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ABSTRACT

This study presents a two-dimensional variational approach to retrieving raindrop size distributions (DSDs)

from polarimetric radar data in the presence of attenuation. A two-parameter DSD model, the constrained-

gamma model, is used to represent rain DSDs. Three polarimetric radar measurements—reflectivity ZH,

differential reflectivity ZDR, and specific differential phase KDP—are optimally used to correct for the at-

tenuation and retrieve DSDs by taking into account measurement error effects. Retrieval results with sim-

ulated data demonstrate that the proposed algorithm performs well. Applications to real data collected by the

X-band Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radars and the C-band

University of Oklahoma–Polarimetric Radar for Innovations inMeteorology and Engineering (OU-PRIME)

also demonstrate the efficacy of this approach.

1. Introduction

The weather radar, because of its high temporal

(;5 min) and spatial (;1 km) resolutions, is an effective

instrument for weather surveillance. In the past decades,

much effort has been put into quantitative precipitation

estimation (QPE) using radar observations (Doviak and

Zrni�c 1993; Bringi and Chandrasekar 2001). In the early

years, rainfall estimation mainly depended on empirical

relations, that is, the radar-reflectivity Z and rainfall-

rateR (Z–R) relations. However, it has been realized that

Z–R relation has a large variability for different rain types,

seasons, locations, and so on. Hundreds ofZ–R relations

have been reported in the literature (Doviak and Zrni�c

1993; Rosenfeld and Ulbrich 2003), implying that an

empiricalZ–R relation is limited in representing raindrop

size distribution (DSD), which contains the microphysi-

cal information of rainfall. The latest polarimetric radar

technology has greatly contributed to the improvement

of QPE (Bringi and Chandrasekar 2001;Matrosov et al.

2002; Ryzhkov et al. 2005). With additional polari-

metric observations, including differential reflectivity

ZDR and specific differential phase KDP, DSDs can

be better characterized and rain estimation is con-

sequently more accurate. Since accounting for DSD

variability is essential for accurate rain estimation,

how to model and retrieve DSD well becomes an im-

portant research topic. It has been demonstrated that

the constraint-gamma (C-G) DSD model (Zhang et al.

2001; Brandes et al. 2002; Cao et al. 2008, 2010), which is

more flexible than the most commonly used Marshall–

Palmer and exponential DSD models, is suitable for the

direct DSD retrieval from two polarimetric radar vari-

ables. In this paper,DSD retrieval applying theC-Gmodel

and polarimetric radar measurements is further stud-

ied. Two issues regarding the retrieval are emphasized:
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1) attenuation correction and 2) optimal use of radar

measurements.

Depending on the radar frequency and the intensity of

precipitation, measured radar reflectivity can be greatly

attenuated by the precipitation. Shorter radar wave-

lengths (C band at ;5-cm wavelength and X band at

;3-cm wavelength) result in stronger attenuation. With-

out correcting for attenuation, QPE could be heavily un-

derestimated in such situations. Many national weather

radar networks in the world (e.g., most European radar

networks and part of the Chinese operational radar net-

work) operate at C band. In theUnited States, anX-band

radar network has been suggested (McLaughlin 2010)

to complement or replace the current Next Generation

Weather Radar (NEXRAD) network that operates at

S band (;10-cm wavelength). The X-band Integrated

Project 1 (IP1) radar network of the Center for Collab-

orative Adaptive Sensing of the Atmosphere (CASA) is

a test bed for such a purpose. The attenuation for the

X-band IP1 radar is a significant issue for radar-based

QPE and microphysical retrieval.

Some methods of correcting for precipitation atten-

uation can be found in previous studies. For a single-

polarization radar, theHitschfeld–Bordan (H–B)method

and its variants can be applied (Delrieu et al. 2000; Zhang

et al. 2004; Berne and Uijlenhoet 2006). The deter-

ministic power-law relation between the attenuation

factor and the radar reflectivity is the basis for H–B

method and its variants. For dual-polarization radars,

the propagation phase (differential phase or specific

differential phase) is usually used in attenuation cor-

rection algorithms. Those algorithms include the direct

phase correction method (Bringi et al. 1990), data-fitting

method (Ryzhkov and Zrnic 1995), ‘‘ZPHI’’ algorithm

(Testud et al. 2000), self-consistency (SC)method (Bringi

et al. 2001), and revised SC methods (Park et al. 2005;

Vulpiani et al. 2005; Gorgucci and Baldini 2007; Liu et al.

2006; Ryzhkov et al. 2007). The power-law relations be-

tween the attenuation factor and the specific differential

phase are essential for these dual-polarization radar al-

gorithms. Although empirical relations associated with

attenuation facilitate the attenuation correction, strong

constraints introduced by these relations may sacrifice

much of the physical variability of precipitation. An al-

ternate approach is to estimate the attenuation through

retrieving precipitation’s microphysical information, for

example, DSD (Meneghini and Liao 2007). If the DSD

can be well estimated with its variability preserved, the

attenuation will consequently be well corrected.

Another issue addressed in this study is the optimal

use of multifrequency radar measurements. Previous

QPE or DSD retrievals have mainly applied a determin-

istic approach; the radar observations are related directly

to the estimation without accounting for their error ef-

fect. Examples can be seen with empirical QPEs (e.g.,

Ryzhkov et al. 2005) or direct retrievals (e.g., Zhang et al.

2001; Cao et al. 2008). The useful information from mul-

tiple polarimetric measurements is not optimally utilized.

Measurement errors, which are different for various radar

parameters, may negatively affect attenuation correction

and consequent QPE. It is worth noting that the varia-

tional method as well as other methods based on optimal

estimation theory provides an effective way to account for

the error effect and integrate multiple measurements of

radar (Hogan 2007; Xue et al. 2009). It is reasonable to

expect that the variational method would improve the

application of radar data for QPE.

This paper proposes a rain estimation scheme based on

polarimetric radar data, which integrates three compo-

nents (DSD retrieval, attenuation correction, and the

variational method) as a whole and enables rain esti-

mation to benefit from all of them. More specifically,

the proposed scheme is a two-dimensional variational

scheme for DSD retrieval. Polarimetric radar data used

in this scheme are radar reflectivity of horizontal polari-

zation ZH, ZDR, and KDP of a plan position indicator

(PPI) sweep. The C-G DSD model is used because of

its flexibility in representing DSD variability. The state

vectors to be variationally retrieved consist of two C-G

parameters at every grid point in the analysis region.

Attenuation is included in the forward observation op-

erator, and attenuation correction and DSD estimation

are accomplished adaptively in the iterative optimization

process. Although this scheme is also applicable for the

case of multiple station/frequency radars, this study

focuses only on the application of monopole radar. The

rest of this paper is organized as follows. The meth-

odology of the proposed scheme is detailed in section 2.

The validity of this scheme is demonstrated using sim-

ulated X-band radar data in section 3. Section 4 evaluates

the sensitivity of this scheme using the simulated data

as well. Real data from X-band IP1 radar and C-band

University of Oklahoma–Polarimetric Radar for Inno-

vations in Meteorology and Engineering (OU-PRIME)

radar are used for testing in section 5. The last section

provides a summary and some further discussion on the

proposed scheme.

2. Methodology

a. The variational formulation

This variational retrieval scheme applies precipitation-

attenuated polarimetric radar data (PRD), Z0
H , Z

0
DR, and

KDP. The prime indicates radar measurements with at-

tenuation versus the intrinsic values without attenua-

tion. Gaseous attenuation in radar measurements is
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ignored in this study. Theoretically, the application of the

variational scheme requires that the measurement errors

have Gaussian distribution (Kalnay 2002). Uncertainty

related to the error model will be introduced in the vari-

ational scheme if non-Gaussian error exists for observa-

tions. Themodification of observational cost function may

help to mitigate such uncertainty (Koizumi et al. 2005).

The error probability density function (PDF) of reflectivity

(linear unit) approaches Gaussian when there are suffi-

cient independent samples (Doviak and Zrni�c 1993, sec-

tions 4.3 and 6.3) and its standard deviation is proportional

to the expected value. Xue et al. (2007) investigated the

error modeling of reflectivity in logarithmic unit for the

data assimilation. Their results showed that if the error is

small, both ZH and ZDR errors can be approximated well

with Gaussian distributions. For these reasons, the vari-

ational formulation can be applied for our purpose. The

optimal use of radar measurements involves the minimi-

zation of the cost function J(x), which is defined as

J(x)5 Jb(x)1 JZ0
H
(x)1 JZ0

DR
(x)1 JK

DP
(x) , (1)

where

Jb(x)5
1

2
(x2 xb)

TB21(x2 xb) , (2a)

JZ0
H
(x)5

1

2
[HZ0

H
(x)2 yZ0

H
]TR21

Z0
H
[HZ0

H
(x)2 yZ0

H
] ,

(2b)

JZ0
DR
(x)5

1

2
[HZ0

DR
(x)2 yZ0

DR
]TR21

Z0
DR
[HZ0

DR
(x)2 yZ0

DR
] ,

(2c)

and

JK
DP
(x)5

1

2
[HK

DP
(x)2 yK

DP
]TR21

K
DP
[HK

DP
(x)2 yK

DP
] .

(2d)

The cost function J is composed of four parts as given

above. The term Jb represents the contribution from the

background. The other three terms correspond to the

observations of Z0
H , Z

0
DR, and KDP, respectively. Super-

script ‘‘T’’ denotes the matrix transpose. The term x is the

state vector and xb is the background or first guess state

vector, y indicates the radar observations, H denotes the

nonlinear observation operator of radar variables,B is the

background error covariance matrix, and R is the obser-

vational error covariance matrix. Subscripts ‘‘Z0
H ,’’

‘‘Z0
DR,’’ and ‘‘KDP’’ are used to denote the terms for the

corresponding radar observations. In the above equations,

we try to follow the standard notations used in modern

data assimilation literature, as defined in Ide et al. (1997).

Matrix B is an m-by-m matrix, where m is the size of

state vector x and is equal to the number of analysis grid

points (in the 2D region in our case) times the number of

state parameters. The full matrix is usually huge. Matrix

computation and storage, especially for the inversion of

B, can be a major problem during the iterative minimi-

zation of the cost function. To solve this problem, a new

state variable v is introduced, written as

v5D21dx , (3)

with dx5 x2 xb and DDT 5B (Parrish and Derber

1992). Here d is the notation of the increment, and D is

the square root of matrix B. The cost function is then

rewritten as

J(v)5
1

2
vTv1

1

2
[HZ0

H
(xb 1Dv)2 yZ0

H
]TR21

Z0
H
[HZ0

H
(xb 1Dv)2 yZ0

H
]

1
1

2
[HZ0

DR
(xb1Dv)2 yZ0

DR
]TR21

Z0
DR
[HZ0

DR
(xb1Dv)2 yZ0

DR
]

1
1

2
[HK

DP
(xb1Dv)2 yK

DP
]TR21

K
DP
[HK

DP
(xb 1Dv)2 yK

DP
] . (4)

In this way, the inversion of B is avoided. The minimi-

zation of cost function J is achieved by searching for the

minimum of cost function J making use of cost function

gradient $vJ, which is given by

$vJ5 v1DTHT
Z0

H
R21
Z0

H
(HT

Z0
H
Dv2 dZ0

H
)

1DTHT
Z0

DR
R21

Z0
DR
(HT

Z0
DR
Dv2 dZ0

DR
)

1DTHT
K

DP
R21
K

DP
(HT

K
DP
Dv2 dK

DP
) . (5)

Here H represents the Jacobian operator, a matrix

containing the partial derivative of observation operator

H with respective to each element of the state vector; it

is often referred to as the linearized observation oper-

ator. The term d is the innovation vector of the obser-

vations; that is, d 5 y 2 H(xb).

The spatial influence of the observation is determined

by the background error covariance matrix B. Huang

(2000) showed that the element bij of matrix B could be

modeled using a Gaussian correlation model,
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bij 5s2
b exp

�
2
1

2

�
rij

rL

�2�
, (6)

where subscripts i, j denote two grid points in the anal-

ysis space and s2
b is the background error covariance.

The rij is the distance between the ith and jth grid points,

and rL is the spatial decorrelation length of the back-

ground error. In this study, rL is assumed to be constant

(2–4 km) in the two-dimensional analysis space; that is,

the error covariance is spatially homogeneous on the

horizontal plane, as is for the isotropic covariance op-

tion in Liu and Xue (2006). The square root ofB,D, can

be computed by applying a recursive filter (Hayden and

Purser 1995) described by Gao et al. (2004) and Liu

et al. (2007). In this way, the cost of computation and

storage can be reduced significantly (by a factor of B’s

dimension) relative to the computation of the inversion

of B.

b. Forward observation operator

In this study, the state variables to be variationally re-

trieved or estimated are the parameters in the assumed

DSD model. The modified gamma distribution (Ulbrich

1983)

N(D)5N0D
m exp(2LD) (7)

is commonly used to model DSDs, where N0 is the in-

tercept parameter,m is the shape parameter, andL is the

slope parameter of the gamma DSD. In this study, we

apply the gamma DSD model with a constraining re-

lation derived by Cao et al. (2008):

m520:0201L21 0:902L2 1:718. (8)

This relation is an update of the C-G DSD model pro-

posed by Zhang et al. (2001) based on 2 years of DSD

data collected in central Oklahoma. The C-GDSDmodel,

which reduces the number of free parameters from 3 to 2,

has been successfully used in direct DSD retrievals from

radar-measured ZH and ZDR (e.g., Brandes et al. 2004;

Cao et al. 2008). It is used for testing our variational re-

trieval here. In our formulation,N0*5 log10(N0) andL are

chosen as the two state variables, thus the state vector x is

composed of N0* and L at all grid points.

Given the two DSD parameters at each grid point, the

DSD can be determined. Subsequently, radar variables

including intrinsic ZH and ZDR as well as KDP can be

calculated. Forward operators of ZH, ZDR, and KDP are

given by Zhang et al. (2001):

ZH,V 5
4l4

p4jKwj2
ð‘
0
j fH,V(p)j2N(D) dD, (mm6 m23)

(9a)

ZDR 5 log10
ZH

ZV

, (dB) (9b)

and

KDP 5
180l

p

ð‘
0
Re[fH(0)2 fV(0)]N(D) dD, (8km21)

(10)

where fH(p) and fV(p) represent the backscattering

amplitudes at horizontal and vertical polarizations, re-

spectively. Similarly, fH(0) and fV(0) represent forward

scattering amplitudes, l is the wavelength,Kw5 («r2 1)/

(«r 1 2), and «r is the complex dielectric constant of

water. The term Re[ ] denotes the real part of a complex

value. The scattering amplitudes fH,V(0/p) are calcu-

lated based on the T-matrix method. The temperature is

assumed to be 108C for the calculation of dielectric

constant of water. The axis ratio relation of raindrop in

Brandes et al. (2002) is applied. The canting angle is

assumed to be 08 for the raindrop. For computational

efficiency, precalculated values of the scattering ampli-

tudes are stored in a lookup table for raindrop diameters

from 0.1 to 8.0 mm and they are used in numerical in-

tegrations in above equations.

Specific attenuations at horizontal (AH) and vertical

(AV) polarizations can be calculated by

AH,V 5 4:3433 103
ð‘
0
sH,V
ext (D)N(D) dD, (dBkm21)

(11)

where sH,V
ext is the extinction cross section at horizontal

or vertical polarizations. The specific differential atten-

uation ADP is defined as

ADP 5AH 2AV , (dB km21) (12)

If specific attenuations are known, the forward oper-

ators of Z0
H and Z0

DR at each range gate are given by

Z0
H(n)5ZH(n)2 2 �

n21

i51

AH(i)Dr (13a)

and

Z0
DR(n)5ZDR(n)2 2 �

n21

i51

ADP(i)Dr , (13b)

where numbers i and n denote the ith and nth range gates

from the radar location, respectively; Dr is the range

resolution.

c. Lookup table method

In Eq. (5), it is expensive to directly compute the trans-

pose of linearized operator H, which is a matrix of partial
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derivatives of H. In general, an adjoint method is ap-

plied to compute HT efficiently without storing the full

matrix. The forward operator that can be functionally

represented in terms of physical parameters (e.g., Jung

et al. 2008) facilitates the development of adjoint code

(Errico 1997). In this study, the calculation of radar

variables [in Eqs. (8)–(10)] is based on the precalcu-

lated values of scattering amplitudes using the T-matrix

method. This approach saves a lot of computation time

but makes it a problem to apply an adjoint for the

calculation of HT. To solve this problem, the lookup

table method is applied.

The partial derivatives of each of the polarimetric

variables, that is, Z0
H , Z

0
DR, or KDP, with respect to each

of the two state variables, that is, L orN0*, are needed at

each grid point. Those derivatives can be calculated

using 10 lookup tables of derivatives (›ZH /›L, ›ZDR/

›L, ›KDR/›L, ›AH /›L, ›ADR/›L, ›ZH /›N0*, ›ZDR/›N0*,

›KDR/›N0*, ›AH /›N0*, and ›ADR/›N0*Þ. For example,

fromEq. (13) the derivatives ofZ0
H (orZ0

DR) are calculated

with the derivatives of ZH (or ZDR) and AH (or ADP) by

›Z0
H(n)

›L, or, ›N0
*
5

›ZH(n)

›L, or, ›N0
*
2 2 �

n21

i51

›AH(i)

›L, or, ›N0
*
Dr (14a)

and

›Z0
DR(n)

›L, or, ›N0
*
5

›ZDR(n)

›L, or, ›N0
*
2 2 �

n21

i51

›ADP(i)

›L, or, ›N0
*
Dr . (14b)

In each lookup table, the derivative values are pre-

calculated for parameter L varying from 0 to 50 and

parameter N0* varying from 0 to 15. To ensure sufficient

accuracy, the range of each parameter is discretized at

an interval of 0.02. As a result, each lookup table has

2501 3 751 elements. In this way, the partial derivative

value for operator H can be found with these tables for

any given values of L and N0*. Interpolation can be per-

formed for values between the lookup table values of L
or N0* to further improve the accuracy. Generally, the

estimated values in the lookup tables are sufficiently

accurate for the iterative minimization of cost function

because the parameter ranges are wide. For state vari-

ables out of the table range, the derivative value at the

end of the range is assumed although this rarely happens

in practice.

With the lookup tables, the cost for derivative calcu-

lation can be saved. Similarly, the calculations of in-

trinsic (i.e., nonattenuated)ZH,ZDR,KDP,AH, andADP

are made efficient as well, given any two state parame-

ters. As a result, the observational operator H is com-

puted as the combination of different values found in

various lookup tables, avoiding integral operations in

the forward model. Preliminary results in following

sections have demonstrated that the lookup table is an

efficient tool to deal with nonlinear forward models of

complicated functions.

d. Iteration procedure

The iteration procedure for minimizing the cost func-

tion J is shown in Fig. 1. At the beginning of the retrieval

program, necessary data files such as all lookup tables, the

background state parameters, and radar-measured Z0
H ,

Z0
DR,KDP, and signal-to-noise-ratio (SNR) are loaded. In

the meantime, initial parameters of the variational

scheme are configured. For the purpose of data quality

control, only the radar measurements with SNR . 1 dB

are used in the analysis region. Additional weights that

account for the data quality are added to the observation

error covariance matrices (i.e., Rs). The weight is set to

1 for SNR . 20 dB, 2 for SNR . 10 dB, 4 for SNR .
5 dB, and 8 for SNR , 5 dB, respectively.

The initial state vector of variational retrieval equals to

the background state vector (i.e., x5 xb) and the iteration

starts with v 5 0. Based on the state vector, radar vari-

ables, ZH, ZDR, KDP, AH, and ADP, can be calculated at

each grid point using the forward operator as well as the

lookup tables of scattering amplitudes. After interpolat-

ing these radar variables from grid points to observation

FIG. 1. Flowchart of the variational DSD retrieval scheme.

A detailed description is given in section 2a.
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points, attenuated Z0
H and Z0

DR can then be calculated

according to Eq. (13). ThenZ0
H ,Z

0
DR, andKDP based on

state vector calculation and from real data are used in

Eq. (5) to calculate the gradient of cost function. The

state vector is modified according to the innovation

vector of observation and repeats the calculation of

radar variables for the next iteration. The update of

state vector continues during the search for minimum

gradient of cost function and until the convergence of

the iteration. The background state vector provides the

first guess of DSD parameters for the whole variational

retrieval. To avoid the information from observations

to be excessively utilized, the background should not be

directly derived from the observations. For simplicity,

a constant state vector (i.e., uniform distribution of DSD

parameters in the analysis region) is usually applied as

the initial first guess. However, if the observations have

a data quality issue in some area where adjacent obser-

vations have little influence, more informative back-

ground will be desirable to compensate the observations

in this area. After the minimization process ends in

a convergence, the analysis field of DSD parameters is

obtained. It is noted that the analysis result from the first

convergence might not be satisfactory. To improve the

retrieval, the analysis result from the first convergence is

used as a new background to repeat the analysis (i.e., it-

eration) process. This kind of repetition, which applies

the previous analysis result as the background for a new

analysis, is regarded as ‘‘an outer loop’’ of iteration. In

general, several outer loops alonewould give a satisfactory

analysis result, which has a relatively small cost function.

3. Testing of algorithm using simulated data

Tests with simulated radar data can help quantify the

performance of algorithm with less uncertainty than

using real observations. In this section, measurements

from X-band and C-band polarimetric radars are simu-

lated from real data of an S-band polarimetric radar,

named KOUN and located at Norman, Oklahoma.

Figure 2 shows an example of radar reflectivity measured

by KOUN at 1948 UTC 24 April 2011. Four ‘‘cross’’

marks in the figure indicate the locations of two X-band

CASA IP1 radars, named KSAO and KRSP, the S-band

NEXRAD KTLX radar and the C-band OU-PRIME

radar. They are located at Chickasha, Rush Springs,

Cleveland, and Norman in Oklahoma, respectively. The

ZH and ZDRmeasurements of KOUN have an azimuthal

resolution of 18 and a range resolution of 250 m. They are

assumed to be free of precipitation attenuation and used

to simulate X–C-band radar data that contain attenua-

tion. The azimuthal resolutions of the three X–C-band

radars are assumed to be 18 and range resolutions are

assumed to be 96 and 125 m for CASA IP1 and OU-

PRIME radars, respectively.With the simulated data, the

proposed variational retrieval algorithm is evaluated

a. Simulation of attenuated PRD

Figure 3 shows the procedure of radar data simula-

tion. S-band radar measurements are assumed to be free

of attenuation and represent the intrinsic radar mea-

surements of precipitation. S-bandZH and ZDR data are

first interpolated to a high-resolution Cartesian grid and

FIG. 2. (a) Radar reflectivity (dBZ; 0.58 elevation angle) and (b) differential reflectivity (dB) measured by KOUN radar at 1948 UTC

24Apr 2011. The ‘‘cross’’ marks indicate the locations of X-bandKSAO andKRSP radars, C-bandOU-PRIME radar, and S-bandKTLX

radar; 40-km range rings are for KSAO and KRSP radar; 120-km range ring is for OU-PRIME radar.
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these fields are used to generate X-band truth and verify

the analyses. They are also interpolated into X–C-band

radar grids (at 18 azimuthal resolution and 96- or 125-m

range resolution). The interpolated S-band ZH and ZDR

are then used to retrieve the DSDs of rainfall, which are

assumed to be measured by X–C-band radars within

their observable regions. The DSD retrieval here needs

to solve Eq. (9) using a two-parameter DSD model, for

example, an exponential model or C-Gmodel. Next, the

retrieved DSD is used to calculate X–C-band radar var-

iables using Eqs. (9)–(12) as well as scattering amplitudes

of raindrop, which have been calculated and stored in the

lookup tables. Those calculated variables are assumed to

be the ‘‘truth’’ of theX–C-band radarmeasurements. The

attenuated X–C-band Z0
H and Z0

DR are then obtained

from Eq. (13). Finally, fluctuation error and bias are

added to the attenuated Z0
H and Z0

DR to simulate the

X–C-band radar observations for the analysis of pro-

posed retrieval algorithm. The configuration of noise and

bias can vary for different experiments.

b. Results of variational analysis

Figure 4 shows one example of variational retrieval

results using simulated X-band radar observations. The

simulation applies the S-band dataset shown in Fig. 2.

The Gaussian errors added to the simulated X-band

data (Z0
H , Z

0
DR, and KDP) have standard deviations of

1 and 0.1 dB and 0.18 km21, respectively. No biases are

added to the simulated data. The initial configurations of

the 2D variational retrieval are given as follows. The

analysis region is 40 km 3 40 km, which uses 4013 401

grid points in the horizontal plane with a space of 100 m

between two adjacent grid points. The decorrelation

length rL in Eq. (6) is set to 2 km in this experiment. The

assumed error standard deviations for Z0
H , Z

0
DR, and

KDP in the variational scheme are 1 and 0.1 dB and

0.18 km21, respectively, consistent with the simulated

errors. A constant initial background of (N0*5 3; L5 5)

is used for the variational analysis. Since the constant

background does not contain much useful information,

the background error is set to a large number. As shown

in Fig. 4, the simulated Z0
H and Z0

DR of X-band KRSP

radar observations have apparent attenuations, espe-

cially in the northeast region beyond 20 km of radar site.

The simulated Z0
H , Z

0
DR, and KDP images appear noisy

because of added errors. Because the observation op-

erator has included the attenuation correction, the

analysis results of the variational retrieval show similar

features to the truth (the radar truth and simulated ob-

servations are in the radar coordinates while the analysis

is on the Cartesian analysis grid). The analysis results

also show smoother images than simulated observa-

tions because of the inherent smoothing in the retrieval

algorithm associated with the assumed spatial back-

ground error covariance. The smoothing helps to can-

cel out random errors in the observations.

Relative to the truth on analysis grids, the biases of

analysis results are 0.048 and 0.013 dB and 0.0078 km21

for Z0
H , Z0

DR, and KDP, respectively. The root-mean-

square errors (RMSE) are 0.837 and 0.109 dB and 0.1088
km21 forZ0

H ,Z
0
DR, andKDP, respectively. The biases and

errors of retrieval results are close to assumed biases (no

bias in this example) and errors in simulated dataset. The

small biases and errors also illustrate the good perfor-

mance of proposed variational DSD retrieval algorithm.

Figure 5 shows another example of variational re-

trieval using simulated C-band radar observations. S-band

FIG. 3. The procedure of C–X-band radar data simulation based on

S-band radar data.
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dataset shown in Fig. 2 is also used for this simulation. The

error standard deviations for simulated C-band data Z0
H ,

Z0
DR, and KDP have been increased and are 2 and 0.2 dB

and 0.28 km21, respectively. The simulation ignores the

bias as well. The analysis region is 120 km3 120 km with

601 3 601 grid points and a space of 200 m. The decor-

relation length rL is increased to 4 km. The assumed errors

for Z0
H , Z

0
DR, and KDP in the variational scheme are still

1 and 0.1 dB and 0.18 km21, which are smaller than sim-

ulated errors. The constant background is again used

for the variational analysis. Although simulated errors

are higher than measurement errors assumed in the var-

iational retrieval scheme, the algorithm still gives a good

retrieval, which shows similar storm features as in the

truth. The attenuation has been well corrected and the

retrieved radar images have been smoothed. The

biases of analysis results are 0.051 and 0.071 dB and

20.0158 km21, and the RMSE are 2.93 and 0.33 dB and

0.128 km21 for Z0
H , Z

0
DR, and KDP, respectively. The

biases and errors of retrieval results are larger because of

the increase of errors added in the simulated dataset.

Although the error assumption in variational retrieval

does not match the ‘‘true’’ error (i.e., simulated mea-

surement error), the retrieval error is also consistent with

the ‘‘true’’ error. The proposed retrieval algorithm still

performs well for this example of C-band data.

c. Sensitivity analysis

A sensitivity analysis would help us understand the

validity of the proposed variational retrieval algorithm.

FIG. 4. Retrieval validation using X-band KRSP radar data simulated from S-band KOUN data measured at 1948 UTC 24 Apr 2011.

(top to bottom) Analysis results, simulated X-band radar observations, and simulation truth. (left to right) Radar reflectivity (dBZ) and

differential reflectivity (dB), and specific differential phase (8 km21).
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Several issues need to be considered for practical ap-

plications of this algorithm. First, this algorithm applies

a C-G DSD model and model error may exist in quan-

tifying natural DSDs. The effect of DSDmodel error on

the retrieval is a primary concern. Second, real measure-

ment errors are always unknown and might be over-

estimated or underestimated in the variational scheme, as

done in the example of Fig. 5. This situation should be

very common in practical applications. It is therefore

important to know how incorrect assumption of mea-

surement errors would affect the retrieval. Third, there

might exist errors that are attributed to the forward

model error. The forward model error can result in dif-

ferences between radar observations and forward model

outputs. Examples in Figs. 4 and 5 do not include amodel

error although they show good performance of this al-

gorithm for nonbias assumption. It would be helpful to

know the effect of observation operator error on the

retrieval.

If the data simulation assumes a different DSD from

the one used in the variational analysis, the observa-

tion operator error is then introduced. For example,

the ‘‘truth’’ simulation may use the exponential DSD

while the retrieval uses the C-G DSD model. As sug-

gested by the study of Cao et al. (2009), however, the

DSDmodel error does not degrade the performance of

variational retrieval too much. The sensitivity tests in

the rest of this section will focuses on investigating the

effect of error and bias.

The sensitivity tests are based on X-band radar ob-

servations, which are simulated using the S-bandKOUN

radar measurements on 8 May 2007 (1230 UTC, eleva-

tion angle 0.58) when a convective system with wide-

spread stratiform precipitation passed through Oklahoma

FIG. 5. As in Fig. 4, but using C-band OU-PRIME radar.
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fromwest to east (Cao et al. 2009). The simulation follows

the procedure described in section 3a. To focus on the

DSD retrieval, the analysis chooses a 20 km 3 20 km

region, which is mostly covered by the storm. In total, 12

experiments are designed for the tests. All these tests

contain DSDmodel error—that is, the simulation assumes

the exponential DSD while the retrieval assumes the

C-G DSD. Constant background is applied in these tests.

To simulate the observation, simulated radar ‘‘truth’’ is

combined with different fluctuation errors and biases for

12 tests. Tests 1–4 assume no bias but different fluctuation

errors for simulated observations. Tests 5–8 assume the

same fluctuation errors but different biases. Tests 9–12

assume the same biases as tests 5–8 except different fluc-

tuation errors. The detailed configurations of simulated

data and error statistics of retrievals are shown in Table 1.

In each cell of the table, values to the right of slash no-

tation are simulated biases or RMSEs. Values to the left

are retrieval biases or RMSEs computed against the

simulated ‘‘truth.’’ For an optimal analysis system, the

observation error covariance matrix R should properly

characterize the expected observation errors, including

their magnitude and spatial correlations. The variational

method based on the optimal estimation theory also

assumes that all errors are unbiased (Kalnay 2002).

However, the RMSEs and bias of real observations are

difficult to accurately estimate. Therefore, mismatched

errors are introduced in our tests to examine the sen-

sitivity of the analysis to such error mismatches. The

RMSEs ofZ0
H ,Z

0
DR, andKDP in the variational scheme are

assumed to be 0.5 and 0.1 dB and 0.18 km21, respectively.

That is to say, ‘‘measurement’’ errors only match the

‘‘truth’’ in test 1. In other tests, ‘‘true’’ errors are generally

larger than assumed errors in the variational scheme.

In tests 1–4, retrieval RMSE values are generally less

than ‘‘true’’ RMSE values. This result shows that the al-

gorithm can smooth out observation errors and result in

less fluctuation error in the final analysis, consistent with

the optimal estimation theory that the error of final

analysis should be smaller than the error of all sources of

information used (Kalnay 2002). However, the mea-

surement error may result in retrieval bias. The bias in-

creases with increasing the RMSE but in general the

biases are very small, consistent with the fact that there is

no systematic bias in the simulated measurements. Tests

5–8 have the same fluctuation errors as test 1 except they

have contained different biases by adding constant values

to all measurements. Compared to test 1, tests 5–8 show

notable biases and RMSE values in retrieval results.

Except for some values of KDP, all retrieval biases or

RMSEvalues are larger than simulated biases or errors in

tests 5–8. Test 8 shows that 1-dB bias in Z0
H measure-

ments leads to about 3-dB bias and about 3-dB RMSE in

the ZH retrieval. This fact implies that the variational

algorithm is more sensitive to the measurement bias than

to the fluctuation error. The measurement bias not only

introduces a larger bias in the retrieval but also enlarges

the retrieval RMSE. Moreover, the larger the measure-

ment bias, the larger the retrieval bias and RMSE. The

larger sensitivity tomeasurement biases can be explained

by the fact that the variational analysis assumes unbiased

observations. The invalidity of this assumption can cause

more problem than measurement errors themselves, and

in practice every effort should be made to remove the

measurement biases before the variational analysis (e.g.,

Harris and Kelly 2001).

Tests 9–12 have a set of measurement biases that

match those of tests 5–8 but the fluctuation errors are

larger. For example, the simulated data in test 12 have

3 times fluctuation errors as large as in test 8. However,

retrieval biases andRMSEs of test 12 are almost the same

as those of test 8. This result also demonstrates that the

algorithm’s sensitivity to the bias is greater than to the

error. These 12 tests give us insight on the algorithm’s

TABLE 1. Bias and RMSE of variational retrieval for different experiments.

Retrieval bias/simulated bias Retrieval RMSE/simulated error

Test ZH (dB) ZDR (dB) KDP (8 km21) ZH (dB) ZDR (dB) KDP (8 km21)

1 0.091/0 0.027/0 0.004/0 0.393/0.5 0.107/0.1 0.084/0.1

2 0.083/0 0.009/0 0.006/0 0.409/1.0 0.108/0.2 0.083/0.2

3 0.178/0 0.023/0 0.012/0 0.476/1.5 0.110/0.3 0.088/0.3

4 0.267/0 0.036/0 0.019/0 0.537/2.0 0.120/0.4 0.093/0.4

5 0.440/0.125 0.115/0.025 0.020/0.025 0.597/0.5 0.159/0.1 0.084/0.1

6 0.841/0.25 0.219/0.05 0.037/0.05 0.952/0.5 0.253/0.1 0.092/0.1

7 1.575/0.5 0.411/0.1 0.067/0.1 1.687/0.5 0.445/0.1 0.114/0.1

8 2.879/1.0 0.755/0.2 0.118/0.2 3.037/0.5 0.807/0.1 0.160/0.1

9 0.448/0.125 0.113/0.025 0.022/0.025 0.606/0.75 0.157/0.15 0.085/0.15

10 0.862/0.25 0.216/0.05 0.040/00.05 0.979/1.0 0.250/0.2 0.095/0.2

11 1.604/0.5 0.408/0.1 0.071/0.1 1.724/1.25 0.443/0.25 0.117/0.25

12 2.940/1.0 0.747/0.2 0.122/0.2 3.117/1.5 0.801/0.3 0.165/0.3
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sensitivity to the observation error and bias. In real world

problems, the situation would be more complicated. For

example, the expected error might not be the same for

every measurement though this would not be a serious

issue according to the aforementioned analysis. The se-

rious problem might exist with systematic errors within

different radar variables. For example, according to the

radar forward model used in the retrieval algorithm,

three parameters, ZH, ZDR, and KDP, should be intrin-

sically consistent. Any inconsistency is equivalent to in-

troducing measurement biases, which might lead to large

biases and RMSE values in the retrieval. Moreover, the

data inconsistency might not exist everywhere equally.

For example, radar measurements might not be reliable

because of low SNRs in certain regions. Within the low

SNR regions, measurement biases and errors might be

very large while they might be small in other regions.

The performance of the variational algorithm would be

degraded in such a situation.With the understanding of

algorithm’s sensitivity, the next subsection will show

some results from real radar data and discuss corre-

sponding issues for practical implementation of the

algorithm.

4. Application to real polarimetric radar data

The previous section tests the proposed variational

algorithm using simulated data and shows promising

results. The sensitivity tests also indicate that the per-

formance of this algorithm depends on the data quality,

FIG. 6. C-band OU-PRIME radar observations: (a) radar reflectivity (dBZ) and (b) differential reflectivity (dB); (c) specific differential

phase (8 km21); and (d) SNR (dB) for 0.58 elevation angle at 1950 UTC 24 Apr 2011.
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in particular the observation bias. It is worth noting that

the retrieval based on simulated data generally gives

good results even though the constant background con-

tains useless information on the measured precipitation.

It makes sense because the simulated data are generally

of good quality and complete data coverage in the anal-

ysis regions. In such situations, the background is not

that important. However, data quality can be a major

issue for real radar data. When data quality is bad, re-

trievals without a good background are usually bad also.

This section gives two cases of real data retrieval to ad-

dress this issue.

The C-band OU-PRIME radar observations (Z0
H ,

Z0
DR, KDP, and SNR) are shown in Fig. 6. The SNR is

generally higher in the southwest region (closer to the

radar) of the image while lower in other regions. The

Z0
DR and KDP are apparently noisier in the lower SNR

region, where the data quality of Z0
H , Z

0
DR, and KDP is

certainly lower. For example, the southeast, northwest

and west regions of KDP image show unreasonable

values, attributed to low SNRs. Using a constant back-

ground (e.g., N0*5 3; L 5 5) in the variational retrieval,

the result is not satisfactory, as shown in Fig. 7 with the

retrieved ZH. The retrieved ZH only catches the major

feature of the storm and the attenuation is apparently

overcorrected in some parts of southwest region. This

result can be explained as follows. The corrections to

attenuation at different range gates of the same radar

radial are interdependent. The unreliable observations

in a region would affect the retrieval not only in this

region but also in other regions. Additional information

is therefore required to compensate the uncertainty in

unreliable observations.

In the current study we take advantage of the S-band

NEXRAD radar observations, which are additional

observations–data sources, to assist the retrieval. Figure 8

shows the reflectivity of NEXRAD KTLX located in

central Oklahoma. The speckles on this image indicate

bad data there. Despite these bad data points, the in-

tegration of KTLX radar reflectivity into the retrieval

scheme could improve the retrieval in Fig. 7. It is worth

noting that the KTLX is the single-polarization radar.

Dual-polarization information is provided by the PRD

of OU-PRIME. To verify the retrieval, independent

polarimetric S-band KOUN radar observations are

used. The retrieval analyzes a 120 km 3 120 km region

(601 3 601 grids with a space of 200 m) and assumes

observation errors to be 2 and 0.2 dB and 0.28 km21 for

Z0
H , Z0

DR, and KDP, respectively. The decorrelation

length rL is assumed to be 4 km. The KTLX radar re-

flectivity is used to derive the background state vector,

which assumes a Marshall–Palmer DSD model. The

normalized background error is assumed to be 4, that is,

4 times as large as the observation error.

Figure 9 shows the comparison between the retrieval

and KOUN observations. To make a fair comparison,

KOUN observations have been converted into the

C-band results using DSD retrieval described in sec-

tion 3a. As Fig. 9 shows, KOUN has a lower sensitivity

than OU-PRIME and its effective precipitation re-

gion is not as large as in the retrieval results. The re-

trieval results generally have a goodmatch with KOUN

FIG. 7. Reflectivity (dBZ) calculated from DSDs retrieved from

PRD shown in Fig. 6. The retrieval applies a constant background,

which results in a bad retrieval.

FIG. 8. S-band NEXRAD radar reflectivity (dBZ) for the KTLX

radar with single polarization and 0.58 elevation angle at 1948 UTC

24 Apr 2011.
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observations, capturing the detailed structures of pre-

cipitation, except that the retrievedZDR has lower values

in some regions. The smoother ZDR in the retrieval im-

plies a balance among the factors such as data quality,

error assumption, observation, and background.As shown

in Fig. 9, although we do not know the real error structure

of data exactly, the proposed retrieval algorithm still per-

forms well for the real data application in this example.

FIG. 9. Comparison of (left) retrieval results and (right) simulation results from S-band KOUN data. The retrieval is based on C-band OU-

PRIMEdata shown in Fig. 6. (top to bottom)Radar reflectivity (dBZ) and differential reflectivity (dB), and specific differential phase (8 km21).
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The next example gives an X-band real data retrieval.

Similar to Figs. 6 and 9, Fig. 10 shows X-band KSAO

radar observations and Fig. 11 shows the comparison of

retrieval and the KOUN observations, which have been

converted to X band. The retrieval analyzes a 40 km 3
40 km region (401 3 401 grids with a space of 100 m)

and the same observation errors and background error

as used in the previous example. Considering that the

decorrelation length of 4 kmmight oversmooth the result

in this case of higher data resolution, the length is set to

2 km. As Fig. 11 shows, the X-band retrieval also has a

goodmatchwithKOUNobservations but while capturing

more details of the storm structures inZH,ZDR, andKDP.

This example also illustrates the validity of the retrieval

algorithm for real X-band radar data application.

5. Summary and conclusions

This study presents a variational approach for retriev-

ing raindrop size distribution and associated polarimetric

radar measurements using attenuated polarimetric ra-

dar data. The proposed retrieval algorithm applies a

two-parameter C-G DSD model and corrects the radar

attenuation simultaneously while retrieving the DSD

FIG. 10. X-band CASA IP1 KSAO radar observations: (a) radar reflectivity (dBZ) and (b) differential reflectivity (dB); (c) specific

differential phase (8 km21); and (d) SNR (dB) for 28 elevation angle at 1950 UTC 24 Apr 2011.
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FIG. 11. As in Fig.9, but based on X-band KSAO data shown in Fig. 10.
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optimally (based on optimal estimation theory). It pri-

marily uses Z0
H , Z

0
DR, and KDP data from a single radar

but can be easily extended to include observations from

multiple radars to improve the retrieval. The verification

of the retrieval focuses on the accuracy of polarimetric

variables calculated from the DSD. Analyses based on

simulated data show that the proposed algorithm has

a great potential for radar DSD retrieval. Sensitivity ex-

periments show that the more the error and/or bias in the

observations, the higher the RMSE and bias in the re-

trieval. Moreover, the algorithm is more sensitive to the

bias than the fluctuation error in the observation. The

sensitivity analysis also indicates that radar data quality,

especially with systematic biases, can be a serious issue

for the real data applications. The uncertainty of retrieval

in the region of low data quality can be mitigated by

using additional data from other radars that provide

useful precipitation information in the same region.

This is also the advantage of the variational estimation

framework over deterministic methods that the problem

can be overdetermined and the final analysis is an optimal

combination of all sources of information. This study

suggests the usage of the single-polarization NEXRAD

radar to provide informative background in the anal-

ysis. The real data application using X-bandKSAO and

C-band OU-PRIME radar data demonstrates the vali-

dity of the proposed algorithm with the use of KTLX

radar background. It also implies the capability of the

proposed algorithm applied in other radar platforms

and in other regions of the United States.

The proposed variational scheme can accommodate

a three-parameter DSD model and/or more species of

hydrometeors. We have considered using more com-

plicated DSD model (three-moment DSD or PSD for

different phases) throughmore observations frommultiple

radars (and/or multiple-frequency radars). This study has

focused on the rainfall and used a two-parameter DSD

model because we wanted to use redundant information

for the retrieval to reduce the uncertainty associated with

different observation errors from radar data. To extend

the capability of proposed algorithm in different atmo-

spheric conditions, multiple hydrometeor species, such as

rain, snow, hail, or melting phase, should be considered

in the forward observation operator. The consideration

of multiple species, however, requires more observa-

tions to resolve their microphysical structures. For ex-

ample, if three species (rain, snow, melting particles)

exist in the storm and a two-parameter microphysical

model characterizes each species, at least six independent

observations would be required for the retrieval. If

there are not enough observations, the problem can be

underconstrained by the observations, and the end re-

sults may depend too much on the background. There

can therefore be a trade-off between the number of

species to be considered and the number of model pa-

rameters to be estimated. With the success of retrieving

liquid rain in this study, future work can seek to extend

the variational retrieval algorithm to situations involving

multiple hydrometeor species.An alternative approach is

to include an atmospheric prediction model and sophis-

ticated microphysics parameterization in the estimation

system, as is done inXue et al. (2009); the effectiveness of

that approach remains to be tested with real data case,

however, and does represent another line of research.
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