm.ucar.edu/weather-research-and-forecasting-model).

Member MP LSM PBL

Gec00 Thompson Noah MYJ
Gep01 Lin RUC YSU
Gep02 M-Y NOAH QNSE
Gep03 Morrison NOAH MYNN2
Gep04 WDM6 RUC ACM2
Gep05 Lin NOAH MYJ
Gep06 M-Y NOAH YSU
Gep07 Morrison RUC QNSE
Gep08 WDM6 NOAH MYNN2
Gep09 Thompson RUC ACM2
Gep10 M-Y RUC MYJ
Gep11 Morrison NOAH YSU
Gep12 WDM6 NOAH QNSE
Gep13 Thompson RUC MYNN2
Gep14 Lin RUC ACM2

Xue, 2016). In order to represent the uncertainty in model
physics, different combinations of physical parameter schemes
(Table 1), including microphysical schemes, land surface schemes
and planetary boundary schemes, are employed to construct
individual forecast members in this convection-allowing EPS by
referencing to the model configuration of the National Oceanic
and Atmospheric Administration (NOAA) Hazardous Weather
Testbed 2007–2010 Spring Experiments (Coniglio et al., 2010;
Clark et al., 2012) and our own tests. All the members use the
same short-wave and long-wave radiation schemes accounting for
their less importance and the stability for the model integration.

Thirty cases from one month (23 June to 22 July 2013) during
the Meiyu season are initialized at 0000 UTC of each day and
forecasted to 36 h with a 3 h output interval, except the control
run with hourly rainfall output.

2.2. Precipitation verification data

The verification data are from the NOAA Climate Prediction
Center (CPC) Morphing Technique (CMORPH) merged with
the rain-gauge observations in China (Shen et al., 2014), which
provide official grid precipitation observations in China with the
highest temporal (1 h) and spatial (0.1◦) resolutions available.
Due to the relatively low spatial resolution (∼10 km) of
these verification data, a compromise is made to verify the
precipitation forecasts on the coarser observation grid; the 3 km
precipitation forecasts are interpolated using the nearest four grid
points with inverse-distance weighting onto the observation grid
over the verification domain (25.55–38.25◦N, 110.05–122.75◦E;
Figure 1).

In this study, the 24 h verification period (0300–0300 UTC of
the next day, corresponding to 3–27 h of forecast) is defined as
an individual case, and 3 h accumulated precipitation forecasts
are only evaluated during this 24 h verification period. The first
3 h forecasts are discarded to reduce the spin-up problem, and
the 27–36 h forecasts are removed to avoid the overlapping of the
cases.

2.3. Classification of weather regimes

The precipitation fractional coverage is defined as the proportion
of the verification domain with hourly rainfall rates larger
than 0.1 mm h−1. When both median and mean values of
precipitation fractional coverage of hourly observations during a
24 h verification period are less than 0.1, that day is categorized
as an SC day and otherwise an LC day. By using the coverage
threshold of 0.1, the ratio of the SC and LC cases is similar to
the percentage of the two categories found in previous studies
(Zimmer et al., 2011; Surcel et al., 2016).

According to the boxplot of the hourly precipitation coverage
of observations (Figure 2(a)), 8 of 30 cases are classified as SC
cases, while the remaining 22 cases are LC cases. Taking the
control forecast as an example, Figure 2(b) shows a scatter plot
of observed fractional coverages of hourly precipitation versus
control forecast coverages; it shows a good agreement between
forecasts and observations, with a correlation of 0.86, indicating
that the model is predicting generally correct regimes in terms of
precipitation fractional coverage.

2.4. Location-dependent agreement scales

The neighbourhood-based method (Dey et al., 2016a, 2016b)
has been developed to quantify the location-dependent spatial
agreement scales between two precipitation fields. The calculation
of the agreement scales was described in Dey et al. (2016a, 2016b)
and is repeated as follows:

The distance DS
ij of one grid point (i, j) in the domain at the

agreement scale S between two precipitation fields f 1 and f 2 is
defined as:

DS
ij =

⎧⎪⎨
⎪⎩

(
f 1S

ij−f 2S
ij

)2

(f 1S
ij)

2+(f 2S
ij)

2 if f 1S
ij > 0 or f 2S

ij > 0

1 if f 1S
ij = 0 and f 2S

ij = 0

where f 1S
ij and f 2S

ij are the area-averaged precipitation within
a squared grid box centred upon the point (i, j), which
has the side length of 2*S + 1. The values of the agreement
scale S are varied from 0 to Slim, until f 1S

ij and f 2S
ij are

deemed sufficiently similar when the criterion DS
ij ≤ DS

crit,ij is

met, where DS
crit,ij = α + (1 − α) S

Slim
. More details about this

method can be found in Dey et al. (2016a, 2016b). In this
study, α = 0.25 and Slim = 30 are used, considering the size of
the domain and the scales of precipitation fields. Other values
of Slim, such as 40 and 60, are also tested and produce similar
results (Figure S2 in File S1). After the above calculation of each
point in the verification domain between two precipitation fields,
the agreement scales can be mapped. By its definition, small
(large) spatial agreement scales correspond to high (low) spatial
agreement.

This study applies the neighbourhood-based method to
evaluate the location-dependent spatial agreement between the
pairs of ensemble members or between any individual ensemble
forecast and the corresponding observation. To assess the general
performance and filter the noise in the individual maps of
agreement scales (Dey et al., 2016a, 2016b), the verification focuses
on analysis of the average scales from all paired fields. For an EPS
with N members (in this article, N = 14), the averaged result

(denoted as SA(mm)
ij ) of the pairs between ensemble members is

generated from the N(N − 1)/2 agreement scale maps, and the

averaged result (denoted as SA(mo)
ij ) of the pairs between individual

ensemble members and the observations is the average of the N
agreement scale maps. In addition, interpretation of agreement
scales depends on the verification grid spacing, while similar
agreement scales on coarser grids represent coarser spatial scale
information than that on finer grids.

In addition, the ‘moving binned scatter’ (Dey et al., 2016a,

2016b) method is applied to compare the SA(mm)
ij and SA(mo)

ij in this

article. To avoid the noisy scatter plot between SA(mm)
ij and SA(mo)

ij ,

it is necessary to plot the mean values of SA(mm)
ij and SA(mo)

ij for each

moving bin based on the values of SA(mm)
ij . For each bin, the mean

value of SA(mm)
ij over those points whose values of agreement scales

fall into this bin range is calculated and plotted on the x-axis, then

the corresponding value of y-axis is the mean SA(mo)
ij over these

same points. After all bins are calculated, a line of mean SA(mm)
ij

c© 2017 Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 85–98 (2018)



88 X. Chen et al.

OBS Fractional coverage
C

T
L

 F
ra

c
ti

o
n

a
l 
c
o

v
e
ra

g
e

Case

O
B

S
 F

ra
c
ti

o
n

a
l 
c
o

v
e
ra

g
e

(a) (b)

Figure 2. (a) Boxplot of hourly precipitation coverage of the merged CMORPH observations for 30 cases (the dot stands for the mean fractional coverage of each
case), and (b) scatterplot of hourly precipitation coverage of the merged CMORPH observations vs. the control forecasts for the SC (dark blue) and LC (light red)
cases. [Colour figure can be viewed at wileyonlinelibrary.com].

against mean SA(mo)
ij can be plotted. If the curve falls above (below)

the diagonal, the ensemble is said to be spatially underdispersive
(overdispersive) in terms of agreement scales. After examination
(Figure S3 in File S1), the bin size of six grid points is used in
this study to retain enough statistical samples and sufficient scale-
dependent information in each bin (Dey et al., 2016a, 2016b).

3. Meiyu season averaged results

This section investigates the agreement scales SA(mm)
ij and SA(mo)

ij

and the spatial spread-skill relationship (relationship between

SA(mm)
ij and SA(mo)

ij ). The spatial and diurnal characteristics of the
spatial spread-skill relationship are studied, and the advantages
of the new neighbourhood-based method (Dey et al., 2016a,
2016b) are highlighted by comparing with traditional spread-skill
relationship (RMSE and spread).

Dey et al. (2016b) demonstrated the necessity to test the effect
of systematic intensity biases on the verification of spatial spread-
skill relationship. Thus, this study also examined the effect of
systematic biases by multiplying the observations by a factor of 1.5
(approximately the maximum 3 h intensity bias averaged between
the observations and ensemble members; Figure S1 in File S1).
Consistent with previous results (Dey et al., 2016b), systematic
biases show insignificant influence on the spatial spread-skill
relationship.

3.1. Spatial characteristics

Figure 3 displays the spatial distributions of 3 h accumulated
precipitation averaged over the 3–27 h lead times from
observations and control forecasts under two different weather
regimes. Under LC, precipitation distributions are often
controlled by the Meiyu front at large-scale circulations and
the averaged precipitation is widely spread throughout the whole
verification domain (Figures 3(a) and (c)). Because of the shift of
the subtropical high and the Meiyu front, most of the precipitation
events are east–west or northeast–southwest orientated, forming
three major rain bands in the domain (Figures 3(a) and (c)).
One rain band is located in the northern area extending from
coastal Shandong (∼120◦E and 37◦N) to mountainous Shanxi
(∼112◦E and 36◦N) province, one is in the central plain area

from Anhui (∼117◦E and 31◦N) to Hubei (∼114◦E and 30◦N),
and the last one in the southern hilly area from eastern Jiangxi
(∼117◦E and 29◦N) to western Jiangxi (∼115◦E and 28◦N). In
contrast, under SC, precipitation observations and the control
forecasts (Figures 3(b) and (d)) are more intense and localized
along heterogeneous and steep terrains, such as the mountainous
areas in the northwest domain (∼111◦E and 37◦N), Shandong
peninsula (∼118◦E and 36◦N) and the coastal areas (∼122◦E
and 35◦N) in the northeast domain. In general, the control
forecasts of the convection-allowing EPS under two different
weather regimes reasonably reproduce the observed precipitation
distributions, but both show the displacement errors of rainfall
centres. Under LC, the averaged rain intensities of control
forecasts (Figure 3(c)) are overestimated, especially in Jiangxi
province (∼116◦E and 29◦N) in the middle domain. Compared
to the observations under SC (Figure 3(b)), the control forecasts
generate more isolated and spurious rain cells (Figure 3(d)),
but underforecast the maxima of larger precipitation cells
(7.33 mm in Figure 3(b) vs. 3.30 mm in Figure 3(d) in the
northeast domain).

Figure 4 shows the spatial distributions of SA(mm)
ij averaged

over the 3–27 h lead times under LC and SC, which are similar
to the spatial distributions of SA(mo)

ij under the two regimes
(Figure S5 in File S1). Overall, the agreement scales under LC are
lower than those under SC (2.75 less on domain average), which
is consistent with the conclusion that the larger precipitation
fractional coverage is associated with smaller agreement scales
(higher spatial agreement) (Dey et al., 2016a, 2016b). The smallest
agreement scales locate close to the rainfall centres, indicating
more confidence about the location of precipitation than other
regions. The minimum agreement scale is only 10.1 grid points
(around the neighbourhood length of 212 km) under LC and
11.6 grid points (∼242 km) under SC. This means that the EPS is
not confident about the location of precipitation at scales smaller
than these grid scales. In the research of Dey et al. (2016b), the
minimum agreement scale of seasonal averaged is 12 grid points,
which indicates much smaller physical scales (∼55 km) for the
high-resolution MOGREPS-UK with the 2.2 km resolution. As
mentioned in section 2.4, although the minimum agreement scale
of this study is smaller than that of Dey et al. (2016b), more spatial
scale information is lost.
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(a) (b)

(c) (d)

Figure 3. Spatial distributions of 3 h accumulated precipitation (mm) averaged from (a, b) the merged CMORPH observations and (c, d) the control forecasts over
the 3–27 h lead times for (a, c) the LC cases and (b, d) the SC cases. [Colour figure can be viewed at wileyonlinelibrary.com].

3.2. Diurnal characteristics

Section 3.1 showed spatial characteristics of precipitation and
its agreement scales from the convection-allowing EPS. This
section focuses on investigating the diurnal variations of domain-
averaged precipitation amounts, and comparing spatial spread-
skill relationship with traditional spread-skill relationship (RMSE
and spread) for 22 cases under LC and 8 cases under SC.

Figure 5 shows the diurnal variations of domain-averaged
precipitation amounts under the two weather regimes. Overall, the
domain-averaged precipitation amounts under LC (Figure 5(a))
are larger than that under SC (Figure 5(b)). Based on the
observations during the 0300–0300 UTC cycle (corresponding
to 3–27 h lead times), two rainfall peaks under LC occur at
0900 and 0000 UTC, respectively, while there is only one peak
at 2100 UTC for SC. Under LC, the ensemble mean forecasts

reproduce the two peaks successfully (Figure 5(a)), but largely
overestimate the first rainfall peak and underestimate the second
one. For the precipitation forecasts under SC, the ensemble mean
forecasts generate a spurious peak at the 9 h lead time and a
3 h time lag for the 2100 UTC observed peak. The ensemble
mean forecasts show obvious overestimations for the specific
period during the afternoon and evening (0600–1500 UTC;
corresponding to 6–15 h lead times, 1400–2300 LST (UTC +
8 h)) under both regimes and slight underestimations during
the early morning 2100–0300 UTC (corresponding to 21–27 h
lead times, 0500–1100 LST) for the LC cases. The overestimation
(underestimation) of the precipitation on a diurnal cycle may
be related to that the physics parametrization schemes (Li et al.,
2009; Katragkou et al., 2015) in the convection-allowing model
tend to overestimate (underestimate) the afternoon and evening
deep convection (shallow convection in the early morning).

c© 2017 Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 85–98 (2018)
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(a) (b)

Figure 4. Scale maps of SA(mm)
ij averaged over the 3–27 h lead times for (a) the LC cases and (b) the SC cases. [Colour figure can be viewed at wileyonlinelibrary.com].

(a) (b)

Figure 5. Diurnal variations of domain-averaged 3 h accumulated precipitation observations (mm) and ensemble mean (EM) forecasts for (a) the LC cases and (b)
the SC cases. The shadow stands for the standard deviation of ensemble members. [Colour figure can be viewed at wileyonlinelibrary.com].

The diurnal variations of domain-averaged RMSE, spread and
the traditional spread-skill relationship (spread/RMSE) under two
weather regimes (Figures 6(a) and (b)) show similar patterns to
the domain-averaged precipitation amounts (Figure 5). Although
RMSE and spread under LC are larger than that under SC,
there are no obvious differences between the diurnal variations
of traditional spread-skill relationship under the two weather
regimes. Figure 6(c) shows the diurnal variations of domain-

averaged agreement scales of SA(mm)
ij and SA(mo)

ij . In general, they
are negatively correlated with the domain-averaged precipitation
amounts, RMSE and spread. As in the previous study (Dey et al.,
2016b), the forecasts under SC show larger domain-averaged
agreement scales than LC, revealing that the smaller fractional
coverage of precipitation is associated with the poorer spatial
agreement. Under both regimes, the domain-averaged agreement

scales of SA(mm)
ij are smaller than that corresponding scales of

SA(mo)
ij at the same lead time. In order to quantitatively compare

the differences of forecast performance for domain-averaged
scales under LC and SC, the diurnal variations of the ratios
between the domain-averaged agreement scales of SA(mm)

ij and

SA(mo)
ij are presented in Figure 6(d). Different to the traditional

spread-skill relationship (Figure 6(b)), the spatial spread-skill
relationships (Figure 6(d)) under the two regimes are always less
than 1 (underdispersion). The ratio under SC fluctuates more
with the lead time than that under LC (Figure 6(d)), indicating
that the spatial spread-skill relationship under SC shows higher
variations on the diurnal cycle. The ratio under SC reveals the
worst spatial spread-skill relationship (Figure 6(d)) at the 18 h
lead time, but the traditional spread-skill relationship under SC
(Figure 6(b)) is nearly perfect (∼1) at the same time.

To further investigate the contradictory results (Figures 6(b)
and (d)) between the spatial and traditional spread-skill
relationship, Figure 7 presents the spatial distributions of
precipitation amounts, RMSE, spread, and agreement scales
averaged over all cases under SC at the 18 h lead time.

c© 2017 Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 85–98 (2018)
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(a) (b)

(c) (d)

Figure 6. Diurnal variations of domain-averaged (a) RMSE and spread for 3 h accumulated precipitation, (b) ratios of spread and RMSE, (c) SA(mm)
ij and SA(mo)

ij , and

(d) the ratios of SA(mm)
ij and SA(mo)

ij under the two weather regimes, LC and SC. [Colour figure can be viewed at wileyonlinelibrary.com].

Obviously, the forecasts for heavier precipitation amounts
(bold black contours in Figures 7(a)–(f)) show larger forecast
errors (Figure 7(a)), increased spread (Figure 7(b)), and higher
agreement (Figures 7(d) and (e)). In terms of the differences
between the spread and RMSE (Figure 7(c)), the EPS is severely
underdispersive in the precipitation areas and overdispersive
in relatively large dry regions especially around rain cells.
Thus, the domain-averaged difference between the spread and
RMSE is quite small (0.14), which leads to the best (∼1)
traditional spread-skill relationship (i.e. the ratio of spread and
RMSE) at the 18 h lead time (Figure 6(b)). On the contrary,
Figure 7(f) shows underdispersive forecasts overspreading the
verification area, with extremely insufficient spread in the
rain cells. Overall, both the traditional and spatial spread-skill
relationship metrics (Figures 7(c) and (f)) indicate that the
EPS lacks spread in the rainfall regions over the northwest
mountainous areas and northeast coastal areas. However, the
traditional spread-skill relationship only measures the static
information of point-wise error and spread (Figure 7(c)) and
provides a spurious perfect spread-skill relationship (Figure 6(b)),
while the spatial spread-skill relationship is capable of reflecting
the correct spatial scale information in the neighbourhood
space (Figure 7(f)) and thus obtaining consistent total statistics
(Figure 6(d)).

In addition, more scale information about the spatial spread-
skill relationship is obtained by using the ‘moving binned scatter’
method (Dey et al., 2016a, 2016b). Figure 8(a) shows the spatial

spread-skill relationship over the 3–27 h lead times under LC
and SC. As the curves are situated above the diagonal, the
agreement scales below 20 grid points indicate the underdispersive
spread-skill relationship under both regimes, and more severe
underdispersion for that under SC. For different lead times, the
spread-skill relationship shows slight diurnal variations under
LC (Figure 8(b)), while it shows much larger diurnal variations
under SC (Figure 8(c)) with the worst skill at the 18 h lead
time. This is consistent with the results shown in Figure 6(d).
In order to examine whether the differences under the two
regimes are caused by different sample sizes, eight cases are
randomly selected under LC (Figure S4 in File S1) and a
similar conclusion can be drawn. Therefore, the differences
of the spatial spread-skill relationship under LC and SC are
mainly attributed to different predictabilities of these two weather
regimes.

4. Relative influence of precipitation intensity and placement

In section 3, the agreement scales (SA(mm)
ij and SA(mo)

ij ) and spatial
spread-skill relationship were investigated, and compared with
the traditional spread-skill relationship during the Meiyu season

of 2013. Dey et al. (2016a, 2016b) demonstrated that SA(mm)
ij and

SA(mo)
ij are influenced by three factors, including the placement of

precipitation, bias in precipitation intensity, and distance from
the precipitation. However, their articles have not discussed the
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domain average = -2.51

domain average = 0.14

(a) (b) (c)

(d) (e) (f)

Figure 7. Spatial distributions of (a) RMSE, (b) spread, (c) the differences between spread and RMSE, (d) SA(mo)
ij , (e) SA(mm)

ij , and (f) the difference between SA(mm)
ij

and SA(mo)
ij for 3 h accumulated precipitation averaged for the SC cases at the 18 h lead time. The bold black contours represent the observations ranging from 1 to

7 mm with a 2 mm interval. [Colour figure can be viewed at wileyonlinelibrary.com].

(a) (b) (c)

Figure 8. Moving binned scatterplots of SA(mm)
ij and SA(mo)

ij of 3 h accumulated precipitation for (a) the 3–27 h lead times, and different lead times under the (b) LC
and (c) SC weather regimes. [Colour figure can be viewed at wileyonlinelibrary.com].

relative importance of these factors. For the precipitation grids
(the grids whose rain rates from any ensemble members or the
observations are above a specific precipitation threshold), the
precipitation placement and intensity are the main impact factors
on the spatial spread-skill relationship. In this section, we extend a
new application of this neighbourhood-based method to further
investigate the relative influence of precipitation intensity and
placement on the frequency distributions of agreement scales and
spatial spread-skill relationship.

Before calculating the agreement scales, the rain rates below
a specific precipitation threshold are processed as zero values
and the ones above the threshold remain unchanged to provide
the first type of precipitation field (hereinafter, the threshold
raw field). Similarly, the original rainfall amounts below the
threshold are truncated to zero values and the amounts above
the threshold are set to one, which provides the second type of
precipitation field (hereinafter, the threshold binary field). In this

study, the agreement scales SA(mm)
ij and SA(mo)

ij are calculated and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Frequency histograms of SA(mo)
ij for the threshold raw (black solid) and binary (coloured solid) precipitation fields, and SA(mm)

ij for the threshold raw (black

dash) and binary (coloured dash) precipitation fields, over the 3–27 h lead times at the thresholds of (a, e) 0.1 mm (3 h)−1, (b, f) 2 mm (3 h)−1, (c, g) 7 mm (3 h)−1,
and (d, h) 15 mm (3 h)−1 under the (a–d) LC and (e–h) SC weather regimes. [Colour figure can be viewed at wileyonlinelibrary.com].

compared for the threshold raw and binary fields, respectively.
The differences between the agreement scales of these two types of
precipitation field are caused by the bias in precipitation intensity
alone, because the threshold raw fields and threshold binary fields
are the same except for the precipitation intensity above the
selected threshold.

4.1. Relative influence on frequency distributions of agreement
scales

The frequency distributions of SA(mm)
ij and SA(mo)

ij (Figure 9)
for all precipitation grids are presented for the two types of
precipitation fields at four precipitation threshold (0.1, 2, 7 and
15 mm (3 h)−1) over the 3–27 h lead times. For the threshold
raw precipitation fields, most of the SA(mm)

ij range from 5 to 10
grid points (∼110–210 km), and the distributions are similar for
different precipitation thresholds under both weather regimes.

In terms of SA(mo)
ij , the proportions of agreement scales larger

than 25 grid points obviously increase with the increasing
threshold, especially under SC. These results demonstrate that
the spatial agreement between ensemble members is high and
less affected by weather regimes and precipitation thresholds.
However, with the increasing threshold, the spatial agreement
between ensemble members and observations gradually decreases,
especially for the SC regime. This is the reason why the spatial
spread-skill relationship becomes more and more underdispersive
with the increasing precipitation threshold (Figure S6 in File

S1), which can be inferred from both types of precipitation
fields.

Comparing the frequency distributions of SA(mm)
ij or SA(mo)

ij for
the threshold raw and threshold binary precipitation fields, the
frequencies of agreement scales with lower values change the most.
By removing the bias of precipitation intensity, the frequencies
of small agreement scales for the threshold binary precipitation
fields are greatly enhanced compared with the threshold raw
ones. With the increasing agreement scale and precipitation

threshold, the frequency differences of SA(mm)
ij or SA(mo)

ij between
these two types of precipitation field steadily decrease, indicating
that the precipitation intensity plays a more important role in
the agreement scales for smaller rainfall thresholds. Indeed, the
EPS can reasonably predict the spatial coverage of major rain
bands during the Meiyu season, and hence the intensity becomes
relatively important for the lighter precipitation (Figure 3).

4.2. Relative influence on the spatial spread-skill relationship

This section aims to investigate the relative influence of
precipitation intensity on the spatial spread-skill relationship.
Figure 10 shows the moving bin scatter plots of all precipitation
grids for the threshold raw and binary precipitation fields at four
precipitation thresholds. For the 2, 7, 15 mm (3 h)−1 thresholds,
the spatial spread-skill relationship is generally underdispersive.
By contrast, the forecasts exhibit mixed overdispersion and
underdispersion at the lowest threshold (0.1 mm (3 h)−1). With
the increasing threshold, the spatial agreement for both regimes
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(a) (b)

(c) (d)

Figure 10. Moving binned scatterplots of SA(mm)
ij and SA(mo)

ij for the threshold raw and binary precipitation fields over the 3–27 h lead times at the thresholds of (a)

0.1 mm (3 h)−1, (b) 2 mm (3 h)−1, (c) 7 mm (3 h)−1, and (d) 15 mm (3 h)−1. [Colour figure can be viewed at wileyonlinelibrary.com].

decreases, suggesting that the EPS tends to provide precipitation
forecasts with more insufficient spread for higher precipitation
intensities. The spatial agreement under LC is generally higher
than that under SC for all thresholds. Under the same weather
regime at a specified threshold, the spatial agreement for threshold
binary precipitation fields is higher than the corresponding
threshold raw precipitation fields, because the influences of
precipitation intensity bias are eliminated for the threshold
binary precipitation fields. With the increasing threshold, the
scale differences between these two types of precipitation fields
become smaller and smaller, indicating the impact of precipitation
intensity on the spatial spread-skill relationship reduces.

In order to quantitatively analyse the relative influence of
precipitation intensity on the spatial spread-skill relationship, the
relative skill difference percentages between the threshold binary

and raw precipitation fields are defined as si = si
b−si

r

si
r

, where si
b and

si
r denote the skill (the ratio between averaged SA(mm)

ij and SA(mo)
ij

within the ith moving bin) for the threshold binary and threshold
raw fields, respectively.

Figure 11 shows that skill differences between the two types
of precipitation fields decrease with the increasing agreement

scale and precipitation thresholds. For light (0.1 mm (3 h)−1;
Figure 11(a)) and moderate (2 mm (3 h)−1; Figure 11(b)) rain,
the influence of precipitation intensity under SC is larger than that
under LC, especially for the smaller agreement scales. At larger
agreement scales, there are no obvious differences between the
two types of precipitation fields, in particular for higher rainfall
thresholds (Figures 11(c) and (d)). With increasing agreement
scales (relatively larger area), removing the precipitation intensity
bias above higher thresholds may cause negative skill difference
percentage (Figure 11(b)–(d)), because spurious rainfall cells may
reduce dry intensity bias of heavy rainfall in raw precipitation
forecasts and relatively increase the skill in the threshold raw
field. Overall, the impacts of precipitation intensity on the
spatial spread-skill relationship decrease with the increasing
threshold, while the precipitation placement becomes more
dominant to influence the spatial spread-skill relationship for
heavy precipitation events.

4.3. Two case-studies

In addition, two cases are analysed to provide a more intuitive
understanding of the relative influence of precipitation intensity
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(a) (b)

(c) (d)

Figure 11. Relative skill difference percentages between the threshold binary and raw precipitation fields over the 3–27 h lead times at the thresholds of (a)
0.1 mm (3 h)−1, (b) 2 mm (3 h)−1, (c) 7 mm (3 h)−1, and (d) 15 mm (3 h)−1. [Colour figure can be viewed at wileyonlinelibrary.com].

and placement on the spatial spread-skill relationship. Case 1
(initialized at 0000 UTC 27 June 2013) and case 2 (initialized
at 0000 UTC 7 July 2013) are selected to represent LC and SC
events, respectively. The relatively stationary rain band in case 1
is controlled by the Meiyu front that locates at the south of the
verification domain, and it reaches the maximum rain intensity
at 27 h lead time (Figure 12). In case 2, the precipitation is
mainly caused by the MCSs moving from the southwest to the
northeast, and it develops to the strongest cell at 12 h lead time
(Figure 13).

For the LC case, the forecasted precipitation rain band (shaded
area) over both thresholds is generally consistent with the
observation (dark blue contours). The small agreement scales

of SA(mm)
ij for the threshold raw fields (Figures 12(a) and (d)) are

confined within the precipitation grids, indicating that the EPS
is very confident about the location of this rain band controlled
by the Meiyu front. For example, the smallest scale is 1.2 grid
points (∼34 km) at the 0.1 mm (3 h)−1 threshold (Figure 12(a)).

The positive values of the differences (SA(mm)
ij − SA(mo)

ij ) reveal an
overdispersion of the spatial spread-skill relationship, especially
for larger agreement scales (Figures 12(a) and (d)), mixed with the
underdispersion (negative values) around the rain-band centre
with smaller agreement scales at both thresholds (Figures 12(b)
and (e)). As shown in sections 4.1 and 4.2, the larger the differences

of SA(mm)
ij between the threshold raw and binary fields, the stronger

the relative impact of precipitation intensity on agreement scales.
Apparently, the LC case demonstrates that the relative influence of
precipitation intensity decreases with the increasing precipitation
threshold (Figures 12(c) and (f)).

Compared to the LC case, the coverage and displacement biases
are much larger in the SC case, while multiple rain cells develop
and shift fast with MCSs. Although the EPS is also confident
about the location of most rain cells with small agreement scales
for this SC case (Figures 13(a) and (d)), the underdispersion
(Figures 13(b) and (e)) of the spatial spread-skill relationship
for the SC case is more severe than that for the LC case at both
thresholds. The statistics for different lead times (Figures 8(b)
and (c)) also suggests that the spatial spread-skill relationship
is less underdispersive and more reasonable under LC than that
under SC. Similar to the LC case, the precipitation placement
gradually becomes a dominant factor to affect the spatial spread-
skill relationship at higher precipitation thresholds (Figures 13(c)
and (f)).

5. Summary and conclusions

In this study, a new neighbourhood-based method in terms of
agreement scale (Dey et al., 2016a, 2016b) is applied to verify
the spatial spread-skill relationship of precipitation forecasts in
a convection-allowing EPS. The precipitation forecasts during
the Meiyu season from 23 June to 22 July 2013 are produced
by this EPS with a 3 km grid spacing over the Yangtze-Huaihe
river basin of China. Since the forecast skill highly depends
on weather regime, precipitation fractional coverage over the
verification domain is used to classify the total of 30 cases into
two categories: the large-coverage (LC) and small-coverage (SC)
regimes. This study also proposes a new application of this new
neighbourhood-based method, which further investigates the
relative influence and importance of precipitation placement and
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(a) (b) (c)

(d) (e) (f)

Figure 12. For case 1 (initialized at 0000 UTC 27 June 2013) at the 27 h lead time, spatial distributions of (a, d) SA(mm)
ij and (b, e) SA(mm)

ij − SA(mo)
ij for the threshold

raw fields over the thresholds of (a–c) 0.1 mm (3 h)−1 and (d–f) 7 mm (3 h)−1, and (c, f) the differences of SA(mm)
ij between the threshold raw and binary fields (raw −

binary). The gray areas are the region below the precipitation threshold. The dark blue contours represent the observed precipitation threshold. [Colour figure can be
viewed at wileyonlinelibrary.com].

intensity on the spatial spread-skill relationship of precipitation
forecasts.

The verification results show that for the 30 days considered
here, the spatial spread-skill relationships under both LC and SC
are underdispersive, except that for the light precipitation at the
0.1 mm (3 h)−1 threshold. This underdispersion deteriorates with
increasing precipitation threshold, suggesting more difficulties
in predicting the location of rain for higher precipitation
thresholds. Also, the spatial spread-skill relationship under SC
is poorer and has more diurnal variations compared to that
under LC. In addition, this study compares the traditional
and spatial spread-skill relationship. With the traditional scale-
independent approach, spread-skill relationship is evaluated over
the entire verification domain; scale-dependent behaviours that
are common with localized precipitation cannot be revealed. The
scale-dependent neighbourhood-based method examined in this
article provides a remedy.

This study further investigates the relative influence of
precipitation intensity and placement on agreement scales and
spatial spread-skill relationship. By transforming the precipitation
fields to the threshold raw and binary fields, the neighbourhood-
based method is able to compare the relative impact of the
precipitation intensity and placement on the spatial spread-skill
relationship. The results indicate that the effect of precipitation
intensity on the spatial spread-skill relationship concentrates
on the lower agreement scales (closer to the centre of
precipitation), and decreases with the increasing precipitation
threshold and agreement scale. The relative skill difference

percentages (Figure 11) and two case-studies (Figures 12 and 13)
reveal that the precipitation placement gradually dominates the
spatial spread-skill relationship with the increasing precipitation
threshold. In particular, the precipitation intensity has much
less influence on the spatial spread-skill relationship under SC
at higher thresholds, consistent with the increasing difficulty
of precipitation forecasting for local heavy rain. The impact of
precipitation placement on the spatial spread-skill relationship is
more important than precipitation intensity, especially for heavy
precipitation and the SC cases.

Although this study analyses the relative influence of precipita-
tion intensity and placement quantitatively, other impact factors
such as precipitation structure are also worthy of investigation in
the future. There are other limitations in this study. The resolu-
tion of the merged CMORPH precipitation data is limited to 0.1◦
(∼10 km) which is the best gridded data currently available in
China. Because of that, spatial spread-skill relationship for scales
below the 10 km cannot be examined. Higher-resolution data are
desirable. In addition, many studies (Wang et al., 2014; Johnson
and Wang, 2016) have emphasized the importance of initial
small-scale information on the forecasts in a convection-allowing
EPS. While it is simple to drive initial conditions of a convection-
allowing EPS by downscaling a global ensemble (Peralta et al.,
2012; Zhu and Xue, 2016), small-scale initial perturbations
are missing from the global ensemble. This is perhaps another
reason for the relatively poor spatial spread-skill relationship
under SC. In future versions of our convection-allowing EPS,
small-scale initial perturbations will be implemented and the
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(a) (b) (c)

(d) (e) (f)

Figure 13. Same as Figure 12, but for case 2 (initialized at 0000 UTC 7 July 2013) at the 12 h lead time. [Colour figure can be viewed at wileyonlinelibrary.com].

spatial spread-skill relationship will be evaluated to assess the
benefit of the improved initial perturbations.
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