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ABSTRACT: The Center for Analysis and Prediction of Storms has recently developed capabilities to directly assimilate
radar reflectivity and radial velocity data within the GSI-based ensemble Kalman filter (EnKF) and hybrid ensemble
three-dimensional variational (En3DVar) system for initializing convective-scale forecasts. To assess the performance of
EnKF and hybrid En3DVar with different hybrid weights (with 100%, 20%, and 0% of static background error covariance
corresponding to pure 3DVar, hybrid En3DVar, and pure En3DVar) for assimilating radar data in a Warn-on-Forecast
framework, a set of data assimilation and forecast experiments using the WRF Model are conducted for six convective
storm cases of May 2017. Using an object-based verification approach, forecast objects of composite reflectivity and 30-min
updraft helicity swaths are verified against reflectivity and rotation track objects in Multi-Radar Multi-Sensor data on space
and time scales typical of National Weather Service warnings. Forecasts initialized by En3DVar or the best performing
EnKF ensemble member produce the highest object-based verification scores, while forecasts from 3DVar and the worst
EnKF member produce the lowest scores. Averaged across six cases, hybrid En3DVar using 20% static background error
covariance does not improve forecasts over pure En3DVar, although improvements are seen in some individual cases. The
false alarm ratios of EnKF members for both composite reflectivity and updraft helicity at the initial time are lower than
those from variational methods, suggesting that EnKF analysis reduces spurious reflectivity and mesocyclone objects more
effectively.

KEYWORDS: Short-range prediction; Data assimilation; Numerical weather prediction/forecasting

1. Introduction

Increasing severe thunderstorm, flash flood, and tornado
warning lead times is critical to reducing the loss of life, injury,
and economic costs of high-impact weather. To extend warn-
ing lead time, NOAA’s Warn-on-Forecast (WoF) program is
tasked with producing probabilistic hazard guidance based on
convection-allowing/resolving ensemble forecasts of numeri-
cal weather prediction (NWP) models (Stensrud et al. 2009,
2013). Recently, various prototype WoF systems (e.g., Snook
et al. 2012, 2016; Yussouf et al. 2013; Wheatley et al. 2015;
Jones et al. 2016; Johnson et al. 2017; Lawson et al. 2018;
Labriola et al. 2019; Stratman et al. 2020) have demonstrated
capabilities for producing skillful forecasts of severe weather
hazards, including tornadoes, severe hail, and flash floods.

The WoF program includes two main aspects: the produc-
tion of a rapidly updating assimilation system to incorporate
various data such as radar, satellite and conventional observa-
tions, and the ability to produce short-range ensemble fore-
casts from these analyses to predict hazardous convective
weather (Stensrud et al. 2013). In such a system, radar data
are an important data source as it can provide three-dimen-
sional observations of the internal structure of convective
storms with high spatial and temporal resolution. Several pro-
totype Warn-on-Forecast systems (e.g., Snook et al. 2012,

2016; Yussouf et al. 2013; Wheatley et al. 2015) used an
ensemble Kalman filter approach (EnKF; Evensen 1994,
2003; Houtekamer and Zhang 2016) to assimilate radar data
and initialize the convection-allowing model (CAM) fore-
casts. This approach is attractive at convective scale because
flow-dependent error covariance statistics derived from the
forecast ensemble can be used to update unobserved model
state variables. Recently, EnKF techniques have been used to
assimilate radar and satellite data into the National Severe
Storm Laboratory (NSSL) Warn-on-Forecast System (WoFS)
and provide real-time forecasts of convective storm hazards
(Wheatley et al. 2015; Jones et al. 2016). Object-based verifi-
cation of WoFS short-term thunderstorm forecasts across
cases from 2016 to 2019 has provided evidence that the system
can produce skillful short-term predictions of thunderstorms
and mesocyclones at the scale of a typical National Weather
Service (NWS) warning (Skinner et al. 2016; 2018; Flora et al.
2019). Real-time forecast output is also produced by the NSSL
hybrid WoF analysis and forecast system (WoF-AFS; Wang
et al. 2019). WoF-AFS includes two components: an ensemble
analysis forecast system based on EnKF data assimilation
(DA) and a deterministic analysis and forecast system based
on hybrid ensemble three-dimensional variational (En3DVar)
DA with a 50% weight of static background error covariance
(BEC) and a 50% weight of ensemble-derived BEC.

Though EnKF is attractive for convective-scale DA and
can effectively assimilate radar observations in the presenceCorresponding author: Chengsi Liu, cliu@ou.edu
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of complex microphysics (e.g., Tong and Xue 2005), insuffi-
cient ensemble spread and rank-deficient ensemble BEC due
to a small ensemble size can cause suboptimal performance.
Using a hybrid method that combines high-rank, static varia-
tional BEC and low-rank, flow-dependent ensemble BEC
(Hamill and Snyder 2000) has demonstrated advantages over
pure EnKF for large-scale NWP (Etherton and Bishop 2004;
Wang et al. 2007; Buehner et al. 2010a,b, 2013; Clayton et al.
2013), and has also shown promise for convective-scale radar
DA (Gao et al. 2013; Kong et al. 2018; Wang et al. 2019).
However, when directly assimilating radar reflectivity within a
variational DA framework, various issues arise owing to the
high nonlinearity of the reflectivity observation operator (Sun
and Crook 1997; Carley 2012; Wang and Wang 2017; Liu et al.
2019).

Recently, capabilities to directly assimilate radar reflectivity
and radial velocity data were added to the Gridpoint Statisti-
cal Interpolation (GSI; Kleist et al. 2009) hybrid En3DVar
system by the Center for Analysis and Prediction of Storms
(CAPS), including special treatments to deal with a number
of issues related to reflectivity assimilation. These treatments
include the use of temperature-dependent background error
profiles for hydrometeor control variables to ensure physical
partitioning of radar-observed precipitation information
among liquid and ice hydrometeors, as originally developed
and tested in the ARPS 3DVar system (Liu et al. 2019). Also
included is the ability to use of logarithmic hydrometeor mix-
ing ratios (CVlogq; Liu et al. 2020) or a general power trans-
formation of the mixing ratios (CVpq; Chen et al. 2021)
instead of the mixing ratios themselves (CVq) as the control
variables. The use of CVlogq or CVpq are found to be neces-
sary for reasonably fast convergence of cost function minimi-
zation when assimilating reflectivity data, and to ensure
proper realization of the radial velocity assimilation impact.
Several other algorithmic treatments (e.g., adding a lower
limit on the hydrometeor mixing ratios and assimilating radial
velocity data in a separate pass) were also implemented
within GSI En3DVar to avoid spurious analysis increments or
convergence problems (Liu et al. 2020), and these features
are used where desirable in this study. In addition to GSI
En3DVar, GSI EnKF is also run to provide ensemble pertur-
bations to the hybrid En3DVar (Pan et al. 2014). To ensure
consistency with the microphysics scheme used in the WRF
forecast model, we implemented a reflectivity observation
operator consistent with the Thompson microphysics scheme
within the GSI EnKF and hybrid En3DVar systems.

In this paper, we present results testing the radar DA capa-
bilities of the GSI EnKF and hybrid En3DVar for six severe
weather cases from May 2017, using configurations similar to
the prototype WoFS system. In particular, we use an object-
based verification system recently developed for evaluating
WoFS guidance (Skinner et al. 2018) to compare predictions
of composite reflectivity and updraft helicity (UH) swaths
(Kain et al. 2008). Four DA and forecast experiments are run
for each case, where the DA method uses EnKF or hybrid
En3DVar with different hybrid weights. These experiments
are named EnKF, EnVar (with 0% of static BEC), Hybrid
(20% of static BEC), and 3DVar (100% of static BEC),

respectively. While some earlier studies have examined the
performance of similar algorithms (e.g., Johnson et al. 2017;
Kong et al. 2018; Wang et al. 2019), this study marks the first
time that the algorithms implemented within the same DA
framework are intercompared for real cases for prototype
WoFS configurations (Skinner et al. 2018).

The rest of this paper is organized as follows. A brief over-
view of the cases and experiment configurations are presented
in sections 2 and 3 provides a description of the object-based
verification methods. The verification results of composite
reflectivity and updraft helicity forecasts are discussed in
section 4. Section 5 summarizes the results of this study and
discusses potential future work.

2. Case overview and experiment configuration

a. Cases overview

The six selected cases in May 2017 produced numerous
severe weather warnings and reports. Figure 1 shows the
domain and the Multi-Radar Multi-Sensor (MRMS; Smith
et al. 2016) composite reflectivity at 2300 UTC (1700 central
standard time). Isolated supercells occurred on 16 and 18 May,
resulting in the largest numbers of tornado and severe hail
reports (Figs. 1b,d). More isolated, discrete thunderstorms
with fewer local storm reports occurred on 9 and 23 May
(Figs. 1a,e). The 17 and 27 May cases (Figs. 1c,f) produced
mesoscale convective systems with extensive damaging wind
reports. Event dates, the number of severe weather reports,
and brief descriptions are provided in Table 1.

b. Prediction model settings

The forecast model used is the Advanced Research version
of WRF (ARW-WRF), version 3.8.1 (Skamarock et al. 2008),
and has the same domain and physics configuration as the
2017 WoFS (Skinner et al. 2018) except that the Thompson
microphysics scheme (Thompson et al. 2008) is used in place
of the NSSL two-moment scheme (Mansell et al. 2010). The
domain is roughly centered over severe weather events in
each case and has 250 3 250 grid points in the horizontal with
3-km grid spacing, and 51 vertical levels. The Noah land sur-
face model (Chen and Dudhia 2001), Yonsei University
(YSU) planetary boundary layer (PBL) scheme (Hong et al.
2006), and the RRTMG shortwave and longwave radiation
schemes (Iacono et al. 2008) are used for the deterministic
forecasts of variational experiments. Multiple radiation and
PBL schemes are used in the EnKF ensemble forecasts as
described in Table 2, so the DA ensemble in this study is an
initial conditions/lateral boundary conditions (IC/LBC) and
model physics perturbed ensemble.

c. DA experiment configurations

In this study, we use GSI EnKF and hybrid En3DVar with
the radar DA capabilities developed by CAPS. The EnKF
DA configurations (Table 3) are based on those of GSI
EnKF-initialized Storm Scale Ensemble Forecasts run by
CAPS during the 2019 Hazardous Weather Testbed Spring
Forecast Experiment (Clark et al. 2020), except that radar
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data at every grid column are used here (no data thinning in
the horizontal). These EnKF configurations have been tested
and recommended by Labriola et al. (2020). Effectively the
same localization radii are used for both EnKF and hybrid
En3DVar, where the cutoff radii of EnKF are converted to
equivalent recursive filter decorrelation length scales that are
used for ensemble covariance localization (Pan et al. 2014).
For the static BEC in hybrid En3DVar, the horizontal and
vertical decorrelation scales are 1.6432 km and 20.0548 scale
height, respectively. The negative value of scale height in GSI
occurs because the background error statistics are initially
read in at their original sigma levels and interpolated to

log(sigma) coordinates on the analysis vertical sigma levels.
Similar to Kong et al. (2018) and Wang et al. (2019), the
EnKF system is one-way coupled to hybrid En3DVar, i.e., the
hybrid En3DVar uses ensemble perturbations from the EnKF
system, but does not feed back to the EnKF system with its
deterministic analysis. One-way coupling keeps the EnKF
DA cycles independent of the hybrid system, so that the per-
formance of pure EnKF can be fairly compared with that of
hybrid En3DVar.

A flowchart showing the DA cycles and forecasts for the
EnKF and hybrid En3DVar experiments is shown in Fig. 2.
Starting at 1800 UTC, gridded MRMS radar reflectivity data

FIG. 1. MRMS observed column maximum Z (dBZ) valid at 2300 UTC for six cases.

TABLE 1. Event description and Storm Prediction Center (SPC) archived tornado, hail, and high-wind local storm reports from 1800
to 0500 UTC within the model domain for each case.

Date Event description
No. of tornado

reports
No. of hail
reports

No. of high-wind
reports

9 May 2017 Thunderstorms in eastern NM/TX Panhandle 2 12 1
16 May 2017 Discrete tornadic thunderstorms in KS/OK/TX 20 67 3
17 May 2017 Derecho in IA/MN 11 40 160
18 May 2017 Tornadic supercells in OK/KS 15 86 29
23 May 2017 High wind producing mixed mode convection in TX 0 12 8
27 May 2017 Mixed mode convection in AR/MO/OK 8 71 92
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and Level-II radial velocity data are assimilated every 15 min
until 0000 UTC, with conventional observations assimilated
hourly. The 3-h-long ensemble (deterministic) forecasts are
launched every 30 min from the EnKF (3DVar, EnVar, and
Hybrid) analyses at 1930–0000 UTC (i.e., 10 total forecasts
for each case). Following Skinner et al. (2018), the ensemble
initial forecast backgrounds (priors) are taken from the
hourly-DA-cycled High-Resolution (i.e., 3 km) Rapid Refresh
Ensemble (HRRRE; Dowell et al. 2016) 1-h forecasts (valid at
1800 UTC) initialized at 1700 UTC. The LBCs are taken from
9-member HRRRE forecasts issued at 1500 UTC and used
four times to fill out the 36-member ensemble LBC. The initial
deterministic forecast for the variational DA experiments
starts from the ensemble mean of EnKF initial conditions at
1800 UTC. For radial velocity data, an automatic quality con-
trol procedure including velocity dealiasing developed by
CAPS (Brewster et al. 2005) is applied.

3. Object-based verification methodology

The object-based verification system developed by Skinner
et al. (2018) for WoFS is used to evaluate composite reflectiv-
ity and 30-min UH swath forecasts initialized by the various
DA methods. The predicted composite reflectivity and UH
swaths are used as proxies for the skill of experiments in fore-
casting convective storms and mesocyclones, respectively.

Considering that the dataset and model configurations used
here generally follow Skinner et al. (2018), the same thresh-
olds as Skinner et al. (2018) are adopted for object identifica-
tion and matching. MRMS composite reflectivity data and
cyclonic azimuthal wind shear data (Newman et al. 2013) with
customized quality control (Skinner et al. 2018) are used as
the observational verification dataset for composite reflectiv-
ity and UH forecasts, respectively. However, owing to differ-
ences between the forecast and verification fields (e.g., UH
and azimuthal shear), different thresholds need to be defined
for the model forecast and MRMS products. Skinner et al.
(2018) constructed model climatologies of WoFS forecasts
and corresponding MRMS observations for all real-time cases
in 2017. Based on these climatologies, matched percentile val-
ues (e.g., the 99.95th percentile for UH swaths and azimuthal
shear tracks) of MRMS observations and WoFS forecasts are
identified as thresholds. Following Skinner et al. (2018), the
forecast composite reflectivity objects are identified using a
threshold of 45 dBZ and the UHs in the 2–5-km layers above
ground level (AGL) use a threshold of 65.8 m2 s22. The corre-
sponding thresholds of MRMS composite reflectivity and

TABLE 2. Physics parameterization options for the 1–18 ensemble
members of the EnKF experiments; members 19–36 repeat these
18 sets of physics options.

Member
Shortwave
radiation

Longwave
radiation

Planetary
boundary layer

1 Dudhia RRTM YSU
2 RRTMG RRTMG YSU
3 Dudhia RRTM MYJ
4 RRTMG RRTMG MYJ
5 Dudhia RRTM MYNN
6 RRTMG RRTMG MYNN
7 Dudhia RRTM YSU
8 RRTMG RRTMG YSU
9 Dudhia RRTM MYJ
10 RRTMG RRTMG MYJ
11 Dudhia RRTM MYNN
12 RRTMG RRTMG MYNN
13 Dudhia RRTM YSU
14 RRTMG RRTMG YSU
15 Dudhia RRTM MYJ
16 RRTMG RRTMG MYJ
17 Dudhia RRTM MYNN
18 RRTMG RRTMG MYNN

TABLE 3. EnKF experiment configuration.

Configuration parameters Expt configuration

Conventional localization radius
(horizontal/vertical)

300 km/0.4 scale height

Radar localization radius (horizontal/
vertical)

12 km/0.7 scale height

Observation errors (reflectivity/radial
velocity)

6 dBZ/3 m s21

Inflation 99% relaxation-to-prior
spread (RTPS)

FIG. 2. The flowchart of the 6-h cycled assimilation and forecast experiments.
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cyclonic azimuthal wind shear data in 2–5-km layers AGL are
41.2 dBZ and 0.0045 s21. It is noted that the thresholds from
Skinner et al. (2018) will not correspond to the same percen-
tiles in a distribution of values from the current study as it
uses a different sample of cases and different system configu-
rations, including a different microphysical parameterization.
However, Skinner et al. (2018) found that while small changes
to the object identification thresholds changed the absolute
value of object-based verification scores, relative differences
between two forecast datasets remained similar.

The object-based verification method is performed in three
dimensions (2D area and time), forecast and verification
objects are matched through a total interest score calculated
by the centroid and minimum (defined as the smallest dis-
tance between any points in corresponding objects) spatial
displacement and time displacement between object pairs
(Davis et al. 2006; Skinner et al. 2016):

TI � 1
2

cdmax 2 cd( )
cdmax

[ ]
1

1
2

mdmax 2 md( )
mdmax

[ ]{ }
tmax 2 t( )
tmax

[ ]
, (1)

where TI is the total interest score; and cd, md, and t are the cen-
troid distance, minimum distance, and time difference between
an object pair, respectively. The max subscript indicates the maxi-
mum allowable threshold for object matching, which is set to
40 km for distance displacement and 25 min for time displace-
ment. The matched pairs require a total interest score greater
than 0.2, which is the same value used in Skinner et al. (2018).

Matched object pairs, unmatched forecast objects, and
unmatched verification objects are classified as “hits,” “false
alarms,” and “misses,” respectively. Based on the standard
contingency table (Table 4), verification scores such as proba-
bility of detection (POD), frequency bias (bias), false alarm
ratio (FAR), and critical success index (CSI) are used to
quantify the forecast skills, which can be calculated as follows:

POD � NA
NA 1 NC

, (2)

FAR � NB
NA 1 NB

, (3)

bias � NA 1 NB
NA 1 NC

, (4)

CSI � NA
NA 1 NB 1 NC

, (5)

where NA, NB, and NC represent “hits,” “false alarms,” and
“misses,” respectively. POD is the ratio of correct forecast

objects to the total number of observed objects; FAR is the
ratio of unmatched forecast objects to the total number of
forecast objects; Bias is the ratio of the total number of fore-
cast objects to the total number of observed objects; CSI is
the ratio of correct forecast objects to the total number of
forecast and observed objects. A perfect forecast means POD
and CSI (FAR) values are 1.0 (0.0) while a useless forecast
means POD and CSI (FAR) values are 0.0 (1.0); A bias value
greater (less) than 1.0 presents overprediction (underpredic-
tion). A complete description of the object identification and
matching methodology is provided in Skinner et al. (2018).

4. Object-based verification results

a. Verification results of composite reflectivity

The POD, bias, FAR, and CSI averaged across all 3-h fore-
casts launched between 1930 and 0000 UTC for all six cases are
calculated by aggregating all object hits, misses, and false alarms.
To qualitatively compare the forecast skill of the ensemble fore-
casts initialized from EnKF analyses with those of deterministic
forecasts initialized from variational analyses, the minimum
(EnKF_min), maximum (EnKF_max), and mean (EnKF_mean)
values of the metrics from all ensemble members are calculated
at each available forecast time. It is noted that the highest or
lowest forecast skills EnKF_max or EnKF_min at any given
forecast time are not necessarily from the same EnKF member.

Time series of object-based POD, bias, FAR, and CSI for
composite reflectivity forecasts from EnKF, 3DVar, EnVar,
and Hybrid experiments are plotted in Fig. 3, with 90% confi-
dence intervals calculated every 15 min to determine statisti-
cal significance. In general, the POD for all experiments
decreases with increasing forecast time after 30 min (Fig. 3a),
although in the first 15 min there is a noticeable increase in
the PODs of 3DVar and hybrid.

There is generally an overprediction bias at all forecast times
for all experiments, and the bias is most pronounced in EnVar
(Fig. 3b). During the first 30 min, the overprediction bias results
in relatively high POD and FAR, which rapidly increases
with forecast time (Figs. 3b,c), resulting in a decrease in CSI
(Fig. 3d). The decrease in CSI during the first 30 min of forecast
lead time is most pronounced in EnKF forecasts, suggesting
rapid initial forecast error growth, likely due to development of
spurious convection and/or over-intensification of convection.

To determine why the forecast error for each experiment
rapidly increases during the first 30 min, the balance of model
forecast states is evaluated by calculating the mean absolute
surface pressure tendency (MASPT) (Hu and Xue 2007;
Pan and Wang 2019) across all cases at every 5 min during the
3-h forecast. MASPT, which is averaged by the domain (for
EnKF experiment, it is further averaged by the ensemble
members), is defined by

MASPT � 1
nx 3 ny

∑nx
i�1

∑ny
j21

∣∣∣∣ Ps

t

∣∣∣∣
i,j

, (6)

where Ps is the surface pressure forecast, and nx and ny are
the dimensions of the domain. The MASPT value for all

TABLE 4. The standard contingency table for verification scores.

Observed (yes) Observed (no)

Forecast (yes) NA NB
Forecast (no) NC ND
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experiments are initially large (∼40 Pa min21 for 3DVar,
EnVar and Hybrid, and ∼17 Pa min21 for EnKF) but
decrease with time to ∼5 Pa min21 as the model reduces the
imbalance from DA (Fig. 4). The rapid decrease of MASPT

during the first 30 min is related to the shock of DA and
adjustment of the model state, which is known as the model
spinup process, and can result in development of spurious
reflectivity echoes, consistent with the rapid increase of FAR
values during the first 30 min in Fig. 3c. In addition, the small-
est (largest) MASPT occurs in EnKF (3DVar) experiments
and indicates the EnKF (3DVar) analyses are more balanced
(unbalanced) than others, which are again consistent with the
evolution of FAR values in Fig. 3c.

For deterministic forecasts, Fig. 3 shows that EnVar
(3DVar) has the highest (lowest) POD and the lowest (high-
est) FAR (comparing to the EnKF_mean, not the max or
min), resulting in the highest (lowest) CSI. The POD and CSI
of Hybrid forecasts fall between that of EnVar and 3DVar,
while the bias is somewhat lower than EnVar, indicating the
static background error covariance included in Hybrid does
not generally improve the skill of thunderstorm object fore-
casts but can reduce the overprediction bias. The POD and
CSI differences from 60 to 180 min of forecast time between
EnVar (Hybrid) and 3DVar are statistically significant since
their 90% CIs almost do not overlap, while the difference
between EnVar and Hybrid is not statistically significant. For

FIG. 4. The mean absolute surface pressure tendency during the
3-h forecast for the EnKF (black), EnVar (red), 3DVar (green),
and Hybrid (purple) experiments.

FIG. 3. Time series of object-based (a) POD, (b) bias, (c) FAR, and (d) CSI for composite reflectivity forecasts from
EnVar (red), 3DVar (green), and Hybrid (purple) experiments, along with the total number of objects summed across
all forecast valid times from each experiment with the observation count annotated at the bottom of the figure. For
the EnKF experiments, the minimum (EnKF_min), maximum (EnKF_max), and mean (EnKF_mean) values of these
metrics from all ensemble members at each available forecast time are provided. The colored bars with 15-min inter-
vals represent the 90% confidence interval based upon one-sample t test.
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the bias and FAR, the differences for all experiments are not
statistically significant.

The root-mean-square innovations (RMSIs) of the back-
ground and analyzed reflectivity from DA cycling experi-
ments are calculated for all grid points where the observed or
analyzed reflectivity is greater than 15 dBZ (Fig. 5). During
the analysis cycles, 3DVar always has a better fit of the ana-
lyzed reflectivity to observations than EnVar and Hybrid
because the static background error variance in 3DVar tends
to be larger than that estimated from the ensemble. However,
the RMSIs of the 3DVar 15-min background forecast are

larger than those of EnVar and Hybrid; the lack of balances
among analyzed state variables with 3DVar, as suggested by
Fig. 4, is suspected to be a main cause. Overall, the change in
cycle-over-cycle RMSI is about the same between Hybrid and
EnVar.

Figure 6 shows the RMSIs during the six hours of DA
cycles for the background forecasts and analyses against sur-
face observations. For wind, temperature and surface pres-
sure, 3DVar has faster error growth than EnVar and Hybrid
forecasts, likely because 3DVar cannot update these variables
at upper levels using radar data owing to a lack of cross-
variable covariance. For relative humidity, Hybrid underper-
forms EnVar and 3Dvar initially, but outperforms the other
methods after two hours of DA cycling.

Among these six cases, a classic tornadic supercell case that
occurred over Texas, Oklahoma, and Kansas 16–17 May 2017
is selected to compare the performance of EnKF, hybrid
En3DVar, En3DVar, and 3DVar in greater detail (e.g., Wang
et al. 2019; Chen et al. 2021). Figure 7 shows examples of the
composite reflectivity object distributions for EnKF, EnVar,
3DVar, and Hybrid forecasts initialized at 2000 UTC 16 May
2017. The spread of ensemble forecast reflectivity objects in
EnKF (Figs. 7a1–a4) encompasses observed objects. This
spread results in clear differences between the minimum and
maximum verification scores across ensemble members (e.g.,
the POD at 90-min forecast ranges from 0.29 to 1.0).

FIG. 5. The root-mean-square innovations (RMSIs) against
reflectivity observations for the analyses/forecasts during the 6-h
cycled data assimilation window with a 15-min interval for the
EnVar, 3DVar, and Hybrid experiments.

FIG. 6. The root-mean-square innovations (RMSIs) against surface (a) wind, (b) temperature, (c) relative humidity,
and (d) pressure observations for the analyses/forecasts during the 6-h cycled data assimilation window with a 1-h
interval for the EnVar, 3DVar, and Hybrid experiments.
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FIG. 7. Paintball plots of 30-, 60-, 90-, and 120-min composite reflectivity forecast objects initialized at 2000 UTC 16 May 2017 for
(a1)–(a4) EnKF, (b1)–(b4) EnVar, (c1)–(c4) 3DVar, and (d1)–(d4) Hybrid experiments compared to the observed objects (black shading).
Different colored shading in (a1)–(a4) indicates the forecast objects from each ensemble member of EnKF forecasts, and red shading in
(b1)–(b4), (c1)–(c4), and (d1)–(d4), respectively, indicates forecast objects from EnVar, 3DVar, and Hybrid experiments. The POD, FAR,
bias, and CSI scores of the EnVar, 3DVar, and Hybrid experiments, along with the minimum and maximum of these scores from all
ensemble members of the EnKF experiments, are provided at the top right of each panel.
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Most reflectivity objects are well predicted in the EnVar
experiment (Figs. 7b1–b4). Though position errors are present
in the forecasts of two supercells in Texas, the PODs of
EnVar at all forecast times are 1.0 because position errors
of forecast objects remain within prescribed displacement
thresholds for object matching. Overall, the verification scores
of EnVar are close to those of the best ensemble member in
EnKF. Compared to the EnVar experiment, the forecast
storms in the 3DVar experiment are not as well initialized
and several observed objects are missing along the convective
line in southwest Kansas at the 90- and 120-min forecast
times. These misses are attributable to the inability of 3DVar
to update state variables not directly involved in the observa-
tion operators, resulting in much lower POD and CSI than
EnVar (e.g., the POD of EnVar at 90 min is 1.0 but only 0.56
for 3DVar). Compared to EnVar and 3DVar, the CSI of

Hybrid is the highest (0.86) at 60 min but falls between them
for other forecast times, indicating the static BEC is not
always helpful for hybrid En3DVar.

Since variation in the initial conditions leads to differing
meteorological behavior in the forecasts, the physical field
analyses from DA experiments are additionally examined.
Figure 8 shows the observed and analyzed composite reflec-
tivity at 2000 UTC 16 May 2017 from the EnVar, 3DVar, and
Hybrid experiment. In the observations, several convective
storms are present near the Oklahoma Panhandle and in
southwest Kansas, while a few other storms have recently ini-
tiated in the southern Texas Panhandle along a dryline. The
intensity and coverage of analyzed reflectivity in the EnVar
experiment best matches observations, with the exception of
some spurious echoes in Texas Panhandle. The 3DVar analy-
sis underpredicts the storm near the Oklahoma Panhandle

FIG. 8. (a) Composite reflectivity observations and the analyzed composite reflectivity at 2000 UTC 16 May 2017 for
the (b) EnVar, (c) 3DVar, and (d) Hybrid experiments.
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and into southwest Kansas but does predict fewer spurious
echoes in the Texas Panhandle. The analyzed reflectivity of
Hybrid falls between EnVar and 3DVar, indicating that using
static background error covariance can reduce the intensity of
storms.

Because of the lack of cross-covariance in the static back-
ground error covariance, 3DVar assimilation can only update
the variables involved in the observation operators (e.g., only
update hydrometeors when assimilating reflectivity), which
results in greater imbalance in analyzed state variables and
rapid error growth in the forecast (Figs. 5 and 6). In contrast,
EnVar and Hybrid assimilation contain ensemble estimated
cross-variable covariances and update the full set of state vari-
ables, resulting in less imbalance in the analyses and improved
forecasts.

To more comprehensively examine the impact of the cross
covariance on the analysis variables that are not included in
radar reflectivity operator, we compare analyzed surface tem-
perature, vertical velocity, and cloud/ice mixing ratios from
the DA experiments. Figure 9 shows the difference in temper-
ature at the lowest model level between EnVar and 3DVar/
Hybrid. It is clear that the temperature field near the
observed storm in the Oklahoma Panhandle is cooler in
EnVar and Hybrid compared to 3DVar, which indicates a
stronger convective cold pool in the analysis and potentially
results in a better forecast of the supercell. A vertical cross
section of vertical velocity (through the maximum values in
the supercell in the Oklahoma Panhandle) and cloud/ice mix-
ing ratios from EnVar, Hybrid, and 3DVar are compared in
Fig. 10. The updraft, cloud, and ice mixing ratios in the
3DVar analysis are weaker than those from EnVar and
Hybrid, indicating a poor analysis of the storm intensity.

Overall, the reason that EnVar and Hybrid outperform
3DVar for the supercell in Oklahoma Panhandle is likely
attributable to using ensemble-based cross covariances that
produce analyzed state variables that are more physically con-
sistent with each other, which promotes maintenance of the
analyzed storm. However, similar improvements in forecasts
of storms in the Texas Panhandle are not observed. This indi-
cates that the ensemble-based cross covariance between
reflectivity and other state variables is not improving analyses
and resulting forecasts of these storms. The lack of benefit
from the ensemble-based cross covariances in this region may
result from relatively low reflectivities in developing storms
(Fig. 8a) compared to other storms in the domain. It is noted
that all variational experiments do not suppress spurious
convection well. The limited suppression occurs because the
variational DA method can struggle with minimization con-
vergence related to the high nonlinearity of the reflectivity
observation operator, making the suppression of weak, spuri-
ous echoes in background forecast of variational experiment
less effective.

Even though many observed objects are well matched (e.g.,
the POD of EnVar, 3DVar, Hybrid, and the best EnKF mem-
ber are 1.0 at 60-min forecast in Fig. 7), it does not mean that
the objects are perfectly predicted. To more comprehensively
characterize the performance quality, scatterplots of the cen-
troid displacements of matched objects for 60-min forecast of
composite reflectivity initialized at 2000 UTC 16 May 2017 for
EnKF, EnVar, 3DVar, and Hybrid experiments are aggre-
gated in Fig. 11, and the maximum (max) intensity and the
area are aggregated in Fig. 12.

For EnKF, large variation in the centroid displacement of
matched objects is present (Fig. 11). For variational DA

FIG. 9. The difference of analyzed air temperature (T) at the lowest level above surface at 2000 UTC 16 May 2017
between (a) EnVar and 3DVar and (b) EnVar and Hybrid experiments and paintball plots (black shaded) of 2–5-km
updraft helicity observed objects.
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experiments, EnVar has the most matched forecast objects.
Nearly half of objects in EnVar present north and eastward
bias in centroid displacement for nearly half of objects, indi-
cating a positive bias in storm speed similar to the results of
Skinner et al. (2018) and Flora et al. (2019). As shown in Fig.
12, much higher (smaller) maximum composite reflectivity
(object size) values are produced by all experiments, with
most objects exhibiting values between 55 and 65 dBZ
(15 and 50 km2), compared to 45–61 dBZ (15–135 km2) for

observation objects. The discrepancies in simulated object
size and intensity compared to observations reflect biases in
reflectivity calculation using the Thompson microphysics
scheme and smoothing of MRMS observations in interpola-
tion and are similar to biases in Skinner et al. (2018). Com-
pared to EnVar, the lack of large object development in
3DVar and Hybrid is presented.

Performance diagrams (Roebber 2009) relating POD, FAR,
CSI, and frequency bias of 60-min composite reflectivity

FIG. 11. Scatterplots of the east–west and north–south centroid
displacement (km) of matched objects for 60-min forecasts of com-
posite reflectivity (dBZ) initialized at 2000 UTC 16 May 2017 for
the EnKF, EnVar, 3DVar, and Hybrid experiments.

FIG. 12. Scatterplots of the object area (km2) and maximum
intensity (dBZ) of matched objects for 60-min forecasts of compo-
site reflectivity (dBZ) initialized at 2000 UTC 16 May 2017 for the
EnKF, EnVar, 3DVar, and Hybrid experiments and the observed
objects at 2100 UTC 16May 2017.

FIG. 10. Vertical cross sections of the analyzed vertical velocity field through their maximum values in the model domain (m s21;
shaded), cloud mixing ratio (g kg21; green contour, from 0.01 to 10.01 with interval of 1.0 g kg21), and ice mixing ratio (g kg21; purple con-
tour, from 0.01 to 9.01 with interval of 0.3 g kg21) at 2000 UTC 16 May 2017 for the EnVar, Hybrid, and 3DVar experiments.
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forecasts for each case from EnKF, EnVar, 3DVar, and
Hybrid experiments are shown in Fig. 13. An overprediction
bias is present for all DA techniques and cases, with the excep-
tion of 3DVar forecast on 16 May 2017. For these outliers,
there are several missing forecast objects in the convective line
in southwest Kansas (Fig. 7), resulting in frequency biases
below 1. For each case, large spread in object-based skill
scores is apparent in the EnKF experiments (e.g., the POD
and FAR values for the 9 May case range over approximately
0.35–0.85 and 0.4–0.7, respectively). For the 16 and 23 May
cases, the CSIs of EnVar are higher than any individual
ensemble member of EnKF. For the deterministic forecasts
initialized from variational analyses (i.e., EnVar, Hybrid, and
3DVar), four cases (9, 16, 17, 23 May, Figs. 13a,b,c,e) show sub-
stantial improvement in EnVar compared to 3DVar, with com-
parable performances in the 18 and 27 May cases (Figs. 13d,f),
in which CSI in Hybrid forecasts are somewhat higher than
EnVar and 3DVar. Because there is no discernable, consistent
distinction in the meteorological regimes of these two cases
compared to the other four, sampling uncertainty may play a

role here. This result suggests that static BEC in Hybrid may
be helpful when the performance of 3DVar is at least compara-
ble to EnVar. Otherwise, the performance of Hybrid may be
degraded due to inclusion of static BEC.

To examine temporal variation in forecast skill, object con-
tingency-table elements were aggregated across all available
cases for each hourly forecast initialization time. Figure 14
shows the 3-h time series of object-based POD, bias, FAR,
and CSI for composite reflectivity forecasts of each experi-
ment aggregated for each forecast initialization hour from
2000 to 0000 UTC (as indicated by the horizontal axis labels).
In general, for all experiments, POD and CSI increase while
FAR decreases with successive initialization times between
2000 and 2100 UTC, and then POD and CSI decrease while
FAR increases with successive initialization times between
2200 and 0000 UTC. Overall, EnVar and EnKF_max produce
relatively high POD and CSI while EnKF_min produces the
lowest values. At earlier initialization times, the FAR of
EnKF forecasts are much lower than deterministic forecasts
in the initial 30 min of the forecast, which is likely attributable

FIG. 13. Performance diagrams of 60-min composite reflectivity forecasts from each case for the EnKF, EnVar, 3DVar, and Hybrid
experiments. The curved and diagonal lines represent CSI and bias, respectively. Small circles in EnKF plots represent scores of individual
ensemble members, and large filled circles represent the ensemble mean of scores from each case.
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to the EnKF analysis being more balanced (Fig. 4) and devel-
opment of fewer spurious reflectivity objects. It is noted that
the EnVar FAR at the first 30 min for the 2000 UTC forecast
are much lower than those of forecasts at later initial times,
suggesting EnVar does not effectively suppress spurious ech-
oes in the longer DA cycles compared to EnKF.

The POD, FAR, and CSI of 3DVar forecasts are compara-
ble with those of the EnKF_mean at earlier initialization
times; however, beginning in the 2200 UTC forecast, more
spurious reflectivity objects are predicted by 3DVar, resulting
in increased FAR and lower CSI than the other experiments
in later forecasts. Because of the lack of cross covariances,
3DVar is generally not very effective in suppressing spurious
convection in the background forecast (Tong and Xue 2005).

Positive biases are pronounced at the earlier initialization
times but decrease with successive initialization times and
become generally unbiased by 0000 UTC. Since reducing bias
can be caused by either increasing misses or reducing false

alarms, we examine the total number of false alarm and
missed objects from EnKF_mean, EnVar, 3DVar, and Hybrid
experiments aggregated for each forecast initialization time
from 1930 to 0000 UTC (Fig. 15). It is shown that the missed
objects substantially increase with successive initialization
times because more observation objects are observed in the
late afternoon but not predicted by the forecast, likely owing
to erroneous prediction of convective initiation and delays for
any DA method in spinning up developing thunderstorms
(e.g., Tong and Xue 2005; Yussouf and Stensrud 2010;
Stratman et al. 2020). In addition, in later DA cycles, the storm
forecast can be susceptible to degradation owing to the lateral
boundary condition.

b. Verification results of updraft helicity

Time series of object-based POD, bias, FAR, and CSI for
30-min swaths of predicted 2–5-km UH are shown in Fig. 16.
As in Skinner et al. (2018), object-based verification scores
for UH forecasts are generally lower than composite reflecti-
vity forecasts, which is attributable to both predictability
differences between mesocyclones and their parent thunder-
storms as well as resolution limitations with 3-km horizontal
grid spacing. The PODs of EnVar, 3DVar, Hybrid, and EnKF_
mean decrease from approximately 0.3–0.45 to 0.25–0.35 by
165 min of lead time. Driven by a decrease of POD coupled
with an increase of FAR, CSI values decrease from approxi-
mately 0.15–0.35 to 0.1–0.2. The relatively low scores in the first
15 min are related to forecast spin up of dynamical fields (verti-
cal motion and vorticity) on the CAM grid from the relatively
smooth analyses of wind fields. In contrast to the positive bias
in composite reflectivity forecasts, the UH track forecasts for
forecast times beyond 30–60 min are nearly unbiased. The bias

FIG. 14. The 3-h time series of object-based (a) POD, (b) bias,
(c) FAR, and (d) CSI for composite reflectivity forecasts from
EnVar (red), 3DVar (green), and Hybrid (purple) experiments
aggregated for each forecast initialization time from 2000 to 0000
UTC (as indicated by the horizontal axis labels), along with the
minimum (EnKF_min), maximum (EnKF_max), and mean
(EnKF_mean) values of these metrics from all EnKF ensemble
members at each available forecast time.

FIG. 15. The total number of false alarm and missed objects for
composite reflectivity forecasts from EnVar (red), 3DVar (green),
and Hybrid (purple) experiments aggregated across all three fore-
cast hours for each forecast initialization time from 1930 to 0000
UTC (as indicated by the horizontal axis labels), along with the
mean (EnKF_mean; black) of these metrics from all EnKF ensem-
ble members at each available forecast time.
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of EnKF_mean is low (about 0.5) during the first 90 min of the
forecast and coupled with a low FAR (about 0.25); however, in
the second half of the forecast, the FAR increases quickly,
resulting in the forecast becoming nearly unbiased. Similarly to
the composite reflectivity forecasts, the POD and CSI of rotation
track forecasts from EnVar are comparable with the EnKF_max
and values for 3DVar are similar to the EnKF_min. Hybrid val-
ues are comparable with EnVar during the first 2 h of the fore-
cast and then become similar to EnKF_mean during the last
hour. It is noted that the POD for 3DVar is similar to other
experiments early in the forecasts, which indicates that 3DVar
generally captures ongoing mesocyclones at the start of the fore-
cast. The drop in POD and CSI (and increase in FAR) are then
likely caused by the 3DVar-initialized forecasts dissipating UH
swaths too early and initiating falsely predicted tracks.

To further compare the accuracy of 2–5-km 30-min UH
forecasts from different experiments, the object distributions
from forecasts initialized at 2000 UTC 16 May 2017 are plot-
ted in Fig. 17. Compared to reflectivity, EnKF produces much
fewer forecast objects for UH (Figs. 17a1–a4). At 30 and
60 min of lead time in EnVar, the UH objects in Kansas and
Texas are missing (Figs. 17b1,b2) but they are accurately pre-
dicted at 90 and 120 min (Figs. 17b3,b4). 3DVar fails to accu-
rately predict any observed rotation track objects during the
first 2 h forecast time and fails to predict any UH tracks prior
to the 90–120-min period (Figs. 17c1–c4), despite a substantial

fraction of composite reflectivity objects are well predicted
(Figs. 7c1–c4). The underpredicted rotation in the 3DVar
experiment (Figs. 17c1–c4) may result from an inability to
update background state variables through cross covariance
with radar observations, such as vertical velocity and vorticity.
Therefore, it is likely that the initial conditions do not support
the rapid development of mesocyclones. The Hybrid forecasts
generally perform better than 3DVar, but somewhat worse
than EnVar for UH tracks near the border of Kansas and
Oklahoma; when the ensemble-derived background error
covariance is well behaved, the univariate static BEC used in
this study may not be beneficial.

It is noted that there are many fewer false alarm UH forecast
objects in Fig. 17 compared to composite reflectivity false
alarms in Fig. 7, which suggests that many of the composite
reflectivity false alarm objects are not rotating. To quantify
this, we compared the forecast composite reflectivity objects to
the UH objects using Eq. (1) and the results with the interest
value are cross-referenced between forecast and observed com-
posite reflectivity objects to determine which false alarm objects
contain mesocyclones. The total and nonrotating false alarm
object number for the composite reflectivity forecast aggregated
for all cases and the nonrotating false alarm object ratios for all
experiments are shown in Table 5. It is shown that nearly two-
thirds of all false alarm composite reflectivity objects are nonro-
tating, suggesting that the model forecast overpredicts storms

FIG. 16. As in Fig. 3, but for 2–5-km 30-min updraft helicity forecasts.
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but a substantial fraction of those spurious storms do not con-
tain mesocyclones and therefore, are likely not severe.

Performance diagrams of 60-min 2–5-km UH forecasts for
each case from the four experiments are shown in Fig. 18. The
object-based verification scores of 3DVar are much lower

than those of En3DVar in four of the six cases, and are similar
for 18 and 27 May. Compared to EnVar, a pattern similar to
the composite reflectivity forecast is present in Hybrid CSI
values, with higher scores on 9 and 18 May and similar or
lower scores for the other four cases.

FIG. 17. As in Fig. 7, but for 2–5-km 30-min updraft helicity forecast and observed objects.
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Figure 19 shows the 3-h time series of object-based POD,
bias, FAR, and CSI for 2–5-km UH forecasts for experiments
aggregated for each forecast initialization time from 2000 to
0000 UTC (as indicated by the horizontal axis labels). Overall,
the POD and CSI are much lower than those of composite
reflectivity forecasts for all initialization times, reflecting the
more challenging nature of mesocyclone prediction. At earlier
initialization times, the EnKF bias is generally lower than that

of variational methods, combined with lower POD, result in
lower EnKF FAR. It is noted that the averaged bias for the
3DVar UH track forecasts initialized at 2000 UTC is actu-
ally at or above 1.0, while that of the 16 May 2017 case is
essentially 0 (Fig. 17), indicating that the result for 3DVar
in particular for the 16 May 2017 case is not representative
of the average behavior.

5. Summary and conclusions

Capabilities to directly assimilate radar reflectivity and radial
velocity data within the GSI EnKF and hybrid En3DVar sys-
tems were recently developed by CAPS and tested herein on
six severe weather cases within a Warn-on-Forecast frame-
work. The hybrid En3DVar method with different hybrid
weights of 100%, 20%, and 0% for the static background error
covariance, yielding, respectively, the pure 3DVar, hybrid
En3DVar, and pure En3DVar algorithms, effectively, were
intercompared as well as with EnKF. Specifically, object-based
verification methods were used to evaluate forecasts of compos-
ite reflectivity and 30-min 2–5-km UH swaths against corre-
sponding reflectivity and rotation track objects in Multi-Radar

TABLE 5. The total and nonrotating false alarm object
numbers for the composite reflectivity forecasts aggregated for
all cases and nonrotating false alarm object ratios for the EnKF,
EnVar, 3DVar, and hybrid experiments.

EnKF_mean EnVar 3DVar Hybrid

False alarm object
number

9190 11 330 13 269 10 605

Nonrotating false alarm
object number

6370 7879 8629 3469

Nonrotating false alarm
object ratio

69.3% 69.5% 65.1% 67.1%

FIG. 18. As in Fig. 13, but for 2–5-km 30-min updraft helicity forecasts.
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Multi-Sensor data on space and time scales typical of the
National Weather Service severe weather warnings.

Even though 60 forecast samples and a 90% confidence
interval are used for testing statistical significance in this study,
10 initializations per case are derived from the same cycle of
DA, so that the samples are not completely independent. Con-
sideration of more cases and use of a higher confidence interval
will more robustly quantify significant differences in forecast
quality resulting from different DA schemes. Such more sys-
tematic evaluations are warranted to help make decisions on
eventual adoption of DA algorithms for operational WoF sys-
tem. A summary of the conclusions is given below:

1) Despite variations across individual cases, the verification
scores of EnVar in all six cases are generally similar to
the best member of EnKF, with hybrid En3DVar scoring
slightly lower than EnVar. 3DVar forecasts generally
score lower than the mean score of EnKF members for
composite reflectivity and close to the worst EnKF mem-
ber for UH. This is not surprising because of the lack of
information contained in the flow-dependent ensemble
covariance in 3DVar that can help correct errors in state
variables not directly linked to radar observables (Tong
and Xue 2005). Even though the hybrid En3DVar with a

20% weight for static BEC generally underperforms pure
En3DVar in terms of verification scores, it does produce
highest verification scores in two individual cases (18 and
27 May), suggesting the potential for combining static and
flow-dependent background error covariance to improve
the analyses and subsequent forecasts. In this study, the
static BEC does not contain cross-variable covariance,
and was specified empirically. Better statistically derived
static BEC may lead to better hybrid results, which will
require further study. A potentially important benefit of
including static BEC is when all ensemble members miss
observed convection; in such a case, due to the complete
lack of ensemble spread in the hydrometeor state varia-
bles, radar reflectivity observations at these locations will
not be able to adjust hydrometeors with EnVar.

2) The FAR of EnKF analyses of both composite reflectivity
and UH are lower than those of the deterministic analy-
ses, indicating that EnKF suppresses spurious reflectivity
and mesocyclone objects more effectively. Within EnKF,
the ensemble cross covariances have been found to be
effective in suppressing spurious background storms when
assimilating clear-air reflectivity (Tong and Xue 2005). In
addition, EnVar consistently has a higher POD and fre-
quency bias than EnKF for both reflectivity and UH
objects, as well as higher MASPT, suggesting EnVar
more strongly overpredicts convective storm and mesocy-
clone occurrence.

3) In general, the PODs (FARs) for all reflectivity forecasts
are greater (less) than 0.6 (0.5) for the first 60 min of lead
time, then decrease (increase) with increasing forecast
time, indicating that each method of cycled radar DA is
able to accurately initialize preexisting thunderstorms.

4) The POD and CSI for mesocyclone forecasts are lower
than those for composite reflectivity forecasts, indicating
the systems are able to more accurately predict thunder-
storm precipitation than mesocyclones.

For the hybrid DA method, the hybrid weight of static
BEC and flow-dependent ensemble BECs is critical for the
analysis. In this study, the weight of 20% for the static BEC
may not be optimal. For radar DA, hybrid EnVar can benefit
more from a smaller weight for static BEC, such as 5% (Kong
et al. 2018). More effort is needed to determine an optimal
hybrid weight for EnVar in convective-scale DA.

EnKF and hybrid EnVar in this study are one-way coupled,
where EnKF perturbations are used by the hybrid En3DVar,
but the hybrid analysis is not used to recenter the ensemble
mean analysis of EnKF. Since the EnVar performance in this
study is close to the best member of EnKF, future work will
consider two-way coupling in which EnKF analyses may be
improved by recentering the ensemble mean onto EnVar
analysis. Two-way coupling may additionally benefit EnVar,
since the EnKF perturbations may be improved. We chose
one-way coupling in this study to keep the EnKF cycles inde-
pendent from the hybrid DA cycles for easier comparison.
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FIG. 19. As in Fig. 14, but for 2–5-km 30-min updraft helicity
forecasts.
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