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A B S T R A C T   

The Coupled Routing and Excess Storage (CREST) is a flood-centric distributed hydrological model that has been 
widely used by researchers, educators, and decision-makers around the world since 2011. With growing public 
concern about the impact of climate change on water security, hydrological models such as CREST need to 
continue improving to provide more accurate simulations, more output products, and reduced application dif-
ficulties for users. In this study, an improved version of the CREST model (version 3.0) was proposed to consider 
the groundwater component of the hydrological cycle. A CONUS-wide CREST model calibration was conducted 
to provide usable model parameters for CREST users worldwide. The calibration improved the overall NSCE 
score from − 0.97 to 0.11 over 3206 gauge points in CONUS. The validation results indicated that the CREST 
model performed well in the eastern CONUS but not in the Rocky Mountains and the Mountain West. The newly 
added groundwater module reduced the overestimation and the steepness of the falling limb during flood events 
in the eastern CONUS but drastically reduced the simulated water quantities in the mountainous regions.   

1. Introduction 

Water is one of the most essential resources in the world, and its 
proper management is crucial for the sustainable development of our 
society. Hydrological models are powerful tools used to understand, 
simulate, and predict the behavior of water systems, which play a 
fundamental role in many fields, such as water resources management, 
agriculture, energy, and environmental studies (Wood et al., 2011). The 
hydrological cycle is complex, and accurate hydrological models can 
help us to better understand the hydrological cycle and to make 
informed decisions regarding water management. Two extremes in the 
hydrological cycle, flood, and drought, can negatively impact ecosys-
tems, economies, and human health (Ashley and Ashley, 2008; Chen 
et al., 2021; Liu et al., 2012; Riebsame et al., 1991; Wang et al., 2003). 

The need for hydrological modeling for both drought and flood has 
grown in recent years due to increasing concerns related to climate 
change and its potential impacts on water resources (Gobiet et al., 2014; 
USGCRP, 2017). Climate change is expected to increase the frequency 
and severity of extreme weather events, which will likely lead to more 
floods and droughts (Brauer et al., 2020; Meehl et al., 2000; van Old-
enborgh et al., 2018). 

The Coupled Routing and Excess STorage (CREST) model is a 
conceptually-based distributed hydrological model, that each grid cell 
that represents a fill and spill bucket to describe water storage and 
movement, and was developed by the University of Oklahoma (OU) and 
National Aeronautics and Space Administration (NASA), which was first 
published in 2011 (Wang et al., 2011). The basic building blocks of 
CRESTv1.x were distributed rain-runoff generation process and cell-to- 
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cell routing, coupled routing and runoff generation mechanisms, and 
sub-grid variability of soil moisture capacity. The most significant 
improved and widely used version, CRESTv2.1 had multiple advance-
ments including (a) implementation of distributed parameters, (b) 
replacement of three soil layers to one layer to reduce parameter re-
quirements, (c) including impervious area ratio, (d) including a rainfall 
multiplier parameter to mitigate the precipitation forcing bias, e) auto- 
calibration, etc. (Shen et al., 2017; Xue et al., 2013, 2016). CRESTv2.1 
was then adopted into the EF5 framework by the joint effort by OU and 
NOAA/National Severe Storms Laboratory (NSSL) to provide real-time 
flash flooding monitoring at every location in the USA, and became an 
operational system in the National Weather Services (NWS) and used by 
local NWS forecast offices as one of the tools used to issue flood warnings 
(Clark et al., 2017; Flamig et al., 2020; Gourley et al., 2017). The EF5 
framework includes two important improvements: (a) the snow accu-
mulation and ablation model (SNOW-17, Anderson, 2006) to simulate 
the process of accumulation of solid precipitation and its melting, and 
(b) the 1D kinematic wave model to describe the horizontal surface 
water movement over lands and river channels (Vergara et al., 2016). 
With the capacity for real-time hydrological simulation at a continental 
scale, the CREST model has been applied to many different regions of the 
world including East Africa under the NASA SERVIR program (Clark 
et al., 2017) and Peru under the OU-UNSA project (Chen et al., 2022). 

The CREST model has been proven to be efficient and effective in 
monitoring floods, however, there is a list of limitations that need to be 
addressed to further improve to properly simulate both sides of the 
hydrological extremes. For example, the CREST model appeared to have 
much steeper falling limbs on the hydrograph compared to the obser-
vation data (Chen et al., 2020), the single soil layer structure could cause 
errors in soil moisture estimations, and the lack of groundwater storage 
and routing simulation could underestimation the water quantity in 
long-term hydrological simulations (Kan et al., 2017). Furthermore, 
when considering water management to achieve sustainability, espe-
cially in regions with temporally fluctuating precipitation, groundwater 
modeling is no longer a negligible component (Asrie and Sebhat, 2016; 
Massuel et al., 2017). Khadim et al. (2020) attempted to couple the 
MODular 3-D finite-difference (MODFLOW) model with the CREST 
model to provide water management insight for the upper Blue Nile 
River basin. Kan et al. (2017) added two more soil layers to the CREST 
model and the corresponding 15 parameters and tested in the Ganjiang 
River basin, China, to prove that the three soil layers could increase the 
model performance in streamflow simulation, reduce bias, and reduce 
overestimation of soil moisture. However, both utilizing a 3D finite- 
difference model and adding 15 more parameters would sacrifice the 
computational efficiency and ease of data preparation of the CREST 
model. Therefore, in this study, we explored an alternative approach to 
improve the CREST model while maintaining the effectiveness and ef-
ficiency of the model. 

Ever since the first time the CREST model was applied at the Con-
tinental U.S. (CONUS), there has not been a systematically calibrated 
parameter dataset provided for the model user. Users are forced to 
calibrate the model basin by basin for their study areas, which limits the 
model applications to the larger regions. In this study, an improvement 
is made to add a conceptual groundwater simulating module 
(CRESTv3.0), and a CONUS-wide model calibration is conducted to 
provide a usable parameter set for the global CREST users. The cali-
bration results are then validated against the U.S. Geological Survey 
(USGS) stream gauge observation data. The impact of the groundwater 
module is tested by comparing the CRESTv3.0 with and without 
(CRESTv2.1) groundwater module using the calibrated parameters. The 
rest of this paper is organized as follows. Section 2 describes the study 
area, the datasets, the description of the groundwater module, the 
calibration method, and the statistical methods used in this study. Sec-
tion 3 describes the findings of the analysis. Section 4 gives a discussion 
of some findings, and Section 5 concludes and summarizes this study and 
proposes future studies. 

2. Methodology 

2.1. Study area and datasets (Table 1) 

The calibration was conducted throughout the CONUS (Fig. 1), 
which includes 18 Hydrologic Unit Maps (HUC 2, Seaber et al., 1987) 
basins and 15 out of 30 climate zones according to the Köppen-Geiger- 
Pohl climate classification (Peel et al., 2007). The 1 km current climate 
classification data was obtained from Nature Scientific Data (Beck et al., 
2018). The global climate classification map was then clipped within the 
study area and presented in Fig. 1. The HUC 2 data (GAGES-II, 2011) 
was obtained from the USGS National Hydrography Dataset (http 
s://www.usgs.gov/national-hydrography/access-national-hydro 
graphy-products). The USGS stream gauge map data and attribute in-
formation data were obtained from GAGES-II: Geospatial Attributes of 
Gages for Evaluating Streamflow (https://water.usgs.gov/lookup/gets 
patial?gagesII_Sept2011). 6,036 USGS stream gauge flowrate data (U. 
S. Geological Survey, 1994) from 2018 to 2019 was obtained from the 
USGS Representational State Transfer (REST) web service through the 
Instantaneous Values (IV) IO package with Python (https://waterservice 
s.usgs.gov/rest/IV-Service.html). All streamflow data were converted 
from cubic feet per second to cubic meters per second during the data 
downloading. The 2018–2019 Multi-Radar-Multi-Sensor (MRMS, Qi 
et al., 2016; Smith et al., 2016; Zhang et al., 2016) 1-hour gauge cor-
rected Quantitative Precipitation Estimates (QPEs) data was obtained 
from the Iowa State University, Iowa Environmental Mesonet (IEM) data 
archive (https://mtarchive.geol.iastate.edu/). The MRMS QPEs dataset 
was proven to have higher accuracy in multiple studies (Chen et al., 
2020; Li et al., 2020; Moazami and Najafi, 2021; Sadeghi et al., 2019), 
and it has been implemented in the FLASH project as the primary forcing 
(Gourley et al., 2017), which was used as the forcing data to drive the 
CRESTv3.0 model for consistency and accuracy purposes. 

2.2. Groundwater module and CRESTv3.0 

CRESTv1.0 model was first released in 2011 (Wang et al., 2011) and 
was then developed into the most widely implemented version 
CRESTv2.1 (Shen et al., 2017), which was later reprogrammed in C++

language and written into the EF5 framework in the FLASH project 
(Clark et al., 2017; Flamig et al., 2020; Gourley et al., 2017; Vergara 
et al., 2016). In CRESTv3.0, a conceptual bucket model was added to 
simulate the basic groundwater storage as one of the hydrologic cycle 
components. This classic fill-spill strategy is currently implemented in 
the US National Water Model (NWM) v2.1. The groundwater module 
follows a few simple governing equations: 

Qge,exc = recharge+ Zgw − Zgw,max − ET (1)  

Qgw,exp =

⎧
⎨

⎩

0

C*e

((
Zgw

Zgw,max

)

− 1

) Zgw = 0
Zgw > 0

⎫
⎬

⎭
(2)  

GWflow = Qge,exc+Qgw,exp (3)  

Where Zgw is the conceptual groundwater depth at each pixel; Zgw,max is 
the conceptual maximum groundwater depth at each pixel; recharge is 
the water influx from the conceptual subsurface soil layer; Qge,exc is the 
“spill” water from the groundwater ‘bucket’; Qgw,exp is the release of 
groundwater when the ‘bucket’ is not full; C is an empirical factor to 
generate the Qgw,exp based on the Zgw value; ET is the evapotranspiration 
process that takes water out of the groundwater ‘bucket’. Since C ranges 
from 0.01 to 3 in this study, the Qgw,exp value is not large even when Zgw is 
very small. The GWflow will be routed by a linear reservoir routing 
scheme to replenish the downstream channels. Fig. 2 demonstrates the 
theoretical concept of the bucket groundwater model. There are multi-
ple disadvantages and advantages of such a method. First, groundwater 
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does not replenish the conceptual upper layer of soil through the 
capillary pressure, so groundwater level Z does not affect soil moisture. 
Second, the groundwater flow follows the linear reservoir routing 
scheme, which might not follow many underlying physical rules for 
groundwater flow, but it reduces the data requirement of the under-
ground soil profile across the CONUS. 

2.3. Parameter calibration and validation 

A CONUS-wide, 1-km gridded CREST parameter set was prepared for 
the FLASH project (Gourley et al., 2017; Vergara et al., 2016) by esti-
mation based on soil property data, landcover data, population data, and 
water channel data, however, the gridded parameter has not been 
calibrated (Flamig et al., 2020). By calibrating the parameters, the 
process will yield a multiplier to each of the gridded parameters at each 
gauge point and its contributing basin area. The calibration goal is to 
achieve a higher log-NSCE score, by utilizing the Differential Evolution 
Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2009a; Vrugt, 
2016). The DREAM algorithm is an improved adaptation of the SCEM- 
UA global optimization algorithm that was built in CRESTv2.0 (Xue 

et al., 2016), and it is part of the Markov Chain Monte Carlo (MCMC) 
simulation, which simultaneously runs multiple chains for global sam-
pling and tunes the orientation and scale of the proposal distribution 
automatically during evolution. This method has the advantage of 
maintaining details and ergodicity on complex, nonlinear, and multi-
modal target distributions (Vrugt et al., 2009b; Vrugt et al., 2008). 

In this study, the calibration period was 2018/01/01 to 2018/12/31, 
and the sampling draws were limited to 5000 times for gauge drainage 
area less than 1000 km2, 8000 times for gauge drainage area between 
1000 km2 to 10,000 km2, and 12,000 times for gauge drainage area is 
larger than 10,000 km2 to maintain reasonable computation time. The 
year 2018 and 2019 was selected for calibration since it was relatively 
recent so the calibrated parameters can be used for hydrological simu-
lations for the most recent events, and both 2018 and 2019 generally 
have less extreme hydrological events than other years in 2010 s such as 
severe drought or historical flood in CONUS according to the USGA 
National Water Information System and National Flood Hazard Coor-
dinator documentation. The less hydrologically extreme years were 
chosen to have a higher quality of the observation data as the cases of 
overbank flows and dry channels were less frequent. The CRESTv3.0 

Table 1 
Datasets used in the study.  

Data name Full Name Reference Sources 

HUC2 Hydrologic Unit Maps Seaber et al., 1987 USGS National Hydrography Dataset 
Climate 

classification 
Köppen-Geiger-Pohl climate classification Peel et al., 2007, Nature Scientific Data 

USGS GAGES-II Geospatial Attributes of Gages for Evaluating 
Streamflow 

GAGES-II, 2011 USGS National Hydrography Dataset 

Streamflow USGS Streamflow observation data U. S. Geological Survey, 1994 USGS Representational State Transfer (REST) 
MRMS QPEs Multi-Radar-Multi-Sensor Quantitative Precipitation 

Estimates 
Qi et al., 2016; Smith et al., 2016; Zhang et al., 
2016 

Iowa Environmental Mesonet (IEM) data 
archive  

Fig. 1. The study area, HUC 2 maps, and the Köppen-Geiger-Pohl climate zones in the study area.  
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model ran at 1-km and 1-hour resolution forced by MRMS 1-hr gauge 
corrected QPEs, and each time step took 0.004 to 0.05 s depending on 
the drainage area, and each gauge took from 20 h to over 120 h to 
complete the calibration. Due to the limitation of the sampling, some 
gauge points did not converge, and no reasonable parameter multipliers 
were yielded. The validation of the calibration was conducted for the 
following year from 2019/01/01 to 2019/12/31, with all calibrated 
gauge points, using MRMS 1-hr gauge corrected QPEs to run CRESTv3.0 
model at 1 h and 1 km resolution. The benchmark for the validation was 
the same aforementioned simulation using the uncalibrated 1 km grid-
ded parameter sets for EF5. The initial conditions for the validation runs 
are the last time step of 2018/01/01 to 2018/12/31 simulations using 
uncalibrated parameters for the benchmark and calibrated parameters 
for the calibrated simulation in 2019. Note that using only one year for 
calibration and one more for validation/benchmark is a step forward for 
CREST model implementation, but it is not conclusive nor definitive 
about the model performance. 

2.4. Statistic metrics and slope of the falling limb of the hydrograph 

To test if the calibration improves the model performance, both the 
calibrated simulation and the benchmark were compared to the USGS 
streamflow observation data using several statistical metrics listed 
below (Table 2). 

The correlation coefficient (CC) represents the degree of agreement 

between the simulated streamflow and the stream gauge observation as 
the “ground truth.” Three metrics were selected to discover the error and 
bias between the streamflow simulation and observations, which were 
the normalized bias (NB) and relative bias (RB) to describe the sys-
tematic bias as a ratio, as well as the root-mean-square error (RMSE) to 
measure the average error magnitude. The Nash–Sutcliffe coefficient of 
efficiency (NSCE) tests the hydrological model efficiency of simulating 
the streamflow, which is a widely used comprehensive performance 
metric for hydrological modeling studies. 

To examine if the groundwater module would reduce the steepness 
of the falling limb in the hydrographs (Fig. 3), the slope of the falling 
limbs is calculated by a) identifying the falling limb using two or more 
consecutive time steps (2 + hours) having streamflow reduction of the 
half of its base flow value or more, b) fitting a linear regression over the 
falling limb, c) calculate the slope of the fitted linear line. 

3. Results 

3.1. Conus-wide CRESTv3.0 calibration 

After the calibration, 3,206 out of 6,036 gauge-points converged and 
found ‘optimal’ parameter multipliers for CRESTv3.0 and were vali-
dated for the year 2019, and the remaining gauges were included in the 
validation. The overall statistical summary for the validation period 
before and after the calibration is listed in Table 3. 

Compared to the baseline, where the parameters were not optimized, 
the most improved statistic metric was the CC, which means that the 
calibration helped improve the temporal agreement between the model 
simulation and the USGS gauge observation. The median values of CC 
among 3,206 gauge-points were 0 and 0.52 before and after the cali-
bration, respectively. Other metrics had considerable improvements, 
there the median relative bias (RB) increased by 1 % from 17.37 % to 
18.95 %, however, since the RB ranges from − 1 to positive infinity and 
samples can be skewed by large positive values, the normalized bias 
(NB) provides more accurate insight for this aggregate score. The cali-
bration reduced over 10 % of negative bias from NB of − 27.9 % to 
− 15.27 %, and it reduced about 10 m3/s of absolute error from RMSE of 
31.67 m3/s to 21.23 m3/s. A previous study (Flamig et al., 2020) 
examined the performance of EF5v1.2 (contains CRESTv2.1) from 2002 
to 2011 across all USGS gauges smaller than 1,000 km2 of basin area, 
and the study indicated that the median CC was 0.40, RB was 9 % and 
NSCE was − 0.06, and the metrics listed in Table 1 surpassed all the 
scores. The near-optimal CC value was 0.97 and the NSCE value was 
0.82 after calibration, which proved that the calibrated parameters 
could provide considerable accurate streamflow simulation at their best. 
In the USGS GAGES-II dataset, some gauges are categorized as “REF” 
gauges, which are defined as the streams that have minimal human in-
terferences to their streamflow, such as dams, reservoirs, irrigations, etc. 

Fig. 2. The schematic diagram of the fill-spill bucket groundwater module.  

Table 2 
The statistic metrics.  

Statistic metrics Equation Value 
Range 

Perfect 
value 

Correlation 
coefficient (CC) 

CC =
∑N

n=1
(
fn − f

)
(rn − r)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1
(
fn − f

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
n=1(rn − r)2

√

− 1, 1 1 

Normalized bias 
(NB) 

NB =
1
N
∑N

n=1
fn − rn

fn + rn 

− 1, 1 0 

Relative bias (RB) NB =
1
N
∑N

n=1
fn − rn

rn 

− 1, +∞ 0 

Root-mean-square 
error (RMSE) RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

n=1

(
fn − rn

)2
√ 0, +∞ 0 

Nash-Sutcliffe 
coefficient 
efficiency (NSCE) 

NSCE = 1 −

∑N
n=1

(
fn − rn

)2

∑N
n=1(rn − r)2 

-∞, 1 1 

aVariables: n and N, sample index and a total number of samples, f represents the 
model simulated streamflow, r represents the USGS observation.  Fig. 3. An example of the falling limb of a hydrograph and its slope.  
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Table 3 
The overall statistical results of CRESTv3.0 simulation over CONUS in 2019, over 3,206 gauge points.  

Metrics Baseline (median) Calibrated (median) Baseline (near optimal) Calibrated (near optimal) Calibrated results      

USGS non-ref gauges USGS ref gauges 

CC  0.00  0.52 0.04 0.97  0.53  0.51 
RB (%)  17.37  18.95 nan nan  19.66  29.88 
NB (%)  − 27.90  − 15.27 nan nan  − 13.70  − 18.81 
RMSE (m3/s)  31.67  21.23 0.02 0.02  24.54  13.03 
NSCE  − 0.97  0.11 0.00 0.82  0.11  0.14  

Fig. 4. The statistical results of A) NSCE, B) RMSE, C) NB, and D) CC at 3206 gauge-points for 2019 for baseline (b) and calibrated (c) CRESTv3.0 simu-
lated streamflow. 

M. Chen et al.                                                                                                                                                                                                                                   



Journal of Hydrology 626 (2023) 130333

6

In Table 2, the REF gauges on average have lower RMSE (13.03 m3/s vs. 
24.54 m3/s) and higher NSCE scores (0.14 vs. 0.11) compared to the 
NON-REF gauges. In this study, CREST v3.0 did not consider the human 
interferences to the streamflow, so the model produces better simulation 
results on the REF gauges (Table 3) 

Fig. 4 demonstrates the model performance metric at each gauge 
point before and after the calibration. From the comparison between the 
baseline and the calibrated simulation, the most obvious improvement 
was the CC (Fig. 4 Db, Dc), where the majority of the gauge points on the 
eastern part of CONUS had a CC value greater than 0.5. However, the 
Rocky Mountains and northern plain regions remained at lower CC 
values with insignificant improvement. The high RMSE gauge points 
were mostly concentrated within the Mississippi River basin for both 
baseline and calibrated simulation (Fig. 4 Bb, Bc), which has a large 
baseflow rate due to its size and consequentially generated a larger 
error. The statistical results showed widespread underestimation of 
streamflow (Fig. 4Cb, Cc). After calibration, the eastern part of CONUS 
showed improvement, but the Rocky Mountains and the Mountain West 
appeared to have no significant improvement, which could be affected 
by the groundwater module. The impact of the groundwater module will 
be further explained in section 3.2. As a comprehensive performance 
metric for hydrological model simulation, NSCE (Fig. 4Ab, Ac) showed 
significant improvement in the eastern part of CONUS, but not the 
mountainous regions and the US west. Note that the northern plain 
showed low NSCE scores after the calibration, which could be caused by 
the uncalibrated SNOW-17 module parameters (Flamig et al., 2020; 
Gourley et al., 2017). Due to time constraints, there are 8 more pa-
rameters for the SNOW-17 module that were not calibrated in this 
current study effort. Therefore, the process of snow/ice melting was not 
properly modeled, hence the poor performance showed at the northern 
plain of the US, which is one of the multiple reasons for the poor 
modeling performance at the Rocky Mountains. 

Fig. 5 displays the distribution of the statistical results of the baseline 
simulation and the calibrated simulation within 8 major climate zones in 
CONUS, compared against the USGS stream gauge observation. The 
most improved region by calibration was Cfa, a humid subtropical 
climate, which covers a large area in the southeast and southern plains 
of CONUS (Fig. 1). In this region, the calibration increased the median 
CC from 0.0 to 0.6, NSCE from − 0.8 to 0.4, and reduced the RMSE from 
41.6 m3/s to 22.2 m3/s. The second improved region was Dfa, a humid 
warm continental climate, which covers another large area north to Cfa 
climate including the majority of Northeast and Midwest regions of the 
USA. In this region, the calibration increased the median CC from 0.0 to 
0.5, NSCE from − 0.9 to 0.2, and reduced RMSE from 35.3 m3/s to 26.3 
m3/s. These two regions include most of the area of the east part of 
CONUS including 32/50 states like AL, AR, CT, DE, DC, FL, GA, IL, IN, 
IA, KS, KY, LA, MD, a large portion of MA, MI, MS, MO, a large portion of 
NB, NH, NH, NY, NC, OH, OK, a portion of PA, RI, SC, TN, the eastern 
TX, VA, and WV. The results concluded that the calibration improved 
the CRESTv3.0 performance to be acceptable for 32 states on the east 
side of the CONUS. On the contrary, the region that was resistant to 
calibration was Dsb, dry continental climate, where the NSCE value 
changed from − 0.88 to − 0.86 after calibration. The Dsb climate scatters 
over the northern and western slopes of the Rocky Mountains and is 
located in California, Montana, Idaho, Oregon, and Washington. Mul-
tiple reasons could cause the poor performance of CRESTv3.0 including 
the groundwater module, the snowpack’s impact on streamflow, and 
poor precipitation estimates in the mountains. 

The other observation from Fig. 4 is that there was significant un-
derestimation in desert/dry regions (BSh, BSk, BWh, BWk) and Medi-
terranean climate region (Csa), where the NB values were around − 50 
%, and the NSCE values were − 0.39, − 0.34, − 0.35 respectively. The 
CREST hydrological model family was originally designed to model 
flood and flash flood events, and its capabilities to simulate the river 
flows in the dry regions needed to be specially calibrated or structurally 
improved in general. 

The seasonal performance of calibrated CRESTv3.0 is worth 
exploring to provide the usefulness of the calibrated parameters. As the 
CC metric was the most improved score, Fig. 6 plots the median CC at 
each HUC2 zone in different seasons. 

The ability to capture the flow variation using CRESTv3.0 hydro-
logical simulation showed seasonal variability throughout the year 2019 
(Fig. 6). One area that had a constant low score using calibrated pa-
rameters was HUC2 basin 13, Rio Grande region, which had the lowest 
score during the Winter season (median CC was − 0.17, NB was − 54 %, 
and NSCE was − 2.22) when it was dry in the downstream and the 
precipitation in the upper stream was mostly snow. The other regions 
that had low scores throughout the year were HUC2 basins 14, 16, and 
18, which are Upper Colorado, Great Basin, and California regions, 
where the median CC values were below 0.4 and the median NB values 
ranged from − 54 % to − 60 % and NSCE values ranged from − 8.93 to 
− 0.84. These lower score regions match the previous finding that the 
Rocky Mountains and the Mountain West were the poor performance 
regions for CRESTv3.0. 

The regions that performed well throughout the year 2019 were HUC 
basins 2, 3, and 6, which are Mid-Atlantic, South Atlantic-Gulf, and 
Tennessee regions, where the median CC values ranged from 0.55 to 
0.85, NB values ranged from − 2.93 % to 9.90 %, and NSCE values 
ranged from 0.17 to 0.23. Considering Hurricane Dorian impacted the 
East Coast in late August and early September of 2019, including Flor-
ida, South Carolina, Delaware, and New Jersey, Fig. 6D showed high 
scores for all HUC 2 and 3 basins, which indicated that the parameters in 
these regions were well calibrated, and the extreme precipitation event 
did not introduce large error to the hydrological simulation. The HUC 8 
basin, Lower Mississippi region, had high scores the most time of the 
year (median CC > 0.5), but not from October to December. It was re-
ported that in the Spring and Summer of 2019, the Lower Mississippi 
River basin experienced high flow volume and flood. Given the averaged 

Fig. 5. The violin plot of statistical results before and after the calibration in 8 
major climate zones in CONUS. 
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10 % positive bias from October to December 2019, it was possible that 
the CRESTv3.0 did not simulate the reduction of streamflow accurately 
after half of a year of high streamflow. In this seasonal analysis, the 
importance of the SNOW-17 module surfaced since Fig. 6B showed that 

the entire northern CONUS showed low scores during the winter season 
of 2019. The SNOW-17 module parameters (8 parameters) were not 
calibrated due to the time and computation limitations in this study. 

Overall, the calibration of CRESTv3.0 provided a useful set of 

Fig. 6. The seasonal changes of median CC values in different HUC2 basins in water calendar years.  

Fig. 7. Selected basins from the well and poorly performed regions to test the impact of the groundwater module.  
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parameters to support acceptable hydrological simulation in the Eastern 
side of CONUS, especially the southeast regions. The uncalibrated 
SNOW-17 module impacted the model performance in the northern 
CONUS and Rocky Mountain regions. The calibrated CRESTv3.0 
generally has poor performance in the drier regions (desert, grassland, 
Mediterranean, dry continental climates), which are mostly located in 
mountain west regions. 

3.2. The impact of the groundwater module 

The conceptual groundwater module was expected to reduce the 
conceptual soil water content and consequentially decrease the slope of 
the falling limb of the hydrograph. In this section, a basin in the Mid- 
Atlantic region and one basin in the Mountains West region were 
selected to examine the impact of the groundwater module (Fig. 7). In 
this section, the streamflow and soil moisture were simulated with and 
without the groundwater module, and the difference in streamflow was 
demonstrated in Fig. 8. 

Two basins were selected from HUC2 Region 5 Ohio river basin, and 
Region 14 upper Colorado river basin, which had high and low CC scores 
in 2019, respectively, based on the results shown in Fig. 6. The USGS 
gauge 03,302,000 is at the Pond Creek basin, near Louisville, KY, which 
is a tributary of the Ohio River. The Pond Creek basin covers a large 
Louisville metropolitan area, which is heavily developed and has a high 
percentage of impervious areas. The USGS gauge 09,346,400 is at the 
upper stream of the San Juan River before entering the Navajo 
Reservoir. 

The USGS gauge 03,302,000 at Pond Creek is located at a region 
where CRESTv3.0 performed well after calibration, and the hydrograph 
(Fig. 8A) showed that the simulated streamflow caught all the flood 
peaks in 2019 and the overall NSCE score was 0.82 and RMSE was 3.38 
m3/s. One significant impact of the groundwater module after 

comparing the red (groundwater module turned on) and blue (ground-
water module turned off) hydrograph, the groundwater module reduced 
the overestimations at the flood peak so the simulated streamflow dur-
ing the flood was closer to the stream gauge observation (gray). For 
example, in the April 20th flood at Pond Creek, the observed peak 
streamflow was 65.66 m3/s, and the simulated peak streamflow was 
60.95 m3/s with the groundwater module turned on, 131.87 m3/s with 
the groundwater module turned off. The groundwater module reduced 
much overestimation, so the CRESTv3.0 can simulate a more realistic 
flood event. The expectation of reducing the slope of the falling limb of 
each high-flow event was not visible in Fig. 8A. After calculating the 
averaged slope of falling limbs through the year of 2019 for simulated 
and observed hydrographs, the groundwater module helped to reduce 
the steepness of falling limb slope from − 1.43 (groundwater module 
turned off) to − 0.86 (groundwater module turned on), yet much steeper 
than the USGS streamflow observation with the averaged falling limb 
slope of − 0.43. 

On the other hand, in the dry and mountainous regions like the upper 
stream of the San Juan River basin (Fig. 8B), the CRESTv3.0 simulation 
drastically underestimated the streamflow without the groundwater 
module turned on (blue). When the groundwater module turned on 
(red), the conceptual groundwater tank further drained surface runoff 
and caused a much lower simulated flowrate and the annual average NB 
was − 95.31 %. The results showed that CRESTv3.0 needed more im-
provements and overcame obstacles (e.g. snow, mountain lakes, glacier 
melts) to provide more accurate simulation in the dry and mountainous 
regions. 

The groundwater module had a positive impact in the CRESTv3.0 
well-performed regions (eastern CONUS) by reducing overestimation 
during flooding events but had a negative impact in the poorly per-
formed regions (mountain west of CONUS) by depleting the streamflow. 
The use of the groundwater module should be done after 

Fig. 8. The CRESTv3.0 simulated hydrograph of selected basin A) USGS gauge 03,302,000 and B) USGS gauge 09346400, with the groundwater module turned on 
(red) and off (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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comprehensively considering the geological and climatic properties of 
the study area. 

4. Discussion 

Multiple reasons could cause the poor performance of CRESTv3.0 in 
the mountain west regions of CONUS. One of the reasons is the precip-
itation forcing data quality. Since MRMS is a radar-based QPE, the 
density of radar networks and blockage by objectives can affect the 
accuracy of MRMS QPE. A 2015 NOAA report (Grim et al., 2015) and a 
2021 study (Bagaglini et al., 2021) both analyzed the radar quality index 
(RQI) of MRMS products and the results indicated that the RQI was 
scattered low scores across the Rocky Mountains and mountain west. 
The location of the upper stream San Juan River basin (USGS gauge 
09346400) had a very low MRMS RQI score, which was less than 0.1. 
Therefore, the bias of the QPE propagated through the hydrological 
model and caused errors in simulated streamflow (Hong et al., 2006). 
The second reason could be the uncalibrated SNOW-17 module that 
caused errors in water balance calculations that generated less surface 
runoff than needed for the Rocky Mountains regions. Since there were 8 
more parameters from the SNOW-17 module, they were not calibrated 
to save computation time in this study. However, the glacier melting 
process and snow precipitation are important for generating surface 
runoffs in mountainous regions, therefore, to apply CRESTv3.0 to 
mountainous regions or northern CONUS, calibrating SNOW-17 module 
parameters is an essential procedure. The third reason could be the lack 
of capability to model the lake and reservoir in CRESTv3.0. In a recent 
study (Leach and Laudon, 2019), the authors indicated that even small 
headwater lakes (area < 1 km2) could influence the baseflow quantity of 
their downstream river reaches. Especially in the mountainous regions, 
lakes and reservoirs can store surface runoff from glacier melt, snow 
melt, and precipitation, and they supply consistent waterflow to its 
downstream when precipitation does not occur, attenuate peakflows 
when mountain flood occurs (Dorava and Milner, 2000; Jones et al., 
2014). In mountain west regions, the CREST-VEC model (Li et al., 2022) 
could be a more suitable option, since this model can simulate the nat-
ural lakes and engineered reservoirs when lake information and reser-
voir operation data are available. The fourth reason could be the current 
groundwater module is not suitable for mountainous regions. From 
section 3.2, the analysis indicated that the groundwater module benefits 
the hydrological simulation in the eastern CONUS by reducing the 
overestimations at peakflows during flood events, and the steepness of 
falling limbs, which made the simulation more realistic as the obser-
vation data. However, the current groundwater module technically 
takes water at a rate (m3/s) from the surface runoff when precipitation 
and excessive rainfall occur, which heavily reduces the amount of water 
that remains on the surface and channels when the area is dry. As the 
current groundwater module sacrifices a degree of the physical aspect of 
groundwater movement and soil–water relationship to gain simplicity 
and computation efficiency, the CRESTv3.0 module should not be 
turned on when the study area is dry and lacks precipitation. 

In the CRESTv3.0 setup, the groundwater module and infiltration 
module that produce soil moisture outputs are operating independently. 
There is no formula to describe the water interaction between the con-
ceptual water ‘bucket’ and the conceptual soil layer, therefore the 
groundwater bucket cannot drain the water from the soil layer nor 
impact the soil moisture. The soil moisture outputs of the CRESTv3.0 
gave 0 difference in 2019 between the groundwater module turned on 
and off, which exposed the flaw of the current groundwater module 
design. Darcy’s law (Buckingham, 1907) and Richard equation 
(Richards, 1931) can address the capillary flow between soil and 
groundwater, however, a fully solved 3D Darcy’s law (e.g. MODFLOW) 
would not be adequate for the CREST model, which would sacrifice its 
computational efficiency. Therefore, the next step to improve the 
CRESTv3.0 model is to use a simplified 1D equation to model the water 
flux with the addition of 1 or 2 more parameters. 

5. Conclusions 

This study provided an improvement to CRESTv2.x distributed hy-
drological model proposed a new version, CRESTv3.0, and provided a 
whole CONUS parameter calibration. With the calibration using the 
DREAM algorithm, the median NSCE value of all 3,206 gauge-points 
increased from − 0.97 to 0.11 and the addition of the groundwater 
module helped to eliminate the overestimations at the flood peaks 
during flood events. Furthermore, the following conclusions are made 
here:  

(1) CRESTv3.0 performed well and provided accurate flowrate 
simulation in the eastern CONUS but not in the Rocky Mountains 
and Mountain West regions. The best-performed regions were 
Southeast, Tennessee, and Mid-Atlantic, and the worst-performed 
regions were Upper Colorado, Rio Grande, Great Basin (Salt 
Lake), and California regions. 

(2) The uncalibrated SNOW-17 module had an impact on the per-
formance of CRESTv3.0 in Northern CONUS and mostly the 
Rocky Mountains region where the mountain glaciers melting 
was a major source of river flow.  

(3) When working with CRESTv3.0 in mountainous and dry regions, 
the model needs to be operated with extra care to consider snow/ 
ice melt, lake routing, groundwater module turned off, and pre-
cipitation forcing quality.  

(4) Considering the heterogeneity of topography, climate, soil 
property, and land cover in a large country like the USA, the 
compartmentalization idea of the CREST model application 
should be promoted in the future to provide the best simulation 
results in every part of a large region. 

The newly added groundwater module is yet to be perfect, but it 
showed its benefit in improving the streamflow simulation during flood 
events in the eastern CONUS and reducing the steepness of the falling 
limb of the hydrograph compared to the simulation without the 
groundwater module. The groundwater module will be improved in 
future studies to simulate the water flux interaction between the soil 
layer and the groundwater bucket. This study is the first attempt to 
calibrate the CRESTv3.0 model parameters for the whole CONUS, and 
calibrated parameters that can yield accurate simulation could be used 
for parameter transformations to other parts of the world, such as South 
America, Asia, etc. 
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