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Abstract: Precipitation estimate is important for earth science studies and applications, and it is one
of the most difficult meteorological quantities to estimate accurately. For regions such as Peru, reliable
gridded precipitation products are lacking due to complex terrains and large portions of remote
lands that limit the accuracy of satellite precipitation estimation and in situ measurement density.
This study evaluates and cross-examines two high-resolution satellite-based precipitation products, a
global rain-gauge interpolated precipitation product, and a Weather Research and Forecast (WRF)
model that simulated precipitation for a ten-year period from 2010 to 2019 in the Peruvian Andes
region across the Pacific coast, Andes, and in the Amazon. The precipitation estimates examined in
this study are the Integrated Multi-SatellitE Retrievals for GPM (IMERG), Multi-Source Weighted-
Ensemble Precipitation (MSWEP), Global Precipitation Climatology Center product (GPCC), and
a 3 km grid spacing WRF-based regional climate model (RCM) simulation. The evaluation and
cross-examination were performed at sub-daily (6 h), daily, and monthly time scales, and at various
spatial resolutions. The results show that the WRF simulation performs as well as, if not better than,
GPM IMERG in the low precipitation and dry regions but becomes inaccurate in wet regions. GPM
IMERG is more suitable for higher precipitation and wet regions, and MSWEP shows a systematic
overestimation over the study area. It is therefore important to choose the most suitable precipitation
product based on research needs and climate condition of the study for the challenging Peruvian
Andes region.

Keywords: multiplicative triple colocation; Peruvian Andes; satellite precipitation; WRF

1. Introduction

Precipitation is an important variable for atmospheric, hydrological, and environmen-
tal sciences. Therefore, estimating its values and quantifying its spatial–temporal variability
are of paramount importance. Maintaining a dense network of rain gauge stations or
weather radar (that are effective for Quantitative Precipitation Estimation or QPE) across
a country can be very challenging for many parts of the world, especially for developing
nations [1]. Peru is one of the South American countries that has additional challenges
due to its complex terrain [2] making it difficult to establish a homogeneous rain gauge
network [3] or a blockage-free weather radar network.
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Satellite precipitation products are made available at high spatial and/or temporal
resolutions by analyzing cloud-top temperature, cloud characteristics [4] or detecting mi-
crowave radiations from atmospheric hydrometeors, or a combination of both [5]. There are
multiple global operational satellite precipitation products available such as the Tropical
Rainfall Measuring Mission (TRMM) that operated from 1997 until 2015 [6], and its succes-
sor Integrated Multi-satellitE Retrievals for Global Precipitation Mission (GPM IMERG)
from the National Aeronautics and Space Administration (NASA) [5,7,8]; the Climate
Prediction Center (CPC) morphing technique (CMORPH) from the National Oceanic and
Atmospheric Administration (NOAA) [9]; the Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks (PERSIANN) from the University of
Arizona and University of California Irvine [10,11]; and the Global Satellite Mapping of
Precipitation Microwave-IR Combined Product (GSMaP-MVK) from the Earth Observation
Research Center (EORC) of Japan Aerospace Exploration Agency (JAXA) [12]. However,
a prior study [13] found that satellite- based precipitation products, such as PERSIANN,
TRMM, CMORPH, and GSMaP, underestimated low precipitation and overestimated
medium precipitation over the Peruvian Andes region. In a more recent study in 2019 [14],
the most recent satellite precipitation products including GPM IMERG late run and final
run, CMORPH, and GSMaP all overestimated the annual precipitation amount in the lower
and higher elevation over the Peruvian Andes region.

The Global Precipitation Climatology Center (GPCC) climatology dataset is developed
from 75,152 rain gauge stations over the world that partially covers the Peruvian Andes area,
mostly along the Pacific Coast [15–17]. The GPCC precipitation product is interpolated
from the global rain gauge network, and the sources of the data error are mainly the
weather effects on rain gauge and gauge network density [16]. For complex terrain, a study
evaluated GPCC among multiple precipitation products over the Qinling Mountains in
China and found that the GPCC is reasonably good but less accurate compared to a local
Chinese precipitation product called ITPCAS [18]. The performance of GPCC data along
the Peruvian Andes has not been conducted yet. The Servicio Nacional de Meteorología e
Hidrología del Perú (SENAMHI, the National Meteorological and Hydrological Service
of Peru, https://www.gob.pe/senamhi, accessed on 4 May 2021) initiated a project called
Peruvian Interpolated data of SENAMHI’s Climatological and Hydrological Observations
(PISCOp V2.1) [19], which interpolated the Peruvian rain gauge network and the Climate
Hazard Group Infrared Precipitation with Stations (CHIRPS) precipitation product [20].
However, due to the lack of rain gauge coverage in the Amazon rainforest, the PISCOp
product was found to be less accurate in the Peruvian Amazon [19].

The Multi-Source Weighted-Ensemble Precipitation (MSWEP) is a global precipitation
product that utilizes gauge interpolated precipitation products (WorldClim, and GPCC),
satellite-based precipitation products (CMORPH, GSMaP, GridSat, and TRMM), and precip-
itation from reanalysis datasets (ERA-Interim and JRA-55) [21]. This product was developed
to overcome the problems that satellite-based precipitation products have over mountain-
ous regions. However, a study found that MSWEP overestimated over the Peruvian Andes
region [14]. As the previous studies agreed that neither remote sensing technology, nor
the rain gauge interpolation, nor the combination of both could produce accurate QPE
over the Peruvian Andes region, this disadvantage is required to be further studied to
provide insight for researchers if the inaccuracy of the global QPEs is homogeneous or
heterogeneous over the region.

Another possible source of gridded precipitation estimate is numerical weather predic-
tion (NWP) models. With advanced NWP models running at high spatial resolutions, one
study [22] found that the Weather Research and Forecasting (WRF) model could produce
more accurate gridded precipitation estimates than density-limited rain-gauge interpolated
products in mountainous areas. Other studies have also explored this research direction
since the challenge is substantially higher over complex terrain [23,24]. Moreover, with
NWP models, there are potentials to forecast future precipitation to understand the impact
of climate change [25]. A 2019 study indicated that the WRF dynamic downscaling per-
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formed better than the European Centre for Medium-Range Weather Forecasts Reanalysis
(ERA-Interim) datasets over the tropical Andes region during the dry season [26]. Would
NWP model estimated precipitation be a reliable source of a precipitation product for the
Peruvian Andes region? It is a research question yet to be answered.

As the challenges exist for gridded precipitation products in complex terrains, and
the scientific communities in countries such as Peru, Chile, Columbia, and Bolivia have
disadvantages relative to developed countries with more comprehensive observational
networks, it is important to understand the strengths and weaknesses of different pre-
cipitation products in different regions, given that the literature has not found that one
product significantly outperforms others. This study presents a performance evaluation
of GPM IMERG, MSWEP, GPCC, and a WRF dynamic downscaling over a very complex
terrain in the Peruvian Andes region at sub-daily, daily, and monthly time scales in a
ten-year period from 2010 to 2019. It also provides validation of the application of a WRF
model to a challenging region in South America. The rest of this paper is organized as
follows. Section 2 describes the study area, the precipitation datasets, and the statistical
methods used in this study. Section 3 describes the findings of the analysis. Section 4 gives
a discussion of some findings, and Section 5 concludes and summarizes this study and
proposes future studies.

2. Materials and Methods
2.1. Study Area

This study was conducted in a South American region from the northwest corner at
80.0 W 5.0 S to the southeast corner at 63.5 W 24.5 S (Figure 1). This region consists of the
majority of Peru, Bolivia, and a portion of Brazil, Chile, and Argentina. From the west
coast facing the Pacific Ocean, to the Andean plateau, and then to the Amazon rainforest.
This region has 12 out of total 30 different climate zones according to the Köppen–Geiger-
Pohl climate classification (Figure 1) [27]. The 1 km current climate classification data
were obtained from Nature Scientific Data [28]. The global climate classification map was
then clipped within the study area and is presented in Figure 1. This region covers large
climatical variations and precipitation diversities, which are driven by the interactions
between synoptic-scale atmospheric current, orography of the Andes, the El Nino, and
the cold Humboldt Current System (HCS) [29,30]. The average annual precipitation of the
region ranges from less than 150 mm in the tropical desert climate to more than 3500 mm
in the tropical rainforest climate [31].

2.2. Precipitation Products

The basic information and the average annual statistics of all precipitation products
are listed in Table 1. A schematic flowchart of the series of analysis is displayed in Figure 2.

Table 1. List of precipitation products analyzed in this study and their averaged annual precipitation
statistics from 2010 to 2019.

Resolutions Annual Averaged Statistics from 2010 to 2019 (mm)

Spatial Temporal Min Median Mean Max SD 25% 75% Skewness Kurtosis CV

GPM IMERG 0.1◦ 0.5 h 5 1725 1483 5094 952 583 2212 0.00 1.93 0.64
MSWEP 0.1◦ 3 h 14 5097 4534 17,891 2259 2806 6645 0.11 2.40 0.50

WRF 3 km 1 h 0 2459 2352 43,462 1765 884 3367 2.39 24.41 0.75
GPCC 0.25◦ 1 month 6 2916 2671 12,044 1879 1131 3801 0.79 4.61 0.70
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Figure 1. The study area and the Köppen–Geiger–Pohl climate zones in the study area.

Figure 2. The schematic flowchart of the analysis in this study.
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2.2.1. Rain Gauge

The 441 Peruvian daily rain gauges (Figure 1) records from 1981 to August 2018 were
obtained from the National Service of Meteorology and Hydrology of Peru (SENAMHI,
ftp://@ftp.senamhi.gob.pe/, accessed on 8 August 2021). The majority of the gauges data
were collected manually; however, due to the inconsistency in the gauge observers that
results in a change of data collecting method and precipitation truncation issues, the rain
gauge data quality and continuity are considered as problematic [3]. The data had gone
through a three-step quality control procedure to remove obvious inconsistent values,
noisy extreme values, and manual removal of rounding patterns [19]. After eliminating the
gauges located outside the study area, 393 daily rain gauge records were incorporated into
the statistical analysis.

2.2.2. GPM IMERG

Building upon the TRMM project (1997), the NASA GPM mission was launched
in 2014 and generates the quasi-global precipitation products, IMERG, at 0.1 arc-degree
spatial resolution and 30 min temporal resolution [7,32–34]. In this study, the 30 min
GPM IMERG final run data were downloaded from NASA GES DISC data archive (https:
//disc.gsfc.nasa.gov/, accessed on 4 May 2021 from 1 January 2010 to 31 December 2019,
which was a rain gauge calibrated (RMSE minimization) precipitation product that was
believed to be the most accurate and reliable in the GPM mission [8]. The data were then
aggregated to 6 hourly rainfall rates (mm/h) using arithmetic mean, daily accumulated
rainfall amount, and monthly accumulated rainfall amount for analysis. For the monthly
analysis, the GPM IMERG data were further aggregated to 0.25 arc-degree using the median
value to match the spatial resolution of GPCC precipitation product.

2.2.3. MSWEP

MSWEP V2.8 is an ensembled precipitation product that takes advantage of the multi-
ple satellite precipitation estimates and daily rain gauge data. The MSWEP precipitation
product provides seamless global precipitation values at 0.1 arc-degree spatial resolution
and 3 h temporal resolution. The MSWEP data from 2010 to 2019 were obtained from
Google shared drive (GoogleDrive:/MSWEP_V280/3hour/, accessed on 5 July 2021). Many
studies have proven that MSWEP provides superior performance on accuracy of precipita-
tion amount and drought detection in Iran, China, India, etc., and is a reliable dataset for
climatological and hydrological studies [4,35–37]; however, its accuracy in the Peruvian
region is questionable [14]. The data were aggregated to 6 hourly rainfall rate (mm/h)
using arithmetic mean and daily accumulated rainfall amount for analysis.

2.2.4. GPCC Monthly Precipitation

Furthermore, 0.25 arc degree GPCC global monthly precipitation product was re-
leased in 2020 and obtained from the Federal Ministry of Transport and Digital Infrastruc-
ture of Germany (https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-
monthly_v2020_doi_download.html, accessed on 10 October 20201) [15]. Due to the low
temporal resolution, the GPCC precipitation data were only used as a product to examine
for seasonal features, and the extreme events information was not captured. Studies [38–40]
indicated that the GPCC precipitation was one of the best precipitation products for long-
term climatological and hydrological studies in many regions of the world. The data were
clipped into the size of the study area for further analysis.

2.2.5. WRF Simulation

The WRF model v4.2.1 [41] was driven by the hourly European Centre for Medium-
Range Weather Forecasts Reanalysis v5 (ERA5) data [42]. Two one-way nested domains
with 15 and 3 km horizontal grid spacings covering the entire South America and the
study area, respectively, were used. Spectral nudging technique was adopted to maintain

ftp://@ftp.senamhi.gob.pe/
https://disc.gsfc.nasa.gov/
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GoogleDrive:/MSWEP_V280/3hour/
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large-scale circulations in the 15 km domain. The simulation period covered ten years
(2010–2019) with an extra three months as a spin-up period.

The model physics schemes used in the simulation included Thompson microphysics
scheme [43], Yonsei University (YSU) boundary layer scheme [44] the Rapid Radiative Trans-
fer Model (RRTMG) longwave and shortwave radiation scheme [45], unified Noah land
surface model (Noah) [46,47], and revised MM5 Monin–Obukhov surface layer scheme [48].
The cumulus parameterization scheme, Tiedtke [49], was only used for 15 km domain.
The simulated hourly precipitation rate had been derived from the WRF output at 3 km
spatial resolution over the study area, and the data were further aggregated to 6 hourly
precipitation rate (mm/h), daily accumulated precipitation (mm/day), as well as monthly
accumulated precipitation (mm/month). The data were spatially aggregated to 0.1 arc-
degree and 0.25 arc-degree using the median value to meet the spatial resolutions of GPM
IMERG, MSWEP, and GPCC datasets.

2.3. Statistical Metrics

There were three main and commonly used statistic tests conducted in this study,
which were correlation coefficient (CC), normalized bias, and root-mean squared error/root-
mean squared difference (RMSE/RMSD) [50,51]. The metrics and their equations are listed
in Table 2.

Table 2. List of statistical metrics.

Statistic Metrics Equation Value
Range

Perfect
Value

Correlation coefficient (CC) CC =
∑N

n=1( fn− f )(rn−r)√
∑N

n=1( fn− f )
2
√

∑N
n=1(rn−r)2 −1, 1 1

Normalized bias (NB) NB = 1
N

N

∑
n=1

fn−rn
fn+rn

−1, 1 0

Root-mean-square
error/difference
(RMSE/RMSD)

RMSE/RMSD =√√√√ 1
N

N

∑
n=1

( fn − rn)
2 0, +∞ 0

a Variables: n and N, sample index and a total number of samples; f represents the precipitation
estimates; r represents the reference.

The correlation coefficient (CC) over a time series measures the strength of an estimate
to capture the temporal pattern of the observation, ranging from −1 to 1. The normalized
bias (NB, fraction) is a normalized measurement to quantify the error of the estimated
precipitation as a fraction of the sum of observation and estimation, which has the range
from −1 to 1. The root-mean squared error (RMSE, mm/h or mm) measures the distance
between the estimates and the observation, ranging from 0 to positive infinity. For inter-
comparison between different precipitation products, there is no “ground truth” to be
the reference; thus, the same calculation as RMSE is performed to measure the difference
between two precipitation products and is called the root-mean squared difference (RMSD,
mm/h or mm).

Due to the different temporal resolution of precipitation estimates, the statistical anal-
ysis is divided into three sections (Figure 2). The rain gauge evaluation was at the daily
level, including GPM IMERG, MSWEP, and WRF simulation. The cross-comparison was at
the sub-daily level (6 h, storm-permitting) between GPM IMERG, MSWEP, and WRF simu-
lation. The monthly Multiplicative Triple Colocation (MTC) analysis was at monthly level,
including GPM IMERG, CPCC, and WRF simulation. The daily evaluation was divided
into different climate zones and months to detect the spatial and seasonal variations. The
cross-comparison analysis was divided into climate zone to test the spatial similarities be-
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tween precipitation products, and the MTC analysis was divided into annual precipitation
intervals to detect the impact of precipitation intensity to precipitation products.

2.4. Triple Colocation (TC) Method

When the “ground truth” is not available, which commonly happens in ocean and
mountainous areas, the TC method could be applied to estimate the CC and RMSE between
three independent and unrelated datasets that measure the same variable. The TC method
has three assumptions to comply for analysis: (a) the three precipitation products are
independent; (b) the errors of the independent precipitation products are also independent
or are unrelated; (c) the expected value of error is 0. The independence of the three
analyzed datasets was proven to be negatively correlated with the TC induced error [52–54].
Another principle of the TC method is that it treats all three independent datasets that
are equally important, and no bias can be produced in between. The CC and RMSE
are then derived by using a linear combination of three datasets and affine transformed
error model [55]. For precipitation error estimation (RMSE), a multiplicative logarithm
transformation (Multiplicative Triple Colocation, MTC) was proposed and proven to be
a better approach [52,53,56,57]. The detailed mathematical derivation and explanation
are listed in Appendix A. To meet the MTC assumption requirements, GPM IMERG V6
final, WRF simulation, and GPCC precipitation products were selected to conduct the
MTC analysis. To compensate for the lower spatial and temporal resolution of GPCC
precipitation, both GPM IMERG and WRF simulated precipitation data were aggregated to
0.25 arc-degree and monthly accumulated rainfall. The monthly analysis can only explore
the seasonal differences and errors from the three precipitation products. MSWEP utilizes
both GPM IMERG and GPCC datasets that violate the independence assumption of the
MTC method; thus, it was not included in the MTC analysis.

3. Results
3.1. Annual Mean of Precipitation Products

The basic statistics and the maps of the average annual precipitation for all four
precipitation products at their original spatial resolutions are listed in Table 1 and are
shown in Figure 3. All four precipitation products showed similar spatial patterns of
high and low rainfall areas, where the large precipitation rates were concentrated at
the east slope (upwind) of the Andes and the Amazon rainforest and low precipitation
areas concentrated between the west side of the Andes and the Pacific Ocean. The WRF
simulation showed more scattered high volumes of precipitation along the east slope
(upwind) of the Andes. The MSWEP appeared to have polygon-shaped precipitation
clusters over the Amazon (upper right of the maps in Figure 3), while other products had a
smoother precipitation band. However, the magnitudes of the average annual precipitation
from the four products were different. The median of the 10-year average rainfall in the
study for MSWEP (5097 mm) was almost twice as much as WRF simulation (2459 mm)
and more than twice as much as GPM IMERG (1725 mm). The maximum precipitation
value of MSWEP (17,891 mm) was more than three times the amount of the maximum
value of GPM IMERG (5094 mm), and both precipitation products had the same spatial
resolution at 0.1 arc-degree, which indicated a lack of consistency in precipitation amounts
across the products in this study. GPCC had been considered as a highly accurate gauge-
based precipitation product in previous studies [39,58], and had a similar annual mean
precipitation (2671 mm) as the WRF simulation (2352 mm) from 2010 to 2019. A 1980s study
that is commonly referenced by non-scientific media indicates that the annual rainfall in
the Amazon Rainforest (right upper portion of the maps in Figure 2) ranges from 1500 to
3000 m [59], which was less than most of the annual precipitations from the products in this
study except for GPM IMERG (2000–3000 mm). It was uncertain whether the difference
between the 1980s and 2010s annual rainfall was caused by overestimation or climate
change, which could be explored in a future study.
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Figure 3. The 10-year average annual precipitation from 2010 to 2019 of (a) GPM IMERG, (b) MSWEP,
(c) WRF simulation, and (d) GPCC.

3.2. Daily Ground Observation Evaluations
3.2.1. Daily Analysis over Different Climate Zones in Peru

By comparing the daily precipitation data from 401 rain gauges from January 2010 to
July 2018, the analytical results are listed in Table 3, and the spatial distribution is shown in
Figure 4. GPCC was not included in the daily analysis due to its low temporal resolution.

Table 3. The average statistic values of precipitation products comparing the Peruvian rain gauge
data from 2010/01 to 2018/07.

GPM IMERG MSWP WRF

CC

Min −0.09 0.03 −0.15
Median 0.24 0.59 0.30
Mean 0.22 0.54 0.30
Max 0.40 0.81 0.60

NB (%)

Min −29.37 −9.90 −35.04
Median −0.72 46.94 3.67
Mean 0.28 45.37 6.92
Max 57.88 84.69 59.29

RMSE (mm)

Min 0.96 1.70 0.10
Median 6.37 12.35 8.50
Mean 7.40 14.24 14.20
Max 32.27 60.05 74.89

In the Peruvian region, the MSWEP precipitation product had the highest temporal
correlations (mean 0.54, max 0.81) with the rain gauge data; however, this product had
a systematic overestimation, which is consistent with findings from another study [14],
where the mean of NB was 46.94%, which was much higher than the GPM IMERG (0.28%)
and WRF simulation (6.92%). In Figure 4, the map showed a wide range of overestimations
by MSWEP of over 25% NB values across the Peruvian region. Consequentially, the RMSE
was the highest for MSWEP (mean 14.24 mm, max 60.05 mm) among all three precipitation
products. Both GPM IMERG and WRF simulations have lower CC values (0.22 and 0.30
respectively), and most of the low to negative CC values were concentrated along the coast
for both products. GPM IMERG has more low CC sites and slightly underestimated the
precipitation with the median of the NB at −0.72%, yet it had the lowest RMSE (mean
7.40 mm, median 6.37 mm) compared to WRF and MSWEP. From Figure 4, most of the
negative biases of IMERG were located along the east slope (upwind) of the Andes, and the
positive bias was located at the west slope (downwind) of the Andes. On the daily scale,
GPM IMERG had the most accurate precipitation quantities estimate but did not capture
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the temporal variations well. The WRF simulation was relatively closer to the optimal NB
value but had a high RMSE (mean 14.20 mm). The median of RMSE for the WRF simulation
was 8.50 mm, which means that there were extreme RMSE values that skewed the sample
distribution and drove up the mean value. In Figure 4, most of the high RMSE values for
the WRF simulation were close to the equator.

Figure 4. The map of daily precipitation statistical comparison of (a) GPM IMERG, (b) MSWEP, and
(c) WRF simulation with rain gauge data from January 2010 to July 2018 in the Peruvian region.

As the precipitation products performed variously across different geographic loca-
tions and climate zones, Figure 5 displays insight into their statistical scores in six major
climate groups identified by Köppen–Geiger–Pohl classification. The systematic positive
bias from MSWEP was consistent with the findings from Figure 4, where the tropical
rainforest climate (Af) area had a higher positive bias than other climate zones. Generally,
the WRF simulation had slightly higher CC than GPM IMERG in all climate zones, except
for the marine west coast climate (Cfb) along the east slope (upwind) of the Andes.
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Figure 5. The violin plot of statistical results (a,c,e) from GPM IMERG, MSWEP, and WRF simulations
in the Peruvian region. The subplots of statistical results in different climate zones are listed in (b,d,f).
The cross bar in the inside box within the violin plot is the median, and the vertical length of the box
indicates the confidence interval of the sample.

GPM IMERG had negative biases in almost all climate zones except for the tropical
rainforest. WRF simulation had positive biases in desert and grassland areas (BSh, BSk,
BWh, BWk) but negative biases in tropical rainforest and marine west coast climates (Af
and Cfb), which means that the WRF simulation slightly underestimated in the higher
precipitation areas and overestimated in the dryer areas. In wetter climates (Af and Cfb),
the WRF simulation had the highest RMSEs. Both GPM IMERG and WRF simulations
had close to zero bias and lower RMSEs in the cold climate (Cwb and ET). By giving a
ranking score of 1 for the highest score of the statistic metric and 3 for the lowest to GPM
IMERG, MSWEP, and WRF, the combined scores indicated that GPM IMERG has better
performances in tropical rainforest climates and Marine west coast climates, and the WRF
simulation had better performances in dryer climates such as desert, grassland, and tundra
climates (Table 4).
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Table 4. Performance ranking for GPM IMERG, MSWEP, and WRF in major climate zones in Peru,
where the best scores were highlighted in green.

CC Bias RMSE Sum CC Bias RMSE Sum

Af: Tropical Rainforest Cfb: Marine West Coast

IMERG 3 1 1 5 2 2 1 5

MSWEP 1 3 2 6 1 3 2 6

WRF 2 2 3 7 3 1 3 7

BSh, BSk: mid-latitude desert and grassland Cwb: cold humid subtropical climate

IMERG 3 1 2 6 3 2 1 6

MSWEP 1 3 3 7 1 3 2 6

WRF 2 2 1 5 2 1 3 6

BWh, BWk: tropical and subtropical desert ET: tundra climate

IMERG 3 1 2 6 3 2 1 6

MSWEP 1 3 3 7 1 3 3 7

WRF 2 2 1 5 2 1 2 5

3.2.2. Seasonal Statistical Results in Different Climate Zones

The monthly performance from 2010 to 2019 across different climate zones is displayed
in a pivot table (Table 5). The optimal statistical scores are all marked “green” in Table 5,
while the lower scores are marked “red” for CC and RMSE. The highest 10% of positive bias
is marked “red” and the highest 10% of negative bias is marked “blue”. For the tropical
rainforest climate representing the high precipitation and high temperature climate, GPM
IMERG had low CC in all months and moderate negative bias during the spring (Aug–Nov)
in the southern hemisphere, which is the dry season in Peru. GPM IMERG had more
negative biases during the later summer and fall (Jan–April) when the season is wetter.
The highest RMSE for IMERG in the tropical rainforest climate was 6.44 mm in March,
which is the last month of the Peruvian raining season. MSWEP had higher CC in a tropical
rainforest climate compared to IMERG and WRF, where the transitions from fall to winter
(Apr–May) and from winter to spring (Sep–Oct) were the highest periods. The RMSE of
MSWEP at tropical rainforest reduced during the dry and cold season (Jun–Jul), and it has
positive bias in all months. The WRF simulation had slightly higher CC than GPM IMERG
in tropical rainforest throughout the years, but greater negative bias than IMERG during
the rainy season and less negative bias during the dry season.

For the dry climates of mid-latitude desert/grassland (BSh, BSk) and tropical/subtropical
desert (BWh, BWk), both GPM IMERG and WRF simulations had less than ±0.5% of bias
in the majority of months. IMERG had slightly more accurate estimation than WRF in
tropical/subtropical desert, and WRF had slightly more accurate precipitation estimation
than IMERG in mid-latitude desert/grassland. All three precipitation products had less
than 0.5 mm of error (RMSE) during the dry seasons in the dry climates, but the error
tended to increase more for MSWEP in wet seasons compared to IMERG and WRF. MSWEP
maintained higher CC in the mid-latitude desert/grassland climate, but the CC score was
reduced in tropical/subtropical desert climates. These findings were not surprising, such that
precipitation estimates perform the best for moderate rainfall but are not accurate temporally
for the dry and wet extremes. The bias and error reduced during the dryer area and seasons
for all precipitation products.
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Table 5. Monthly average statistical results for 2010–2018 for precipitation products in six major
climate zones in Peru, where red or blue indicated poor performance and green indicated closer to
optimal performance.

CC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Af

IMERG 0.04 0.05 0.04 0.07 0.06 0.06 0.07 0.06 0.07 0.05 0.05 0.06

MSWEP 0.33 0.33 0.32 0.37 0.34 0.32 0.32 0.32 0.35 0.34 0.33 0.32

WRF 0.20 0.16 0.14 0.17 0.14 0.18 0.18 0.22 0.17 0.16 0.14 0.11

BSh,
BSk

IMERG 0.12 0.08 0.09 0.11 0.05 0.04 0.05 0.03 0.07 0.04 0.04 0.05

MSWEP 0.52 0.53 0.50 0.44 0.30 0.22 0.22 0.21 0.26 0.34 0.35 0.44

WRF 0.23 0.16 0.18 0.21 0.13 0.17 0.16 0.14 0.12 0.12 0.14 0.11

BWh,
BWk

IMERG 0.04 0.02 0.06 0.05 0.01 0.02 0.02 0.01 0.03 0.02 0.00 0.04

MSWEP 0.29 0.33 0.30 0.20 0.16 0.16 0.16 0.12 0.11 0.15 0.13 0.23

WRF 0.17 0.15 0.13 0.12 0.08 0.09 0.11 0.09 0.07 0.04 0.06 0.07

Cfb

IMERG 0.06 0.11 0.10 0.07 0.11 0.00 0.04 0.06 0.10 0.06 0.09 0.06

MSWEP 0.49 0.48 0.52 0.52 0.53 0.40 0.37 0.39 0.45 0.47 0.52 0.48

WRF 0.14 0.07 0.08 0.10 0.10 0.10 0.10 0.10 0.08 0.07 0.09 0.06

Cwb

IMERG 0.07 0.07 0.09 0.08 0.06 0.02 0.04 0.03 0.07 0.06 0.04 0.03

MSWEP 0.47 0.44 0.47 0.48 0.42 0.34 0.33 0.35 0.39 0.46 0.47 0.45

WRF 0.16 0.11 0.13 0.17 0.17 0.20 0.21 0.24 0.14 0.11 0.12 0.08

ET

IMERG 0.08 0.07 0.09 0.12 0.04 0.04 0.04 0.03 0.07 0.05 0.01 0.07

MSWEP 0.52 0.50 0.51 0.52 0.36 0.32 0.34 0.33 0.41 0.47 0.47 0.51

WRF 0.24 0.17 0.22 0.24 0.18 0.26 0.27 0.24 0.23 0.22 0.22 0.11

Bias (%) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Af

IMERG −2.42 −2.18 −1.48 −2.41 −1.83 −1.37 −1.63 −0.09 −0.57 −1.57 −0.58 −0.93

MSWEP 1.44 3.35 3.42 3.49 3.48 2.92 2.79 3.01 3.36 3.32 3.64 3.42

WRF −2.59 −2.38 −2.97 −2.82 −2.65 −1.83 −1.42 −1.02 −1.23 −1.97 −1.69 −2.08

BSh,
BSk

IMERG −1.99 −1.83 −2.08 −1.58 −0.30 −0.11 −0.41 0.00 −0.39 −0.63 −0.36 −1.04

MSWEP 3.60 3.68 4.31 3.37 2.29 0.76 0.43 0.84 1.48 1.62 1.53 1.93

WRF −0.35 −0.01 −0.85 −0.21 −0.02 −0.27 −0.33 0.18 1.12 0.00 0.59 0.80

BWh,
Bwk

IMERG −0.31 −0.50 −0.35 −0.07 −0.18 −0.22 −0.48 −0.35 −0.09 −0.24 −0.06 0.14

MSWEP 2.34 2.63 2.49 1.49 1.86 1.09 0.63 0.36 1.08 0.86 0.83 1.08

WRF 0.74 1.36 0.92 0.23 0.17 −0.24 −0.35 −0.02 0.85 0.44 0.76 1.54

Cfb

IMERG −2.22 −2.05 −1.93 −1.48 −1.33 −0.97 −1.54 −0.01 −0.98 −0.66 −0.39 −0.85

MSWEP 4.61 4.01 5.04 4.96 4.73 2.95 0.48 2.68 4.03 3.68 3.84 2.57

WRF −2.06 −1.29 −1.69 −2.03 −1.85 −1.05 −1.36 −0.26 −0.37 −1.57 −0.53 −1.09

Cwb

IMERG −1.90 −1.95 −1.74 −1.57 −0.63 −0.23 −0.40 −0.18 −1.05 −0.82 −0.77 −1.47

MSWEP 4.71 3.91 4.97 4.17 3.18 1.09 0.15 0.47 3.11 3.25 3.53 3.57

WRF −0.62 −0.45 −1.14 −1.03 −0.94 −0.47 −0.42 0.06 0.49 −0.25 −0.30 −0.49

ET

IMERG −2.21 −1.95 −2.08 −2.11 −0.59 −0.35 −0.51 −0.38 −0.98 −1.18 −0.93 −1.89

MSWEP 4.81 4.36 5.07 3.40 2.75 0.35 0.35 0.26 2.33 1.82 1.98 3.14

WRF −0.81 −0.76 −1.43 −1.08 −0.15 −0.26 −0.32 −0.17 0.67 −0.33 −0.25 −0.68
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Table 5. Cont.

RMSE (mm) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Af

IMERG 4.96 5.60 6.44 4.59 4.01 3.18 2.32 2.84 3.21 3.71 4.90 4.62

MSWEP 7.01 8.47 8.89 8.24 5.11 3.67 3.36 4.00 4.82 6.48 6.99 6.82

WRF 7.08 7.88 8.74 6.45 5.71 4.48 3.20 3.68 5.23 5.53 7.22 7.31

BSh,
BSk

IMERG 2.28 2.69 3.02 1.47 0.70 0.39 0.19 0.24 0.36 0.68 0.71 1.31

MSWEP 5.53 8.13 6.41 3.15 1.53 0.48 0.43 0.43 0.91 1.71 1.52 2.74

WRF 3.87 4.84 4.61 3.69 2.20 0.71 0.38 1.26 2.21 2.27 2.79 3.83

BWh,
Bwk

IMERG 1.57 2.09 2.14 1.08 0.48 0.37 0.10 0.09 0.21 0.37 0.27 0.92

MSWEP 4.18 6.05 4.29 2.59 1.33 0.94 0.44 0.37 1.05 1.14 1.37 2.43

WRF 3.03 3.33 3.01 1.55 0.96 0.29 0.20 0.33 1.22 0.99 1.46 2.60

Cfb

IMERG 2.76 3.24 3.61 2.77 2.07 1.29 0.91 1.26 1.38 2.35 2.07 2.52

MSWEP 5.30 5.92 6.96 4.69 3.21 1.42 1.14 1.74 2.59 4.13 3.87 4.56

WRF 6.86 7.18 8.04 6.37 4.81 3.26 2.15 3.40 3.88 5.81 7.27 7.37

Cwb

IMERG 2.73 2.90 2.94 1.77 1.14 0.55 0.48 0.54 0.89 1.54 1.54 2.45

MSWEP 4.98 5.77 5.44 3.24 1.75 0.66 0.54 0.79 1.57 3.06 2.93 4.34

WRF 5.81 6.13 6.08 4.51 2.56 1.38 0.88 2.05 3.59 4.30 4.84 5.45

ET

IMERG 2.90 2.85 2.51 1.34 0.72 0.30 0.30 0.34 0.76 1.12 1.11 2.33

MSWEP 5.73 7.56 5.50 2.66 1.29 0.44 0.55 0.51 1.26 1.96 2.01 4.38

WRF 3.92 4.14 3.48 2.47 1.43 0.59 0.53 0.79 2.11 2.29 2.44 3.61

For the marine west coast climate and cold humid subtropical climate, which are
located along the east slope (upwind) of the Andes at high altitude, IMERG and WRF
had close to 0 CC values. GPM IMERG had about 2% negative bias during the raining
season (Jan–Mar) for marine west coast and humid subtropical climate, which indicates
that GPM IMERG performed worse on the east slope (upwind) of the Andes than the west
slope (downwind) during the raining season. WRF simulation also had large negative
bias during the raining season (Jan–Apr) for the marine west coast climate but had better
performance in the cold humid subtropical climate. Consequentially, the RMSE was very
large during the same months for the WRF simulation.

For the tundra climate, which is mostly located at the peak and ice cap regions of
the Andes, both MSWEP and GPM IMERG had lower CC during the dry winter season
compared to other months, but the MSWEP CC score ranged from 0.32 to 0.52 while IMERG
generally had very poor CC that ranged from 0.01 to 0.12. WRF simulation had a more
consistent CC value across the months and had close to an optimal bias (absolute bias < 1%)
from May to November. MSWEP had a large positive bias, and IMERG had a large negative
bias during the raining season (Jan–Apr) in tundra climate.

Based on the analysis, the precipitation products tended to have larger bias and
error when precipitation increases during the raining season, and the temporal correlation
reduced in the dry and wet extremes. Generally, precipitation products were more accurate
in dryer climate during the dryer season, especially for the WRF simulation, and the
findings from Section 3.2.1 are consistent with this section’s results.

3.3. Statistical Cross-Examination at Sub-Daily Scale

MSWEP, GPM IMERG, and WRF simulation all have high temporal resolutions that
allows one to observe short-term storms. From Section 3.2, the WRF simulation was more
accurate at dryer regions, GPM IMERG was more accurate at wetter regions, and MSWEP
was more capable to capture the temporal pattern rather than the precipitation intensity
at daily scale. Since sub-daily precipitation data contains more climate dynamic and
variability signals, we analyzed their sub-daily differences and similarities between each
pair of products. Moreover, it is important to determine if the WRF dynamic downscaling
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can match satellite observations at high temporal resolution. The results are demonstrated
in Figures 6 and 7.

Figure 6. The cross examination of GPM IMERG, MSWEP, and WRF simulation at 6 h time steps
from 2010 to 2019. The name on the right side of “-“ is the “reference data product” in the calculation.

MSWEP product includes the GPM IMERG as one of the input datum [21]; therefore,
both the correlation (CC) between IMERG and MSWEP was higher, and difference (RMSD)
was lower; however, the tropical/subtropical desert climate had some pixels with lower
CC value, which is demonstrated in Figure 6a with yellow to orange color in the desert
area. The same results can be found consistently in six major climate zones, except for the
tropical/subtropical desert climate (BWh, BWk) and tundra climate (ET), where the CC and
RMSD between the WRF simulation and IMERG were comparably as low as the IMERG-
MSWEP pair. The MSWEP had higher precipitation amounts in this study area based on
the analysis from Sections 3.1 and 3.2; thus, the IMERG-MSWEP and WRF-MSWEP pair
had obvious negative bias across all climate zones except for the tropical/subtropical desert
climate area, where the compared pairs showed that the bias is close to 0. The IMERG-WRF
pair was much closer to each other such that their NB value was close to 0, except in the
tundra climate (ET), where there was positive bias, which indicates that IMERG estimates
higher precipitation amounts than WRF in the Andes ice cap, which is shown in Figure 6f,
with a purple stripe (positive bias) along the Andes Mountain.

In general, for the desert and tundra climates, the WRF simulated precipitation amount
was comparable to the satellite and multi-source precipitation observations, at 6 h time
steps, which was another significant validation for sub-daily, high-resolution WRF dynamic
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downscaling over the Andes downwind slope region. In wetter climates, the MSWEP signif-
icantly estimated more precipitation compared to the GPM IMERG and WRF simulations.

Figure 7. The violin plot of cross-examination between GPM IMERG, MSWEP, and WRF simulations
in six major climate zones, where (a,c,e) are the aggregated statistic for CC, NB, and RMSE, and
(b,d,f) are the statistic at each climate zone.

3.4. Monthly MTC Results

The GPCC, GPM IMERG and WRF simulations are three independent datasets that are
derived from the ground rain gauge data, satellite sensor data, and numerical simulations.
Thus, the three precipitation products met the assumption of MTC method to cross-compare
their temporal correlation uncertainty and precipitation quantity uncertainty at a monthly
scale. The results of the MTC analysis are displayed in Figure 8.

Due to the coarse spatial resolution (0.25 arc-degree), the MTC results showed minimal
differences between each precipitation product, which means that GPM IMERG, GPCC,
and WRF had comparable amounts of temporal and quantitative errors from 2010 to 2019.
For temporal errors, all three products had less errors on the coastline of the study area
but more errors inland. GPCC had clear low CC clusters close to the equator. WRF had
low CC pixels between 8◦ S and 15◦ S from the coast across the Andes and to the Amazon.
For the quantitative error, the three precipitation products had low RMSE at the coastline,
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as well as their corresponding high precipitation clusters on the east slope (upwind) of
the Andes, as shown in Figure 3, which indicates that all three precipitation products had
less error on precipitation amount in the extreme dry and extreme wet areas of the study
area at the monthly scale. To further understand the performance of each precipitation
product, the violin plots (Figure 9) had been categorized based on the average annual
precipitation amount.

Figure 8. The MTC analysis results (CC and RMSE) between (a) GPM IMERG, (b) GPCC, and (c) WRF
at a monthly time scale from 2010 to 2019.

Across the entire study area, the GPM IMERG and GPCC were almost identically
based on their CC and RMSE value distributions. The WRF simulation has slightly lower
CC (0.21) and comparable RMSE with the other two precipitation products. At a different
annual precipitation level, the temporal error starts differentiating from the region and
has 2000 or more mm of annual rainfall, where WRF simulation started to have lower CC
(averaged 0.16) compared to others. When the annual rainfall is 4000 mm or higher, the
CC (averaged 0.14) of GPCC becomes lower than GPM IMERG. In general, the temporal
error for all three precipitation products increased in the higher annual rainfall regions,
and the WRF simulation had a higher rate of decreasing CC as the annual rainfall amount
increases. Both GGPC and GPM IMERG had lower RMSE values in the dry regions where
annual rainfall was less than 1000 mm and the wet regions where annual rainfall was more
than 4000 mm. The WRF simulation had consistent rainfall quantity error in most of the
regions, except for the area with annual rainfall between 1000 and 4000 mm where the WRF
simulation had lower RMSE (averaged 0.5 mm) values. By considering the temporal error
and quantitative error at the monthly scale for the three precipitation products, the WRF
simulation performed better where annual rainfall is less than 2000 mm, GPCC performed
better where annual rainfall is between 4000 and 5000 mm, and GPM IMERG performed
better in the wetter region where the annual rainfall is larger than 5000 mm.
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At a monthly scale, the GPM IMERG, GPCC, and WRF simulations had very compa-
rable amounts of errors, which was remarkable for the GPM mission and WRF forecast
community since GPCC has been proven as one of the most accurate global precipitation
datasets from many studies. There were slight differences in performance scores based on
the annual rainfall average, and the WRF simulation was slightly more suitable for dryer
areas, which was a consistent finding from Section 3.2.

Figure 9. The violin plot of MTC analysis results (a,c) for GPM IMERG, GPCC, and WRF simulations
from 2010 to 2019 at a monthly scale, and the breakdown results (b,d) based on their averaged annual
precipitation amount.

4. Discussion

One finding from the results that was consistent with previous studies is that MSWEP
had systematic overestimation over the Peruvian Andes region. However, since MSWEP is
produced with dozens of data processing steps, it is difficult to identify the cause of such
overestimation without the analysis of the Princeton University Civil Engineering group
who developed the reanalysis dataset. One possibility is that the rain gauges used to correct
MSWEP are more densely located in the Amazon basin compared to the Andes plateau,
which was presented in a 2019 publication [21]. Since the Amazon forest frequently has
intensive precipitation, the gauge correction process increases the precipitation amount
in the Peruvian Andes region. Or at the step of CDF matching, one or multiple reference
satellite precipitation products overestimated the Peruvian Andes region due to various
reasons, which could cause the overestimation of MSWEP. The final run of GPM IMERG
was calibrated against the ERA-Interim and ERA-5 reanalysis data, which are the main
sources for the dataset for MSWEP, but GPM IMERG shows no overestimation problem,
which points to the other datasets as the source of error.
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One limitation of satellite observation is detecting solid precipitation using infrared
and microwave data; therefore, the WRF simulation outperformed the others in the tundra
climate along the Andes mountains and high-elevation regions, since the WRF model,
when configured correctly, can simulate the solid precipitation well. In desert and dry
regions, the storm system tends to be short lived and small in spatial scales, where the
high-resolution GPM satellites are capable of capturing, as well as the WRF model that
simulates the weather system in a high-spatial resolution. However, some of the MSWEP
data sources have lower spatial resolution than 0.1 arc-degree that prevent it from capturing
smaller rainfall events in the desert, which could cause underperformance of the MSWEP
in the dry area. For countries in the dry regions in South America, such as Peru and Chile,
it is an encouraging finding that the WRF simulation performed as well as, if not better
than, the satellite observation and multi-sources global precipitation products. However,
the findings do not support that the current configuration of the WRF model can produce
accurate convective scale precipitation estimation. There is no convective scale “ground
truth” data available to validate the WRF simulation in the sub-daily analysis, and none
of the CC analysis results in Section 3 are greater than 0.4. Therefore, the findings in this
study can be unsuitable for sub-daily hydrometeorological case studies.

The MTC method is a statistical approach to quantify the errors of three independent
datasets, which as shown in Section 3.4, the three precipitation products were all aggregated
to 0.25 arc-degree (66 by 88 grid pixels) and monthly accumulated rainfall to meet the
temporal and spatial resolution of GPCC. Therefore, the sample size at each pixel is only
120, which is a relatively small sample size and could potentially affect the significance of
the analysis. Even though there are no available guidelines for the requirements on sample
size to conduct MTC analysis, several studies about collocation and triple collocation
methods indicate that the smaller the sample size, the larger the uncertainties that TC
would produce [60,61]. Considering that the RMSE is at a millimeter scale and the monthly
precipitation is at a meter scale, it is safe to believe that the sample size was not an issue in
this analysis.

5. Conclusions

This study analyzes the performances of three global precipitation products and
precipitation simulated by the WRF model in dynamic downscaling mode at 3 km grid
spacing over a mid-Andes region in South America over a 10-year period from 2010 to
2019. The precipitation products were evaluated at a daily level with a Peruvian rain gauge
network and were cross-compared at sub-daily and monthly time scales. We summarize
our findings as follows:

• For dryer climates, such as desert, grassland, and tundra, WRF-simulated precipita-
tion was as accurate if not better than satellite or multi-source global precipitation
observations, at sub-daily, daily, and monthly scales. However, for wetter regions
where higher intensity precipitation events occur, WRF simulation had the highest
level of uncertainty compared to other precipitation products.

• This study confirmed the previous study that the MSWEP precipitation product
had a systematic overestimation over the study region but had a low temporal
correlation error.

• GPM IMERG had more accurate precipitation estimates on the east slope (upwind)
of the Andes than the west slope (downwind). IMERG had good performance over
the Amazon basin. Considering that there is lack of human access and meteorological
instruments in the Amazon rainforest, the GPM IMERG could be a useful dataset
available for studies over the Amazon Basin.

This study provides a preliminary performance ranking of several global precipitation
products over the mid-Andes region in South America. The study further analyzes the
challenging area for precipitation estimates that was found in previous studies and finds
the heterogeneity of uncertainties across climate zones of different precipitation products.
The results can guide researchers to better select precipitation data with less uncertainties



Atmosphere 2022, 13, 1666 19 of 22

for their future studies. It also validates a WRF-based dynamic downscaling simulation
over the same region, especially for the dryer regions of Peru and Chile, and such a dataset
can be used to support local weather forecast and climate change studies.
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Appendix A

The basics of the TC method is to treat three independent datasets or measurements as
equally important, and thus, no bias is produced in between. Since no ground truth values
are assumed, the TC method then uses a linear combination of three datasets and affine
transformed error model to derive RMSE and CC (Zwieback et al., 2012).

Ri = ai + biG + εi (A1)

where Ri indicates each of the independent source datum, G is the “relative truth”, ai, bi
are the weights and biases to adjust, and εi represents the error for each product.

Next, the additive error model is transformed to multiplicative by logarithmic trans-
formation, and it is proven to be more appropriate in rainfall error estimation. Hence, the
error model can be reformed as:

Ri = αiGβi εi (A2)

From that, we can derive the precipitation rate and error model by transforming back
into a linear combination so that it fits into the TC method.

ri = ai + big + εi (A3)

where ri is the logarithmic form of precipitation rate Ri, ai = lnαi demonstrates the multi-
plicative error, εi = ln εi indicates the residual error, and bi = βi is the deformation error.

From linear Equation (3), we are able to derive RMSE in the following set of equations
based on the covariance of triples:

σr1
2 = Cov(r1, r1)− Cov(r1,r2)Cov(r1,r3)

Cov(r2,r3)

σr2
2 = Cov(r2, r2)− Cov(r1,r2)Cov(r2,r3)

Cov(r1,r3)

σr3
2 = Cov(r3, r3)− Cov(r1,r3)Cov(r2,r3)

Cov(r1,r2)

(A4)

Because we transformed the model to be in additive form, these parameters along
with error should also be in logarithmic form.
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σri
2 =

(
σRi

µRi

)2
(A5)

σRi = µRi σri (A6)

σRi , σri , µRi here represent the RMSE in linear form, logarithmic form, and the mean
of field. In doing so, the error field could be identified as linear scale, meaning the same
unit of mm/hour as the rain rate.

Then, we evaluate correlation coefficient (CC) from manipulating covariance matri-
ces with the so-called “ETC” method in which CC is formed, as shown below, as a set
of equations. 

CC1
2 = Cov(r1,r2)Cov(r1,r3)

Cov(r1,r1)Cov(r2,r3)

CC2
2 = Cov(r1,r2)Cov(r2,r3)

Cov(r2,r2)Cov(r1,r3)

CC3
2 = Cov(r1,r3)Cov(r2,r3)

Cov(r3,r3)Cov(r1,r2)

(A7)
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