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ABSTRACT: When directly assimilating radar data within a variational framework using hydrometeormixing ratios (q) as

control variables (CVq), the gradient of the cost function becomes extremely large when backgroundmixing ratio is close to

zero. This significantly slows down minimization convergence and makes the assimilation of radial velocity and other

observations ineffective because of the dominance of the reflectivity observation term in the cost function gradient. Using

logarithmic hydrometeor mixing ratios as control variables (CV logq) can alleviate the problem but the high nonlinearity of

logarithmic transformation can introduce spurious analysis increments into mixing ratios. In this study, power transform of

hydrometeors is proposed to form new control variables (CVpq) where the nonlinearity of transformation can be adjusted

by a tuning exponent or power parameter p. The performance of assimilating radar data using CVpq is compared with those

using CVq and CV logq for the analyses and forecasts of five convective storm cases from the spring of 2017. Results show

that CVpq with p 5 0.4 (CVpq0.4) gives the best reflectivity forecasts in terms of root-mean-square error and equitable

threat score. Furthermore, CVpq0.4 has faster convergence of cost function minimization than CVq and produces less

spurious analysis increment than CV logq. Compared to CVq and CV logq, CVpq0.4 has better skills of 0–3-h composite

reflectivity forecasts, and the updraft helicity tracks for the 16 May 2017 Texas and Oklahoma tornado outbreak case are

more consistent with observations when using CVpq0.4.

KEYWORD: Data assimilation

1. Introduction

In recent years, radar reflectivity (Z) and radial velocity

observations with high temporal and spatial resolution are

commonly assimilated to provide more accurate initial

conditions for convective-scale numerical weather predic-

tion (NWP). Numerous studies have shown that radar data

assimilation (DA) can benefit convective-scale storm anal-

ysis and forecast (e.g., Sun and Crook 1997; Xue et al. 2003;

Tong and Xue 2005; Hu et al. 2006; Snook et al. 2012; Carley

2012; Yussouf et al. 2013; Johnson et al. 2015; Benjamin

et al. 2016; Wang and Wang. 2017). However, it is still

challenging to directly assimilate radar reflectivity data

within a variational framework due to the high nonlinearity

of Z observation operator.

Various radar reflectivity data assimilation methods can fall

into two categories: indirect or direct method; eachmethod has

its own advantages and disadvantages. Complex cloud analysis

method is one of the indirect Z DA methods, which adjusts

background temperature, moisture, and hydrometeor vari-

ables using radar reflectivity, satellite and surface cloud ob-

servations (Albers et al. 1996; Hu et al. 2006). Cloud analysis is

inexpensive computationally and is adopted in certain regional

operational NWP systems such as the Rapid Refresh system

(Benjamin et al. 2016). Studies have demonstrated positive

impacts of cloud analysis for assimilating radar reflectivity data

(e.g., Xue et al. 2003; Hu et al. 2006; Schenkman et al. 2011;

Benjamin et al. 2016; Duda et al. 2019). However, this method

relies on empirical relations tomake state variable adjustments

based on reflectivity observations and is not effective in sup-

pressing spurious convection. When used in cycled data as-

similation, it often overpredicts precipitation (Schenkman

et al. 2011; Pan et al. 2020).

Within variational framework, Z data are sometimes indi-

rectly assimilated through retrievals (Sun and Crook 1997).

Wang et al. (2013a,b) assimilated rainwater and pseudo–water

vapor data derived from radar reflectivity within WRF three-

dimension variational (3DVar) and four-dimensional varia-

tional (4DVar) DA systems. Because of the prior retrieval,

problems associated with the nonlinear Z operator were

avoided. However, to retrieve rainwater from reflectivity

which can be a function of additional hydrometeor species,

warm-rain assumption was made so that ice hydrometeors

were assumed to be absent. Furthermore, to avoid potentially

large rainwater retrieval error based on the nonlinear re-

flectivity operator, only radar reflectivity , 55 dBZ were used

in their studies.

To directly assimilateZ, the ensemble Kalman filter (EnKF;

Evensen 1994) is an attractive method because of no need for

tangent linear and adjoint of the observation operator. In ad-

dition, this method can use reflectivity observations to update

other thermodynamic and dynamical variables through the
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ensemble-based cross covariance in addition to directly related

hydrometeor variables. Studies have shown positive results of

using EnKF method for Z DA (e.g., Tong and Xue 2005; Jung

et al. 2008; Dowell et al. 2011; Snook et al. 2012; Yussouf et al.

2013; Johnson et al. 2015). While very attractive, EnKF often

suffers from insufficient ensemble spread. For example, it is

possible that no ensemble member produce precipitation

where precipitation is actually observed, so that Z observation

is unable to correct the background error at that location. One

potential solution to this is to employ a hybrid ensemble-

variational (EnVar) method (Hamill and Snyder 2000) when a

combination of static and ensemble background error covari-

ances is used. To achieve this, capability to directly assimilating

Z in a variational framework needs to be developed; Kong

et al. (2018) compared such hybrid EnVar with EnKF for

assimilate simulated radar data.

To directly assimilateZ variationally, a number of issues can

arise that are related to the high nonlinearity of Z operator.

Sun and Crook (1997) compared direct assimilation of Z and

of rainwater retrieved from Z (under warm rain assumption)

within a four-dimensional variational (4DVar) system. They

found difficulties with minimization convergence because the

cost function gradient of the Z observation term can be ex-

tremely large when background rainwater mixing ratio is very

small, and the resulting rainwater analysis error was also larger.

In their study, hydrometer (rainwater) mixing ratio was used as

the control variable (CVq). As a way of overcoming the

problem encountered by Sun and Crook (1997) and Carley

(2012) used logarithmic mixing ratios as control variables

(CV logq) instead to assimilate reflectivity in the Gridpoint

Statistical Interpolation (GSI)-based hybrid EnVar system. To

avoid similar problems with large gradient of Z cost function

term within an EnVar system,Wang andWang (2017) chose to

use Z as a control variable. With this approach, it is difficult to

include static background error covariance term within the

EnVar cost function in a traditional way for the purpose of

building a hybrid EnVar system, however. Liu et al. (2020)

further investigated the issues of using CVq and CV logq when

assimilating Z within a 3DVar framework and proposed

several treatments to address the issues. The use of CV logq

together with several special treatments with the analysis

increments is recommended in their study but all problems

were not completely solved.

In addition to the logarithmic transformation, other trans-

formations of control variables have been used in DA. Xue

et al. (2010) used a power transformation for the total number

concentration of hydrometeors in EnKF when assimilating Z

data to reduce the dynamic range of the control variables and

to better preserve sensitivity at large values. Yang et al. (2020)

employed a general nonlinear power transformation within the

NCEP Real Time Mesoscale Analysis system (RTMA; De

Pondeca et al. 2011) to improve cloud ceiling height and sur-

face visibility analysis. The transformed variables form a dis-

tribution that is closer to the Gaussian distribution, and reduce

the errors associated with linear approximation.

The exponent of the general nonlinear power transforma-

tion employed by Yang et al. (2020) can be adjusted to control

the degree of nonlinearity from purely linear (when the

exponent approaches 1) to a transformation equivalent to

the natural logarithm (when the exponent approaches 0),

allowing a range of possibilities and the opportunity for

optimization. In this study, we implemented the nonlinear

power transformation to hydrometeor mixing ratios, and

use the power-transformed mixing ratios as control vari-

ables (CVpq) to assimilate Z within the GSI ensemble-

3DVar (En3DVar) framework. The exponent of the power

transformation affects the degree of nonlinearity in the

transform and of the Z operator. The optimal value of the

power transformation exponent is determined through a set

of DA and forecast experiments using five severe weather

cases from the 2017 NOAA Hazardous Weather Testbed

Spring Forecasting Experiment (Clark et al. 2012) period.

In addition, a tornado outbreak case is evaluated in more

detail to further understand the differences between CVq,

CV logq, and CVpq.

The rest of this paper is organized as follows. In section 2, the

GSI En3DVar algorithm, the observation operators of radar

radial velocity and reflectivity, and the nonlinear power

transformation are introduced. The experimental design is

presented in section 3. Section 4 presents the experiment re-

sults of analyses and forecasts. Finally, a summary and con-

clusions are given in section 5.

2. Methodology

a. GSI En3DVar algorithm

All experiments in this study are conducted using the GSI

En3DVar data assimilation system; only ensemble-based back-

ground error covariance is included, not the static background

error covariance therefore the algorithm used is pure En3DVar

instead of hybrid En3DVar. The implementation of the GSI

hybrid En3DVar system follows the extended control variable

approach of Lorenc (2003), and our brief description of the al-

gorithm below follows Pan et al. (2014) but without the static

background term in the cost function.

Within the En3DVar framework, the analysis increment dx

associated with the ensemble background error covariance is

defined as

dx5 �
K

k51

(x0k+ak) . (1)

In Eq. (1), K is the ensemble size, x0k is the kth ensemble

perturbation normalized by
ffiffiffiffiffiffiffiffiffiffiffiffi
K2 1

p
, the vector ak denotes the

extended control variables for the kth ensemble member. The

symbol + denotes the Schur product or element by element

product of two same-sized vectors or matrices.

The analysis increment dx can be obtained by minimizing

the following cost function:

J(a)5
1

2
aTA21a1

1

2
(Hdx2 dyo)TR21(Hdx2 dyo) . (2)

Vector a is formed by concatenating K vectors ak and A is a

block-diagonal matrix which defines the ensemble covariance

localization (Lorenc 2003;Wang et al. 2007). In GSI En3DVar,

the horizontal and vertical covariance localizations, or the
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effects of matrix A in Eq. (2), are achieved by applying re-

cursive filter transforms (Purser et al. 2003). Also, dyo 5 yo 2
H(xb) is the observation innovation vector, H is the observa-

tion operator and xb is the background state vector. H is the

tangent linear version of H and R is the observation error co-

variance matrix. To minimize the cost function, a new variable

z defined as below to precondition the minimization process:

z5A21a . (3)

The cost function in (2) can be written in terms of z, and

avoid the appearance of A21 in the equation. The gradient

of the cost function with respect to z is given in Eq. (4), where

D is [diag(x01) . . . diag(x
0
k)]:

=
z
J5 a1ADTHTR21(Hdx2 dyo) . (4)

The final analysis can be obtained by minimizing the cost

function using the conjugate gradient algorithm (Derber and

Rosati 1989), utilizing the gradient calculated in Eq. (4). As in

many variational data assimilation systems (e.g., Courtier et al.

1994), GSI En3DVar employs a double-loop procedure, where

nonlinear observation operators are linearized within the outer

loops while the cost function minimization occurs with inner-

loop iterations. Within subsequent outer loops, the operator

linearization occurs around an updated and improved state,

hence reducing the impact of linearization approximation.

Typically, only a few outer loops are needed to achieve satis-

factory results.

b. Radar radial velocity and reflectivity

observation operator

In this study, using GSI En3DVar, both radar radial velocity

and reflectivity observations are directly assimilated. The

simulated radial velocity (Vr) in GSI is calculated (Lippi et al.

2019) according to

V
r
5 u cosu cosa1 y sinu cosa1w sina . (5)

In Eq. (5), u, y, and w represent zonal, meridional, and

vertical velocity, respectively; u is 908minus the azimuth angle

of the radar; and a is elevation angle of radar beams.

The reflectivity observation operator used in this study

is consistent with that of Tong and Xue (2005) with default

values of intercept parameters of particle size distribu-

tions set to be consistent with the one-moment Lin et al.

(1983) microphysics scheme. The radar reflectivity can be

defined as

Z5 10 log
10
(Z

e
) , (6)

where Ze is the equivalent radar reflectivity factor as functions

of three hydrometeor mixing ratios: rainwater (qr), snow (qs),

and hail (qh), which can be written as follows:

Z
e
5Z

er
(q

r
)1Z

es
(q

s
)1Z

eh
(q

h
) . (7)

In Eq. (7), Zer, Zes, and Zeh are the equivalent radar re-

flectivity factors of rainwater, snow, and hail, respectively,

which are defined as

Z
er
5 3:633 109 3 (rq

r
)1:75, (8)

Z
es
5

(
9:803 108 3 (rq

s
)1:75 T

b
# 08C,

4:263 1011 3 (rq
s
)1:75 T

b
. 0C,

(9)

Z
eh
5 4:333 1010 3 (rq

h
)
1:75

, (10)

where r is the air density and Tb is the background temperature.

c. Using power transformed hydrometeor mixing ratios
as control variables (CVpq)

In this study, the nonlinear transformation proposed by Yang

et al. (2020) is applied to the hydrometeor mixing ratios and the

transformed variables are used as the control variables in the cost

function. The transformation function is defined as follows:

q̂5
(qp 2 1)

p
, 0,p# 1, (12)

where q represents the hydrometeor mixing ratio, such as qr, qs,

or qh; and p is a parameter which is greater than zero and less

than or equal to one. Mathematically, it is a power-law function.

Figure 1 shows the natural logarithm function and the power

transformation function with different p. When p approaches 0

(in this study, p is set to 1.03 1026 as an approximation to 0), the

nonlinear transformation function approaches natural logarithm

function at the limit of 0 (i.e., CVpq 5 CV logq). When the

p value increases, the nonlinearity of Eq. (12) decreases. When

p 5 1, Eq. (12) becomes a linear function, and CVpq is equiv-

alent to CVq. The same lower limits for hydrometeors from

Liu et al. (2020) are applied on this study. Even though the

smoothing function is beneficial to CV logq when using a static

background error covariance (Liu et al. 2020), we do not employ

this treatment because little impact is found when using an

ensemble-based background error covariance.

3. Experimental design

In this study, DA and forecast experiments are run for five

different severe thunderstorm events that occurred duringMay

2017. The experiment domain follows the NSSL Experimental

FIG. 1. The natural logarithm function and the nonlinear trans-

formation function with different p.
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Warn-on-Forecast (WoF) System (Wheatley et al. 2015).

Forecasts are run at 3-km horizontal grid spacing. The domain

has 2503 250 grid points in the horizontal and 50 vertical levels

and is centered on the severe weather event location.

Experiment dates, domain locations, and a brief description

of the severe weather events are provided in Table 1.

Forecasts in this study are run using the WRF-ARW model

version 3.8.1 and employ the following physics options:

Thompson microphysics scheme (Thompson et al. 2008), the

Yonsei University (YSU) planetary boundary layer scheme

(Hong et al. 2006), the unified Noah land surface model

(Chen and Dudhia 2001), and the Rapid Radiative Transfer

Model for Global circulation models (RRTMG) shortwave

and longwave schemes (Iacono et al. 2008).

The griddedMulti-RadarMulti-Sensor (MRMS; Smith et al.

2016) radar reflectivity data and the NEXRAD Level-2 radial

velocity data archived at the National Climatic Data Center

are used in this study. The MRMS system performs quality

control and generates a mosaic of the observations on a

three-dimensional grid with a horizontal resolution of

0.018 latitude 3 0.018 longitude and 33 vertical levels. A

radar-preprocessing procedure of the Advanced Regional

Prediction System (Brewster et al. 2005) is used to perform

radial velocity data quality control and interpolate Vr data to

themodel grid column locations horizontally while keeping the

data on radar elevation levels in the vertical for each radar site.

Data thinning is not employed here. Conventional observa-

tions (e.g., surface stations, buoys, soundings) are assimilated

at hourly intervals at 1800, 1900, 2000, and 2100 UTC while

radar data are assimilated every 15min throughout the 3 h. The

Z and Vr observation errors are, respectively, assumed to be

5 dBZ and 1 m s21, which contain the instrument and repre-

sentation error information of radar and may influence the

accuracy of the analysis.

Each case study performs DA using CVpq with different

parameter p values (0.0, 0.2, 0.4 0.6, 0.8, and 1.0), where 0 and 1

correspond to CV logq and CVq, respectively. The flowchart of

theDAand forecast experiments is shown in Fig. 2. Experiments

are initialized at 1800 UTC where initial and lateral boundary

conditions are provided by the High-Resolution Rapid Refresh

Ensemble (HRRRE; Dowell et al. 2016). The DA window ex-

tends between 1800 and 2100 UTC; radar observations are as-

similated every 15 min and conventional observations are

assimilated hourly. The convergence criterion is set as 10210 for

the norm of the gradient. A maximum of 100 iterations is al-

lowed for the inner-loop and 3 outer-loop iterations are used. In

this study, we use a one-way coupled EnKF-En3DVar DA ap-

proach (Kong et al. 2018), in which GSI EnKF is used to update

the ensemble perturbations utilized by En3DVar. The EnKF

DA cycles are run independent of the En3DVar. Forecasts are

initialized from the final analyses at 2100 UTC and run for

3 h until 0000 UTC.

To evaluate the impacts of using CVq, CV logq, and CVpq

on storm analyses and forecasts, the 16May 2017 experiment is

analyzed in greater depth. During this event, two cyclic su-

percells that are highlighted by a black square in Fig. 3a pro-

duced large hail and multiple tornadoes in eastern Texas

Panhandle and western Oklahoma. The southernmost storm

was initiated along a dryline boundary in Texas and became a

cyclic supercell that produced an enhanced Fujita scale 2 (EF-2)

tornado in Elk City, Oklahoma, around 0035 UTC. In addition

to the tornado that caused extensive damage and one fatality,

large hail and several additional tornado reports also produced

in surrounding storms (Fig. 3b). The analyses and forecasts of

storms of interest in CVq, CV logq, and CVpq are analyzed in

section 4.

4. Experimental results

The results of DA and forecast experiments using different

values of parameter p with CVpq are presented in this section.

The optimal p value is determined in terms of the smallest 1-h

Z and Vr forecast root-mean-square innovation (RMSI), i.e.,

root-mean-square difference from observations. Using the

optimal p value, CVpq experiments are compared with CVq

and CV logq in greater detail.

TABLE 1. Summary of the date, the central latitude and longitude of the domain, and the severe weather report of the five cases.

Name Date Central latitude Central longitude Event description

Case1 9 May 2017 33.218 2101.528 Thunderstorms in eastern NMand TXPanhandle

Case2 16 May 2017 35.848 299.768 Discrete tornadic thunderstorms in Elk City

Case3 18 May 2017 36.778 298.678 Tornadic thunderstorms in OK and KS

Case4 23 May 2017 29.088 297.958 High wind in southern TX

Case5 27 May 2017 36.778 293.418 Mixed mode convection in MO, AR, and OK

FIG. 2. The flowchart of the cycled assimilation and forecast experiments.
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a. Results of experiments for optimizing parameter p

As discussed in section 2c, the degree of nonlinearity of the

power transformation function depends on the value of p. To

determine the optimal p value for forecast, theZ andVrRMSIs

of 60-, 120-, and 180-min forecasts using different p values of 0,

0.2, 0.4, 0.6, 0.8, or 1 for the five convective-storm cases are

calculated. It is seen that Z RMSI at each forecast time is the

lowest when p is 0.4 or 0.6 for all the cases (Figs. 4a1–a5) except

for the 2-h forecast of 23 May case [Fig. 4a(4)], but the optimal

p in terms of RMSI at different forecast time may not be the

same for each case {e.g., for the 9 May case [Fig. 4a(1)], the

optimal p in terms of 1- or 2-h forecast RMSI is 0.6, while that

of 3-h forecast is 0.4}. The same is true for VrRMSI (Figs. 4b1–

b4) except for one when CV logq or p 5 0 produces a smaller

RMSI at each forecast time [Fig. 4b(5)]. The largest RMSI of

Z is either with CV logq or CVq.

To determine an overall optimal p value in terms of lowest

RMSI, the RMSIs for Z and Vr are averaged across the five

cases. As shown in Fig. 5, when p is 0.4, the RMSIs of Z for all

forecast time and those of Vr for 2-h forecast are the smallest;

when p is 0.6, the RMSIs of Vr for 1- and 3-h forecast are the

smallest.

To further quantitatively compare the Z forecast using dif-

ferent parameter p and determine the optimal p, the neighbor-

hood equitable threat score (NETS; Clark et al. 2010) averaged

across five cases for both low (20 dBZ) and moderately high

(35 dBZ) thresholds are shown in Fig. 6. The neighborhood

radius is set to 40 km, which is the same as that used in theWoF

system verification for convective scale forecasts (Skinner et al.

2018).Overall, CVq (i.e., p5 0.0) has the lowest forecast skill for

both thresholds. For the 20 dBZ threshold (Fig. 6a), CVpq0.4

(i.e., p 5 0.4) has the best skill at the first 120 min, but then it is

overtaken by CV logq (i.e., p5 0.0) and CVpq0.2 (i.e., p5 0.2).

For the 35 dBZ threshold (Fig. 6b), CVpq0.4 has the best skill

at the first 135 min, but then it is overtaken by CV logq and

CVpq0.2. Overall, CVpq0.4 has the lowest or nearly the lowest

skills for both thresholds. Because of the nonlinearity of the

forecasts, the skills of shorter forecasts reflectmore of the quality

of the radar DA.

When forecasting thunderstorms, Z provides important

storm structure information and is consequently more often

evaluated than Vr. Based on the above evaluations, we regard

0.4 is the optimal parameter for p in terms of lowest RMSI. In

next sections, CVpq0.4 will be compared with CVq and

CV logq in further detail.

b. Results of single time analyses for the
16 May 2017 case

To see better the behaviors of DA using different control var-

iables, we perform a single timeDA analysis at 2100UTC 16May

2017 using CVpq0.4, CVq, and CV logq while using the back-

ground from the cycled CVq experiment. The use of the same

background allows us to seemore clearly the direct impact ofDA.

To compare the convergence rates of the CVpq0.4, CVq,

and CV logq cost functions, the cost function values and the

logarithmic gradient norm with respect to inner-loop and

outer-loop iterations are plotted in Fig. 7. TheCVq experiment

has a much slower convergence rate and does not reach the

convergence criterion even at the end of the 3rd outer-loop. In

addition, the logarithmic gradient norm of CVq shows nu-

merous oscillations during the whole iterations. In contrast, the

convergence rates using CV logq and CVpq0.4 are comparable

during the first outer loop; the minimum cost function value is

essentially reached by the 20th iteration step. CV logq satisfies

the convergence criterion by the 75th iteration step while the

other experiments do not by 100th iteration step. During the

second and third outer loop, both CV logq and CVpq0.4 also

reach the convergence criterion by around the 75th iteration

step. It is suggested that CV logq has the fastest convergence

rate because the logarithmic transformation results in a nearly

linear relationship between Z and the control variable (logq).

The relative reduction in the cost function value is somewhat

larger for CVpq0.4, however.

To evaluate how the outer-loop procedures impact the Z

and Vr analyses in CVq, CV logq, and CVpq0.4 experiments,

the background and analysis RMSIs of Z and Vr in the three

experiments at the end of the first, second, and third outer loop

are compared in Fig. 8. The analysis RMSIs change relatively

little when increasing the number of outer-loop for CVpq0.4

FIG. 3. (a) The composite radar reflectivity observation at 2100 UTC 16 May 2017 and (b) the storm reports of

16 May 2017 from the National Weather Service.
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FIG. 4. (a) Radar reflectivity and (b) radial velocity RMSIs of 1-, 2-, and 3-h forecasts using different p values for

the five cases (the five rows, see Table 1). The bar with black border represents the minimumRMSIs for each case.

When p is 0 or 1, the results are from CV logq and CVq, respectively.
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and CV logq, which suggests the outer-loop is not very neces-

sary in such case, presumably because the relationship between

Z and control variables is more linear. For CVq, the cost

function RMSI is higher than in the other two cases after one

outer loop and continues to decrease in the next two outer-

loops but remains higher than the other two cases. This is likely

related to the higher nonlinearity of the observation operator.

It is important to note theVrRMSI during the 1st outer-loop

step for CVq is much larger than CVpq0.4 or CV logq (Fig. 8).

Assimilating Vr actually becomes ineffective when Z is also

assimilated at the same time when using CVq, because the

gradient of cost function for the Vr term is much smaller than

for the Z term (Wang and Wang. 2017; Liu et al. 2020).

Therefore, Liu et al. (2020) suggested the use of a separate pass

to assimilate Vr within a 3DVar framework to alleviate this

problem when using CVq; however, this treatment can be

problematic within an En3DVar framework because cross

covariances are included. When Vr data are assimilated in the

second pass and the wind fields have been updated by other

observations in the first pass, updated background error co-

variance is required. This is rarely implemented in practice

because recalculating the background error covariance is

computationally expensive. Separate pass is not used in this

study. With CVq, the Vr RMSI decreases as more outer-loop

iterations are performed, but remains significantly larger than

either CVpq0.4 or CV logq (Fig. 8).

CVq often underestimates Z in storm cores because the

gradient of the cost function in these high Z regions is much

smaller than in clear-air regions where the background re-

flectivity is much lower (Liu et al. 2020). To determine if this

problem is present in our study, the Z bias (i.e., the average of

observations minus the background or analysis in the obser-

vation space) in regions of high observedZ (Zobs$ 40 dBZ) for

CV logq, CVpq0.4, and CVq is compared (Fig. 9). The forecast

background (0th iteration) has large bias (Zbias . 20 dBZ)

because the predicted Z cores are much weaker than obser-

vations. After assimilating radar data, the bias substantially

decreases for all experiments. CVq and CV logq have the

largest and smallestZ biases, respectively (Fig. 9). TheCV logq

bias is relatively small (7 dBZ for all iterations) because the

logarithmic transformation can effectively mitigate the bias in

storm cores (Liu. et al. 2020). The CVq bias decreases with

more outer-loop iterations (Fig. 9), which shows the outer-loop

procedure alleviates the problems associated with the nonlinear

FIG. 5. As in Fig. 4, but for the averaged RMSIs of five cases.

FIG. 6. The five-case average NETS of 3-h Z forecasts from the cycled analyses using different p values for (a) 20-

and (b) 35-dBZ thresholds. When p is 0 or 1, the results are from CV logq and CVq, respectively.
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Z operator. As expected, the CVpq0.4 bias is between CV logq

and CVq because some nonlinearities are included in the

transformation function but not as high as the logarithmic

transformation.

Forecast background and the one-time analyzed Z at 2.5 km

above ground level (AGL) are compared against observations

in Fig. 10 within the confines of the subdomain marked in

Fig. 3a. Although weaker than observed Z (Fig. 10a), the

background predicts two supercells (Fig. 10b) to be in ap-

proximately the right locations as the observed ones. The

background predicts the northernmost storm to exhibit a

westward bias and a spurious storm in the southeastern corner

of the subdomain. The CVq analysis (Fig. 10c) reduces the

strength of the northern spurious storm in the background

somewhat but does not suppress the spurious echoes near the

southeastern corner via assimilating clear air observations due

to relatively small gradient of the cost function in the back-

ground area of spurious echoes. The structures of the two main

supercells are analyzed reasonably well but the intensity is

obviously underestimated. The CV logq analysis (Fig. 10d)

more closely resembles observations (Fig. 10a) than CVq; it

produces higher Z in the two supercells and suppresses spuri-

ous echoes found in the background (Fig. 10b) because the

relatively large difference of the background gradient of the

cost function between background high- and low- reflectivity

area is greatly reduced through logarithmic transform.However,

CV logq overestimates Z in the northernmost observed storm

owing to the problem of logarithmic transform (Liu et al. 2020).

The CVpq0.4-analyzed Z (Fig. 10e) is a blend between CV logq

and CVq, given the nonlinearity of transformation function for

CVpq0.4 is between CVq (i.e., CVpq1.0) and CV logq (i.e.,

CVpq0.0). It is noted that CVpq0.4 does not produce spuriously

intense analysis increments in the northernmost storm but does

not suppress the spurious echo in the southeast as well as

CV logq does either, suggesting that CVpq0.4 is not perfect (it

does not completely eliminate nonlinearity). Compared to CVq,

CVpq0.4 increases the strength of reflectivity cores and slightly

reduces the strength of spurious echoes.

Vertical cross sections taken through the Z core of the su-

percell that produced the Elk City Tornado (dashed line in

Fig. 10a) are analyzed to determine the impact of Z assimila-

tion in CVq, CV logq, and CVpq0.4 (Fig. 11). Prior to DA, the

background Z (Fig. 11b) has smaller area coverage than ob-

servations and the analyzed echo top is 4 km lower than the

observations (Fig. 11a). The CVq analysis (Fig. 11c) produces

the Z associated with the anvil level reflectivity region of the

storm to be above 30 dBZ. In CV logq (Fig. 11d) and CVpq0.4

(Fig. 11e), the size of analyzed storm is larger than in CVq and

FIG. 7. (a) The cost function value and (b) logarithmic gradient norm during the inner-loop iterations of the three

outer loops for CVq, CV logq, and CVpq0.4 for the analysis of 2100 UTC 16 May 2017. The purple dashed line

indicate the convergence criteria.

FIG. 8. TheRMSIs for (a) radar reflectivity and (b) radial velocity for background forecasts and analyses usingCVq,

CV logq, and CVpq0.4 at the end of each outer loop at 2100 UTC 16 May 2017.
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more consistent with the observations while the Z cores are

generally overfitted in terms of intensity. At the high levels

(.10 kmAGL) where radar data are sparse, CV logq produces

spuriously intense Z (Fig. 11d). The problems of overfitting

observations and producing spurious Z are believed to be as-

sociated with the nonlinear nature of the transformation

(Liu et al. 2020). This problem is not observed in the CVpq0.4

analysis (Fig. 11e) because the nonlinearity is reduced.

c. Results of the 3-h forecasts initialized from
3-h cycled analyses

The 3-h forecasts of CVpq using different values of p are

quantitively evaluated in section 4a. In this section, sub-

jective evaluations are performed to further compare CVq,

CVpq0.4, and CV logq. To compare the forecasts within

1 h when the forecast skill differences are relatively large,

we plot the forecast composite Z and the observed com-

posite Z exceeding 45 dBZ at 2200 UTC for the 16 May

(Fig. 12) and 27 May (Fig. 13) cases. For the 16 May case

(Fig. 12), CV logq and CVpq0.4 predict the two supercells

in the Texas Panhandle to be close to the observed storms,

but CVq predicts the southernmost supercell to be dis-

placed from observations. Although all experiments predict

spurious Z echoes, CVpq0.4 does not predict any spurious

echoes in the Oklahoma Panhandle. For the 27 May case

(Fig. 13), The moving eastward squall line in southeastern

Missouri is well predicted for all experiments but with some

lag phase error. Compared to CVq and CVloq, CVpq0.4

predicts fewer spurious storms in the eastern Oklahoma and

the southern Missouri.

FIG. 9. Radar reflectivity bias in areas of large observedZ (Zobs$

40 dBZ) of the background and the analyses of using CVq, CV logq,

and CVpq0.4 at the end of each outer loop.

FIG. 10. The reflectivity (dBZ) at 2.5 km AGL of (a) observation, (b) background, and analyses using (c) CVq, (d) CV logq, and

(e) CVpq0.4 at 2100 UTC 16 May 2017.
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Updraft helicity (UH) (Kain et al. 2008) is a measure of

updraft rotation in the supercells and has been used as a sur-

rogate predictor of severe weather including tornadoes with

CAM forecasts (e.g., Clark et al. 2012). To examine the impacts

of different hydrometeor control variables on tornadic storm

forecasts of the 16 May case, the UH in the 0–2- and 2–5-km

layers AGL are calculated from model output every 5 min

for the 0–3-h forecast. Rotation derived from the maximum

FIG. 11. As in Fig. 10, but for the reflectivity (dBZ) in vertical cross sections through the maximum reflectivity of the main storm along the

dashed line in Fig. 10a.

FIG. 12. The observations (black shading) over 45 dBZ and composite reflectivity (dBZ) of 60-min forecast (red shading) initialized from

(a) CVq, (b) CV logq, and (c) CVpq0.4 analyses at 2100 UTC for the 16 May case.
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range-corrected Multi-Radar Multi-Sensor (MRMS) azimuthal

wind shear data (Miller et al. 2013; Newman et al. 2013) are used

for 0–2- and 2–5-km UH verification. Rotation between 0 and

2 km AGL with thresholds of 0.003 83 and 0.004 13 s21, respec-

tively, are served as observed proxies for rotation to evaluate UH

forecasts. The UH and rotation thresholds used follow Skinner

et al. (2018) since the dataset and model configuration are gen-

erally similar.

CVq UH forecasts predict the southernmost supercell to be

too far south and east of the observed storm [Figs. 14a(1),a(2)].

FIG. 13. The observations (black shade) over 45 dBZ and composite reflectivity (dBZ) of 60-min forecast (red shade) initialized from the

(a) CVq, (b) CV logq, and (c) CVpq0.4 analyses at 2100 UTC for the 27 May case.

FIG. 14. The rotations derived from observations (black shading) and the forecast updraft helicity (m2 s22) of 60-min forecasts valid at

2200 UTC (red shading) in the [a(1)]–[c(1)] 0–2- and [a(2)]–[c(2)] 2–5-km layers AGL.
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CV logq 0–2-km UH forecast predicts the northernmost (in

Northern Oklahoma) and southernmost supercells [Fig. 14b(1)]

to be weaker compared to the azimuthal shear but the 2–5-km

UH forecast matches the observed rotations much better

[Fig. 14b(2)]. The 2–5-km UHs for the storm in southwest

Kansas appear too weak for all experiments. Overall, the

CVpq0.4 UH forecasts [Figs. 14c(1) and 14c(2)] exhibit more

skill than CVq and CV logq because of the smaller position and

coverage mismatches between UH and observed rotations.

The maximum 2–5-km UH track swaths for 0–3-h forecast

are overlaid with the Storm Prediction Center (SPC) tornado

reports in Fig. 15. For CVq, a southern bias is observed in the

forecast track of the southernmost supercell (Fig. 15a). This

track bias is greatly reduced in CV logq although the UH in-

tensity is somewhat less (Fig. 15b). Also, CV logq predicts two

UH tracks instead of one for this supercell, suggesting that the

structure of this supercell is not as well predicted. CVpq0.4

predicts strong and well organized UH tracks that are well

collocated with the tracks of tornado reports, suggesting the

most successful forecasts (Fig. 15c). In the meantime, we do

realize that UH tracks are only proxies of actual tornadoes.

5. Summary and conclusions

When directly assimilating radar data within a variational

framework using hydrometeor mixing ratios as control vari-

ables (CVq), the gradient of the cost function can be extremely

large when the background hydrometeormixing ratios are very

small. This often prevents efficient convergence during the

minimization process and canmake assimilatingVr and largeZ

observations inefficient. These problems can be alleviated

when hydrometeor mixing ratios transformed into logarithmic

space are used as control variables (CV logq) because the

logarithmic transformation significantly reduces the gradient

magnitude. However, when transforming the analysis incre-

ment from logarithmic space back to the original mixing ratio

space, spurious analysis increments can be produced due to the

high nonlinearity of this relationship.

To alleviate these problems, we apply a transform to the

hydrometeor mixing ratios to form power-transformed control

variables (CVpq) in this study to facilitate the direct assimi-

lation of radar data within the GSI En3DVar DA framework.

Mathematically, the proposed transform is a power-law func-

tion with a parameter p (0 , p # 1). The larger (smaller) p is,

the more linear (nonlinear) the transformation function is.

When p5 1, the nonlinear transformation function becomes a

linear function (i.e., CVpq 5 CVq). When p approaches 0 (in

this study, p is set to 1026 as an approximation to 0), the non-

linear transformation function approaches the natural loga-

rithm at the limit of 0 (i.e., CVpq 5 CV logq).

The impacts of using CVq, CV logq and CVpq on the ana-

lyses and forecasts are examined. The root-mean-square in-

novations (RMSIs) and neighborhood equitable threat score

(NETS) for the forecasts of the five different cases using 6

different parameter values of power transform function are

first evaluated to determine the optimal value, and later com-

parisons are focused on the use of CVq, CV logq and CVpq0.4,

with the last one being CVpq using parameter value of 0.4. The

direct impacts of radar DA in the three experiments are first

examined by performing a single-time analysis using the same

background, and the minimization convergence rates of the

cost functions are also examined. Forecasts from cycled DA

using the three forms of control variables are further compared

qualitatively and quantitively. A more detailed of experiment

summary and conclusions are given below.

1) A set of 3-h cycledDA and 3-h forecast experiments for five

convective storm cases are conducted using CVpq with

different parameter p (0.0, 0.2, 0.4 0.6, 0.8, and 1.0). The

optimal p value is found to be 0.4 in terms of overall lowest

RMSI and highest NETS forZ forecasts, while it is found to

be 0.4 or 0.6 in terms of overall lowest RMSI for Vr

forecasts.

2) Single-time analysis experiments for the 16 May 2017

tornado storm event are run using CVq, CV logq and

CVpq0.4. The convergence rate of cost function minimiza-

tion is much slower for CVq than the other experiments

FIG. 15. The maximum 2–5-km updraft helicity track swaths (m2 s22) during the 0–3-h forecasts initialized from the analyses of using

(a) CVq, (b) CV logq, and (c) CVpq0.4 at 2100 UTC 16 May 2017. The triangles represent tornado reports.
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because theCVqZ operator is highly nonlinear.Additionally,

the adjustments to wind state variables when assimilating Z

and Vr data together in CVq are very small and the analysis

underestimates Z cores in the supercells. Using the outer-

loop procedure for CVq can somewhat alleviate these

problems but substantially increases the computational

cost. For CV logq, the aforementioned problems are mostly

alleviated because the relationship between Z and control

variables (logq) is nearly linear. However, spurious analysis

increments can occur because the logarithmic transforma-

tion is highly nonlinear. For CVpq0.4, the problems using

CVq or CV logq are somewhat alleviated because some

nonlinearity is included in the power transformation func-

tion but the nonlinearity is not as high as the logarithmic

transformation.

3) The impacts of using CVq, CV logq, and CVpq0.4 on cycled

DA and forecasts are further compared subjectively for the

16 May 2017 Texas and Oklahoma tornado outbreak case

and the 27 May 2017 squall line case. CVpq0.4 generally

outperforms CVq and CV logq for the Z and UH forecasts.

In addition, for the 16May 2017 tornado case, the UH track

swaths for 0–3-h forecast are more consistent with tornado

reports when using CVpq0.4.

CVpq with an optimal parameter p (0.4 in this study) ex-

hibits the most qualitative and quantitative skill when used to

directly assimilate radar data in this study. Although the CVpq

is only tested in the pure En3DVar data assimilation system, it

is also expected to be useful in a hybrid En3DVar data as-

similation system. CVpq will applied within a hybrid En3DVar

DA framework and compared with other ensemble-based

DA methods (e.g., EnKF) in future studies. The CVpq also

provides a flexible framework where the p value can be

further tuned.

As in many previous studies (e.g., Sun and Crook 1997;

Tong and Xue 2005; Gao and Stensrud 2012), the Z observa-

tion operator used here is consistent with the one-moment Lin-

type microphysics scheme. In future, we will develop and

implement a Z operator consistent with the partially two-

moment Thompson microphysics scheme within GSI and may

apply the power transform to the total number concentrations

also, in addition to hydrometeor mixing ratios.
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