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ABSTRACT

The ensemble Kalman filter (EnKF) is a data assimilation scheme based on the traditional Kalman filter update
equation. An ensemble of forecasts are used to estimate the background-error covariances needed to compute
the Kalman gain. It is known that if the same observations and the same gain are used to update each member
of the ensemble, the ensemble will systematically underestimate analysis-error covariances. This will cause a
degradation of subsequent analyses and may lead to filter divergence. For large ensembles, it is known that this
problem can be alleviated by treating the observations as random variables, adding random perturbations to
them with the correct statistics.

Two important consequences of sampling error in the estimate of analysis-error covariances in the EnKF are
discussed here. The first results from the analysis-error covariance being a nonlinear function of the background-
error covariance in the Kalman filter. Due to this nonlinearity, analysis-error covariance estimates may be
negatively biased, even if the ensemble background-error covariance estimates are unbiased. This problem must
be dealt with in any Kalman filter–based ensemble data assimilation scheme.

A second consequence of sampling error is particular to schemes like the EnKF that use perturbed observations.
While this procedure gives asymptotically correct analysis-error covariance estimates for large ensembles, the
addition of perturbed observations adds an additional source of sampling error related to the estimation of the
observation-error covariances. In addition to reducing the accuracy of the analysis-error covariance estimate,
this extra source of sampling error increases the probability that the analysis-error covariance will be under-
estimated. Because of this, ensemble data assimilation methods that use perturbed observations are expected to
be less accurate than those which do not.

Several ensemble filter formulations have recently been proposed that do not require perturbed observations.
This study examines a particularly simple implementation called the ensemble square root filter, or EnSRF. The
EnSRF uses the traditional Kalman gain for updating the ensemble mean but uses a ‘‘reduced’’ Kalman gain to
update deviations from the ensemble mean. There is no additional computational cost incurred by the EnSRF
relative to the EnKF when the observations have independent errors and are processed one at a time. Using a
hierarchy of perfect model assimilation experiments, it is demonstrated that the elimination of the sampling error
associated with the perturbed observations makes the EnSRF more accurate than the EnKF for the same ensemble
size.

1. Introduction

The ensemble Kalman filter (EnKF), introduced by
Evensen (1994), is a Monte Carlo approximation to the
traditional Kalman filter (KF; Kalman and Bucy 1961;
Gelb et al. 1974). The EnKF uses an ensemble of fore-
casts to estimate background-error covariances. By pro-
viding flow- and location-dependent estimates of back-
ground error, the EnKF can more optimally adjust the
background to newly available observations. In doing
so, it may be able to produce analyses and forecasts that
are much more accurate than current operational data
assimilation schemes, which assume that the back-
ground error is known a priori and does not vary in
time. The EnKF automatically provides a random sam-
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ple of the estimated analysis-error distribution, which
can then be used as initial conditions for an ensemble
prediction system. The EnKF and four-dimensional var-
iational data assimilation (4DVAR) are presently the
two leading candidates to replace the current generation
of three-dimensional variational (3DVAR) schemes [see
Hamill et al. (2001) and references therein for a dis-
cussion of the merits of each approach].

Houtekamer and Mitchell (1998) recognized that in
order for the EnKF to maintain sufficient spread in the
ensemble and prevent filter divergence, the observations
should be treated as random variables. They introduced
the concept of using perturbed sets of observations to
update each ensemble member. The perturbed obser-
vations consisted of the actual, or ‘‘control’’ observa-
tions plus random noise, with the noise randomly sam-
pled from the observational-error distribution used in
the data assimilation. Different ensemble members were
updated using different sets of perturbed observations.
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Burgers et al. (1998) provided a theoretical justification
for perturbing the observations in the EnKF, showing
that if the observations are not treated as random var-
iables, analysis error covariances are systematically un-
derestimated, typically leading to filter divergence. In-
terestingly, in early implementations of the EnKF, per-
turbed observations (e.g., Evensen 1994; Evensen and
van Leeuwen 1996) were not used, yet problems with
filter divergence were not found. Most likely this was
because for these oceanographic applications, obser-
vation errors were typically much smaller than either
background errors or the system noise. The relative in-
fluence of noise associated with observational errors is
much greater in atmospheric applications.

In this paper we discuss two important consequences
by sampling error in ensemble data assimilation
schemes based on the Kalman filter. These are associated
with 1) the nonlinear dependence of the analysis-error
covariance estimate on the background-error covariance
estimate, and 2) the noise added to the observations.
The former is a property of all Kalman filter-based
schemes, while the latter is specific to algorithms like
the EnKF requiring perturbed observations. The con-
sequences of the nonlinear dependence of the analysis-
error covariance estimate on the background-error co-
variance estimate are similar to the ‘‘inbreeding’’ effect
noted by Houtekamer and Mitchell (1998) and analyzed
by van Leeuwen (1999) and Houtekamer and Mitchell
(1999). The consequences of perturbing observations
have not been thoroughly explored in previous critiques
of the EnKF (e.g., Anderson 2001; van Leeuwen 1999).

Ensemble filtering approaches have been designed
without perturbed observations (e.g., Lermusiaux and
Robinson 1999; Anderson 2001; Bishop et al. 2001).
Here, we propose another ensemble filtering algorithm
that does not require the observations to be perturbed,
is conceptually simple, and, if observations are pro-
cessed one at a time, is just as fast as the EnKF. We
will demonstrate that this new algorithm, which we shall
call the ensemble square root filter (EnSRF) is more
accurate than the EnKF for a given ensemble size.

The remainder of the paper will be organized as fol-
lows: section 2 provides a background on the formu-
lation of the EnKF as well as a simple example of how
nonlinearity in the covariance update and noise from
perturbed observations can cause problems in ensemble
data assimilation. Section 3 presents the EnSRF algo-
rithm, and sections 4 and 5 discuss comparative tests
of the EnKF and EnSRF in a low-order model and a
simplified global circulation model (GCM) respectively.

2. Background

a. Formulation of the ensemble Kalman filter

Following the notation of Ide et al. (1997), let xb be
an m-dimensional background model forecast; let yo be
a p-dimensional set of observations; let H be the op-

erator that converts the model state to the observation
space (here, assumed linear, though it need not be); let
Pb be the m 3 m-dimensional background-error co-
variance matrix; and let R be the p 3 p-dimensional
observation-error covariance matrix. The minimum er-
ror-variance estimate of the analyzed state xa is then
given by the traditional Kalman filter update equation
(Lorenc 1986),

a b o bx 5 x 1 K(y 2 Hx ), (1)

where

21b T b TK 5 P H (HP H 1 R) . (2)

The analysis-error covariance Pa is reduced by the in-
troduction of observations by an amount given by

T ba b TP 5 (I 2 KH)P (I 2 KH) 1 KRK 5 (I 2 KH)P .(3)

The derivation of Eq. (3) assumes Pa 5 ^(x t 2 xa)(xt

2 xa)T&, where xt is the true state and ^ · & denotes the
expected value. The definition of xa is then substituted
from (1), and observation and background errors are
assumed to be uncorrelated.

In the EnKF, Pb is approximated using the sample
covariance from an ensemble of model forecasts. Here-
after, the symbol P is used to denote the sample co-
variance from an ensemble, and K is understood to be
computed using sample covariances. Expressing the var-
iables as an ensemble mean (denoted by an overbar)
and a deviation from the mean (denoted by a prime),
the update equations for the EnKF may be written as

a b o bx 5 x 1 K(y 2 Hx ), (4)
a b o b˜x9 5 x9 1 K(y9 2 Hx9 ), (5)

where Pb 5 [ 1/(n 2 1) x9b x9bT, n is theb bT nx9 x9 Si51

ensemble size, K is the traditional Kalman gain given
by Eq. (2) and K̃ is the gain used to update deviations
from the ensemble mean. In the EnKF, K̃ 5 K, and y9o

are randomly drawn from the probability distribution of
observation errors (Burgers et al. 1998). Note that wher-
ever an overbar is used in the context of a covariance
estimate a factor of n 2 1 instead of n is implied in the
denominator, so that the estimate is unbiased. In the
EnKF framework, there is no need to compute and store
the full matrix Pb. Instead, PbHT and HPbHT are estimated
directly using the ensemble (Evensen 1994; Houtekamer
and Mitchell 1998).

In the EnKF, if all members are updated with the same
observations (y9o 5 0) using the same gain (K 5 K̃),
the covariance of the analyzed ensemble can be shown
to be

b TaP 5 (I 2 KH)P (I 2 KH) (6)

(Burgers et al. 1998). The missing term KRKT causes
Pa to be systematically underestimated. If random noise
is added to the observations so that y9o ± 0, the analyzed
ensemble variance is
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FIG. 1. (a) Probability distribution of background-error variance
(solid) and analysis-error covariance (dotted for EnKF and dashed
for EnKF-noPO) after assimilation of first observation. Solid vertical
line indicates exact analysis-error variance, dotted vertical line in-
dicates mean of analysis-error distribution after assimilation of first
observation for EnKF and EnKF-noPO. See text for details. (b) Scat-
terplot showing how distribution of z3 is related to z1 1 z2 in ex-
pression for [Eq. (8)]. (c) Illustration of how the multiplicativeaPi

nature of the noise in z3 skews the distribution of . Dashed line isaPi

the distribution of z1 1 z2; shaded areas indicate the amount and the
distribution of spurious background-perturbed observation noise add-
ed for two particular values of this quantity. Dotted line is probability
distribution for sum of z1 1 z2 1 z3, i.e., .aPi

Ta bP 5 (I 2 KH)P (I 2 KH)
o oT b oT o bT T T1 K(y9 y9 2 Hx9 y9 2 y9 x9 H )K

b oT o bTT1 x9 y9 K 1 Ky9 x9 . (7)

If the observation noise is defined such that ^ &o oTy9 y9
5 R the expected value of Pa is equal to that tradi-
tional Kalman filter result [Eq. (3)], since the expected
value of the background-observation-error covariance
^ & is zero (Burgers et al. 1998).b oTx9 y9

b. The impact of sampling error on analysis-error
covariance estimates

For a finite-sized ensemble, there is sampling error
in the estimation of background-error covariances. In
other words, P` ± Pn, where Pn is the error covariance
obtained from an n-member ensemble and P` is the
‘‘exact’’ error covariance, defined to be that which
would be obtained from an infinite ensemble. When
observations are perturbed in the EnKF, there is also
sampling error in the estimation of the observation-error
covariances. We now explore how these can result in a
misestimation of the analysis-error covariance in a sim-
ple experiment with a small ensemble.

To wit, consider an ensemble data assimilation system
updating a one-dimensional state vector xb to a new
observation yo. One million multiple replications of a
simple experiment are performed, an experiment where
we are interested solely in the accuracy of the analysis-
error covariance. Here, xb and yo are assumed to rep-
resent the same quantity, so H 5 1. In each replication
of the experiment, a five-member ensemble of xb is cre-
ated, with each ensemble member sampled randomly
from a N(0, 1) distribution. The distribution of back-
ground-error variance estimates computed for these en-
sembles form a chi-square distribution with four degrees
of freedom (denoted by the solid curve in Fig. 1a). Since
these estimates are unbiased, the mean of this distri-
bution is equal to the true value (Pb 5 1). Two types
of data assimilation methods are then tested. The first
is the EnKF, in which each member is updated to an
associated perturbed observation. Assuming R 5 1, the
perturbed observations are randomly sampled from a
N(0, 1) distribution and then adjusted so each set of
perturbed observations has zero mean and unit variance.
The second is a hypothetical ensemble filter that does
not require perturbed observations (EnKF-noPO). For
the EnKF-noPO, once the background-error covariance
is estimated from the randomly sampled ensemble, we
simply assume that the analysis-error covariance can be
predicted by Eq. (3).

Let us first illustrate the consequences of sampling
error associated with the nonlinear dependence of the
analysis-error covariance on the background-error co-
variance. After the first observation, Eq. (3) simplifies
to Pa 5 (1 2 K)Pb 5 (1 2 gPb)Pb, where g 5 1/(Pb

1 R). Because of sampling error, Pb is a random var-
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FIG. 2. Mean absolute error of estimated Pa as a function of en-
semble size n for the EnKF with perturbed observations (solid) and
the EnKF-noPO (dotted). The horizontal line indicates the error of
the EnKF-noPO estimate for a five-member ensemble. The dashed
line shows the result for a ‘‘double’’ EnKF with 2n total ensemble
members (see text for details).

iable, so Pa is a random variable as well, even in the
absence of perturbed observations. The distribution of
Pa after the assimilation of a single observation in the
EnKF-noPO is shown by the dashed curve in Fig. 1a.
As expected, the effect of the observation is to reduce
the ensemble variance, as evidenced by the higher prob-
abilities at lower values of the error variance for Pa

(dashed curve), as compared to Pb (solid curve). For
this simple scalar example, Eq. (3) is akin to a power
transformation applied to the sampling distribution for
Pb (e.g., Wilks 1995, his section 3.4). This particular
transformation reduces Pa associated with large Pb much
more than it reduces it for small Pb. In this case, the
expected value for Pb is 1.0, and the expected value of
Pa is 0.5. However, the mean of the Pa distribution is
;0.44, indicating the distribution of Pa is biased even
though the distribution of Pb was not. This effect is
related to the so-called inbreeding problem noted by
Houtekamer and Mitchell (1998) and analyzed by van
Leeuwen (1999).

Since this effect is purely a result of sampling error
in the estimation of Pb and not perturbing the obser-
vations, all ensemble data assimilation schemes based
on the Kalman filter should suffer from its consequenc-
es, not just the EnKF. For a finite ensemble, ensemble-
mean errors will, on average, be larger than the ‘‘exact’’
value of Pa. Since the bias associated with the nonlinear
dependency of K on Pb results in a systematic under-
estimation of exact Pa, the ensemble analysis-error co-
variance will systematically underestimate the actual en-
semble mean analysis error. In ensemble-based data as-
similation systems, if the analysis-error covariances sys-
tematically underestimate ensemble mean analysis error,
observations will be underweighted, and filter diver-
gence may occur. This is why methods for increasing
ensemble variance, such as the covariance inflation tech-
nique described by Anderson and Anderson (1999) and
the ‘‘double EnKF’’ proposed by Houtekamer and
Mitchell (1998), are necessary.

Problems caused by the nonlinearity in the covariance
update (3) should lessen for larger ensembles. In that
case, the sampling distribution for Pb becomes narrower
and more symmetric about its mean value, and the power
transformation associated with the nonlinearity in the
Kalman gain results in a Pa distribution, which is itself
more symmetric and less biased.

We now consider the effect of perturbing the obser-
vations on analysis-error covariance estimates. For the
EnKF, Pa is given by Eq. (7), which in this experiment
simplifies to

2 o ba b 2P 5 (1 2 K) P 1 K R 1 2Ky9 x9 (1 2 K)

5 z 1 z 1 z . (8)1 2 3

The distribution of this quantity is shown by the dot-
ted curve in Fig. 1a. Note that the EnKF Pa distribution
has the same mean (;0.44) as the EnKF-noPO distri-
bution, since it suffers from the same problem associated

with the nonlinearity in the covariance update. However,
the distribution of Pa for the EnKF is broader than that
for the EnKF-noPO, indicating that the sampling error
is larger and the analysis-error covariance estimate is
less accurate, on average. Indeed, the mean absolute
error of the estimated Pa is ;0.24 for the EnKF, as
compared to ;0.14 for the EnKF-noPO. Figure 2 shows
the mean absolute error of the estimated Pa for the EnKF
and EnKF-noPO as a function of ensemble size. The
horizontal line on this figure highlights the fact that a
13-member EnKF ensemble is necessary to obtain an
analysis-error covariance estimate that is as accurate as
that obtained from a 5-member EnKF-noPO ensemble.

From Fig. 1a, it is also clear that very small values
of Pa are significantly more probable after an application
of the EnKF with perturbed observations than after an
application of a hypothetical EnKF-noPO. As a con-
sequence, there is a higher probability that the estimated
Pa will be less than the exact value when observations
are perturbed (62% vs 59% for the EnKF-noPO). To
understand this, let us consider the contribution of each
term in Eq. (8). Since these terms all contain x9b, they
are not independent and one cannot infer the probability
distribution of Pa [P(Pa)] from the unconditional dis-
tributions of z1, z2, and z3. Fig. 1b shows the depen-
dence of P(z3) on z1 1 z2. When z1 1 z2 is large, so
is the variance of z3. The solid curve in Fig. 1c shows
P(z1 1 z2) after the assimilation of the perturbed ob-
servations. Overplotted on this are curves of P(z3) for
two different values of z1 1 z2. P(z3) is broader when
z1 1 z2 is larger, and the probability of adding noise
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with a certain variance is proportional to the probability
of a given z1 1 z2.

Consider the effect of the noise term z3 on the prob-
ability of Pa having the value indicated at the point
labeled ‘‘a.’’ The noise term z3 in Pa when z1 1 z2 has
the value indicated at point ‘‘b’’ spreads out probability,
increasing P(Pa) at a. However, when z1 1 z2 has the
value given at a, the noise term does not increase P(Pa)
at b in equal measure. Hence, the addition of noise from
term z3 can change the shape of the distribution of Pa,
further skewing the distribution of Pa if the distribution
of z1 1 z2 is already skewed.

Houtekamer and Mitchell (1998) introduced the con-
cept of a double EnKF, in which two ensemble data
assimilation cycles are run in parallel with the back-
ground-error covariances from one ensemble being used
to update the other. The double EnKF was designed to
combat the biases introduced by the nonlinear depen-
dence of the analysis-error covariance on the back-
ground-error covariance. We have tested the double
EnKF in this simple scalar model and have found that,
as predicted by van Leeuwen (1999), it actually reverses
the sign of this bias, resulting in an ensemble whose
mean analysis-error variance is an overestimate of the
‘‘exact’’ value (which would be obtained with an infinite
ensemble) but is a very accurate estimate of the actual
ensemble-mean analysis error. However, the effects of
the extra sampling error associated with perturbed ob-
servations are not mitigated by the double EnKF, and
the mean absolute error in the estimation of Pa for the
double EnKF with 2n members is very similar to the
single EnKF with n members (Fig. 2).

In summary, this simple example shows how per-
turbed observations can increase the sampling error of
an ensemble data assimilation system. Pham (2001) in-
troduced a method for perturbing observations that guar-
antees that the background-observation-error covariance
terms in Eq. (7) is zero. Under these circumstances, the
deleterious effects of the perturbed observations just
discussed should vanish. However, the computational
cost of constraining the perturbed observations in this
way would be significant in a model with many degrees
of freedom. Therefore, an ensemble data assimilation
system that does not require perturbed observations to
maintain sufficient ensemble variance is desirable, and
should be both more accurate and less susceptible to
filter divergence than the traditional EnKF with uncon-
strained perturbed observations.

3. An ensemble square root filter

We now define a revised EnKF that eliminates the
necessity to perturb the observations. In this case, Eq.
(5) simplifies to x9a 5 x9b 2 K̃Hx9b 5 (I 2 K̃H)x9b. We
seek a definition for K̃ that will result in an ensemble
whose analysis-error covariance satisfies Eq. (3). Sub-
stituting K̃ into Eq. (6), and requiring that the resulting

expression be equal to the ‘‘correct’’ Pa [given by Eq.
(3)], yields an equation for K̃

Tb b˜ ˜ ˜(I 2 KH)P (I 2 KH) 5 (I 2 KH)P , (9)

which has a solution
21 Tb T b TK̃ 5 P H [(ÏHP H 1 R ) ]

21b T3 [Ï(HP H 1 R) 1 ÏR] , (10)

(Andrews 1968). Since the calculation of K̃ involves the
square root of p 3 p error-covariance matrices (where
p is the total number of observations), this is essentially
a Monte Carlo implementation of a square root filter
(Maybeck 1979). For this reason, we call this algorithm
the ensemble square root filter, or EnSRF. The matrix
square roots in Eq. (10) are not unique, they can be
computed in different ways, such as Cholesky factor-
ization or singular value decomposition. Square root
filters were first developed for use in small computers
on board aircraft, where word-length restrictions re-
quired improved numerical precision and stability.
These requirements outweighed the computational over-
head required to compute the square root matrices,
which can be significant.

For an individual observation, HPbHT and R reduce
to scalars, and Eq. (9) may be written

b THP H
T T T T˜ ˜ ˜ ˜KK 2 KK 2 KK 1 KK 5 0. (11)

b THP H 1 R

If K̃ 5 aK, where a is a constant, then KKT may be
factored out of the above equation, resulting in a scalar
quadratic for a,

b THP H
2a 2 2a 1 1 5 0. (12)

b THP H 1 R

Since we want the deviations from the ensemble mean
to be reduced in magnitude while maintaining the same
sign, we choose the solution to Eq. (12) that is between
0 and 1. This solution is

21R
a 5 1 1 . (13)

b T1 2!HP H 1 R

This was first derived by J. Potter in 1964 (Maybeck
1979). Here, HPbHT and R are scalars representing the
background and observational-error variance at the ob-
servation location. Using K̃ to update deviations from
the mean, the analysis-error covariance is guaranteed to
be exactly equal to Eq. (3). In the EnKF, the excess
variance reduction caused by using K to update devi-
ations from the mean is compensated for by the intro-
duction of noise to the observations. In the EnSRF, the
mean and departures from the mean are updated inde-
pendently according to Eqs. (2), (4), (5), and (13), with
y9o 5 0. If R is diagonal, observations may be processed
one at a time, and the EnSRF requires no more com-
putation than the traditional EnKF with perturbed ob-
servations. In fact, as noted by Maybeck (1979; p. 375)
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the most efficient way of updating the deviations from
the mean in the square root filter is to process the mea-
surements one at a time using the Potter algorithm de-
scribed above, due to the extra overhead of computing
matrix square roots when observations are processed in
batches. If observation errors are correlated (R is not
diagonal), the variables may be transformed into the
space in which R is diagonal, or observations with cor-
related errors may be processed in batches using Eq.
(10).

The Kalman filter equations (Eqs. 1, 2, and 3) are
derived assuming that the forward operator H, which
interpolates the first-guess to the observations locations,
is linear. In an operational setting, H may be a nonlinear
operator, such as a radiative transfer model that converts
temperature, humidity, and ozone concentrations into
radiances. Houtekamer and Mitchell (2001) noted that,
since in the EnKF H is applied to the background fields
individually (instead of to the covariance matrix Pb di-
rectly), it is possible to use a nonlinear H. However,
using a nonlinear H (as opposed to a linearized H) in
the EnKF may not necessarily improve the analysis,
since it violates the assumptions used to derive the anal-
ysis equations. If, as suggested by Houtekamer and
Mitchell (2001) H is applied to the background fields
individually, before computation of PbHT and HPbHT,
then the derivation of Eq. (13) applies even when H is
nonlinear. However, all of the results presented in this
paper are for linear H; we have not tested the behavior
of the EnSRF for nonlinear H.

The ensemble adjustment filter (EnAF) of Anderson
(2001), the error-subspace statistical estimation method
(ESSE) of Lermusiaux and Robinson (1999), and the
ensemble transform Kalman filter (ETKF) of Bishop et
al. (2001), all use the traditional Kalman filter update
equation [Eq. (1)] to update the ensemble mean, and
constrain the updated ensemble covariance to satisfy Eq.
(3). Therefore, they are all functionally equivalent, dif-
fering only in algorithmic details. In the EnAF, the linear
operator A 5 I 2 K̃H is applied to the prior, or back-
ground, ensemble to get an updated ensemble whose
sample covariance is identical to that computed by Eq.
(3). In the ESSE, Eq. (3) is used explicitly to update
the eigenvectors and eigenvalues of Pb. A random sam-
ple of the updated eigenspectrum is then used as initial
conditions for the next ensemble forecast. In the ETKF,
the matrix square roots are computed in the subspace
spanned by the ensemble. Here we have shown that all
of these methods have a common ancestor, the square
root filter developed in the early 1960s for aeronautical
guidance systems with low precision. By applying the
algorithm of Potter (1964), we have presented a com-
putationally simple way of constraining the updated en-
semble covariance that is no more expensive than the
traditional EnKF when observations are processed se-
rially, one at a time. Sequential processing of obser-
vations also makes it much easier to implement co-
variance localization, which improves the analysis while

preventing filter divergence in small ensembles (Hou-
tekamer and Mitchell 2001; Hamill et al. 2001).

Burgers et al. (1998) showed that the covariance es-
timates produced by EnKF with perturbed observations
asymptote to the traditional extended Kalman filter re-
sult as the number of ensemble members tends to in-
finity. For ensemble data assimilation schemes based on
the square root filter without perturbed observations, the
extended Kalman filter result is obtained when the num-
ber of ensemble members equals the number of state
variables (C. Bishop 2001, personal communication).
This implies that in such cases the ensemble and the
true state cannot be considered to be drawn from the
same probability distribution. However, in most real-
world applications this is not an issue since the number
of ensemble members is likely to be far less than the
number of state variables.

4. Results with the 40-variable Lorenz model

The simple example presented in section 2b dem-
onstrated that perturbing the observations in the EnKF
can have a potentially serious impact on filter perfor-
mance. In this section we attempt to quantify this impact
by comparing results with the EnKF and EnSRF in the
40-variable dynamical system of Lorenz and Emanuel
(1998), and then in an idealized general circulation mod-
el with roughly 2000 state variables in section 5.

The model of Lorenz and Emanuel (1998) is governed
by the equation

dXi 5 (X 2 X )X 2 X 1 F, (14)i11 i22 i21 idt

where i 5 1, . . . , m with cyclic boundary conditions.
Here we use m 5 40, F 5 8 and a fourth-order Runge–
Kutta time integration scheme with a time step of 0.05
nondimensional units. For this parameter setting, the
leading Lyapunov exponent implies an error-doubling
time of about 8 time steps, and the fractal dimension of
the attractor is about 27 (Lorenz and Emanuel 1998).
For these assimilation experiments, each state variable
is observed directly, and observations have uncorrelated
errors with unit variance. A 10-member ensemble is
used, and observations are assimilated every time step
for 50 000 time steps (after a spinup period of 1000
time steps). Observations are processed serially (one
after another) for the EnSRF, and simultaneously (by
inverting a 40 3 40 matrix) for the EnKF. The rms error
of the ensemble mean (E1) is defined as

2m n1 1
j trueE 5 X 2 X , (15)O O1 i i1 2!m ni51 j51

where n 5 10 is the number of ensemble members, m
5 40 is the number of state variables, is the jthjX i

ensemble member for the ith variable, and X true is the
‘‘true’’ state from which the observations were sampled.
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FIG. 3. Ensemble-mean error as a function of the distance at which
the covariance filter goes to zero, and the covariance inflation factor,
for (a) the EnKF and (b) the EnSRF. Results are for a 10-member
ensemble averaged over 5000 assimilation cycles using the model of
Lorenz and Emanuel (1998), with observations of every state vari-
able. Observations have unit error variance. Shaded regions indicate
regions in parameter space where the filter diverges.

Here, E2 is the average rms error of each ensemble
member,

n m1 1
j true 2E 5 (X 2 X ) . (16)O O2 i i!n mj51 i51

The rms ratio R 5 E1/E2 is a measure of how similar
the truth is to a randomly selected member of the en-
semble (Anderson 2001). If the truth is statistically in-
distinguishable from any ensemble member, then the
expected value of R 5 , or approximatelyÏ(n 1 1)/2n
0.74 for a 10-member ensemble (Murphy 1988). When
R , 0.74 (R . 0.74) the ensemble variance overesti-
mates (underestimates) the error of the ensemble mean
(E1).

As discussed in section 2b, sampling error can cause
filter divergence in any ensemble data assimilation sys-
tem, so some extra processing of the ensemble covari-
ances is almost always necessary. The two techniques
used here are distance-dependent covariance filtering
(Houtekamer and Mitchell 2001; Hamill et al. 2001)
and covariance inflation (Anderson and Anderson
1999).

Covariance filtering counters the tendency for ensem-
ble variance to be excessively reduced by spurious long-
range correlations between analysis and observations
points by applying a filter that forces the ensemble co-
variances to go to zero at some distance L from the
observation being assimilated. In the EnSRF some care
must be taken when applying covariance localization,
since the derivation of Eq. (13) assumes that there has
been no filtering of the background-error covariances
used to compute the Kalman gain. In fact, if covariance
localization is applied in the computation of K and Eq.
(13) is used to update the ensemble deviations, the anal-
ysis-error covariances will only satisfy Eq. (3) if the
covariance localization function is a Heaviside step
function, that is, the background-error covariances are
set to zero beyond a certain distance L from the obser-
vation and are unmodified otherwise. However, we have
found that using smoother covariance localization func-
tions, such as the function given by Eq. 4.10 in Gaspari
and Cohn (1999), while not strictly constraining the
ensemble to satisfy Eq. (3), actually produce a more
accurate analysis than the Heaviside function. Hence,
all of the results presented here use the Gaspari–Cohn
function for covariance localization.

The nonlinear dependence of the gain matrix on the
background-error covariance will result in a biased es-
timate of analysis error, and the analysis system will
weight the first-guess forecasts too heavily on average.
Underestimation of the background-error covariances
has a more severe impact on analysis error than over-
estimation (Daley 1991, section 4.9). To compensate for
this, covariance inflation simply inflates the deviations
from the ensemble-mean first-guess by a small constant
factor r for each member of the ensemble, before the
computation of the background-error covariances and

before any observations are assimilated. The double
EnKF introduced by Houtekamer and Mitchell (1998)
combats this problem by using parallel ensemble data
assimilation cycles in which the background-error co-
variances estimated by one ensemble are used to cal-
culate the gain for the other. In the appendix, we develop
a double EnSRF and present results as a function of
covariance filter length scale for the 40-variable model.
The results are qualitatively similar to those shown here
for the ‘‘single’’ filters with covariance inflation. How-
ever, as noted in the appendix, the double EnSRF re-
quires significantly more computation than the single
EnSRF, since the simplifications to Eq. (9) obtained for
serial processing of observations are no longer appli-
cable.

Figure 3 shows E1 averaged over 50 000 assimilation
cycles for the EnKF and EnSRF, as a function of the
covariance inflation factor and the length scale of the
covariance localization filter. The shaded areas on these
plots indicate regions in parameter space where the filter
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FIG. 4. The rms ratio as a function of the distance at which the
covariance filter goes to zero, and the covariance inflation factor, for
(a) the EnKF and (b) the EnSRF. Results are for a 10-member en-
semble averaged over 5000 assimilation cycles using the model of
Lorenz and Emanuel (1998), with observations of every state vari-
able. Observations have unit error variance Shaded regions indicate
regions in parameter space where the filter diverges. The thicker
contour is 0.74, which is the expected value for a 10-member en-
semble.

has diverged, that is, has drifted into a regime where it
effectively ignores observations. For both the EnKF and
EnSRF filter divergence occurs for a given covariance
filter length scale L when r is less than a critical value.
However, the EnSRF appears to be less susceptible to
filter divergence, since the critical value of the covari-
ance inflation factor is always less for a given L. Overall,
for almost any parameter value, the error in the EnSRF
is less than the EnKF. The minimum error in the EnSRF
is 0.2, which occurs at L 5 24 for r 5 1.03. For the
EnKF, the minimum error is 0.26, which occurs at L 5
15 for r 5 1.07. These results are consistent with those
presented for the simple scalar example in section 2b.
The observational noise terms in Eq. (7) increases the
sampling error in the estimation of the error covariances
in the EnKF, so that a larger value of the covariance
inflation factor r is needed to combat filter divergence.
The reduced sampling error in the EnSRF allows the
algorithm to extract more useful covariance information
from the ensemble for a given ensemble size. This is
consistent with the fact that larger values of L benefit
the EnSRF, but are detrimental to the EnKF.

The results of section 2b suggest that, because of
reduced sampling error, the EnSRF should produce a
more accurate estimate of analysis-error variance than
the EnKF for a given ensemble size. Therefore, if both
the EnKF and the EnSRF start with the same Pb, the
EnSRF should produce a more accurate Pa when the
ensemble is updated with observations. After propa-
gating the resulting ensembles forward to the next anal-
ysis time with a model, the EnSRF ensemble should
therefore yield a more accurate estimate of Pb, thus
producing an ensemble mean with lower error after the
next set of observations are assimilated, even though
the expected analysis-error variance is the same as ob-
tained with the EnKF. The ratio of ensemble-mean error
to analysis-error variance should therefore be larger in
the EnKF than the EnSRF. Figure 4 shows the rms ratio
for the 40-variable model experiments. For a 10-member
ensemble, the expected value for an ensemble that faith-
fully represents the true underlying probability distri-
bution is 0.74. If the rms ratio is smaller (larger) than
this value, the ensemble overestimates (underestimates)
the uncertainty in the analysis. For nearly all parameter
settings the EnSRF has a lower rms ratio than the EnKF,
indicating that, as expected the variance in the EnKF
ensemble is indeed smaller relative to ensemble mean
analysis error.

5. Results with an idealized two-level GCM

The results shown thus far have been for very simple
models, where the number of ensemble members, the
number of observations, and the number of model var-
iables are all of the same order. In this section we will
present results with an idealized primitive equation
GCM with roughly 2000 degrees of freedom, in order

to demonstrate that these results also apply to more
realistic higher-dimensional systems.

The model is virtually identical to the two-level (250
and 750 hPa) model described by Lee and Held (1993),
run at T31 horizontal resolution with hemispheric sym-
metry imposed. The prognostic variables of the model
are baroclinic and barotropic vorticity, baroclinic di-
vergence and barotropic potential temperature, yielding
2047 state variables in all. Barotropic divergence is as-
sumed to be zero, and the baroclinic potential temper-
ature is set to a constant value of 10 K. The lower-level
winds are subjected to a mechanical damping with a
timescale of 4 days, and the baroclinic potential tem-
perature is relaxed back to a radiative equilibrium state
with a pole-to-equator temperature difference of 80 K
with a timescale of 20 days. The functional form of the
radiative equilibrium profile is as given by Eq. (3) in
Lee and Held (1993). A quad-harmonic (¹8) diffusion
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FIG. 5. The 500-hPa potential temperature (contour interval 4 K
from the reference integration of the idealized two-level GCM with
observation locations superimposed. The outermost latitude circle
shown is 208N.

FIG. 6. As in Fig. 3, but for the idealized two-level primitive
equation GCM described in the text.

is applied to all prognostic variables, and the coefficient
is chosen so that the smallest resolvable scale is damped
with an e-folding timescale of 3 h. An explicit fourth-
order Runge–Kutta time integration scheme is used,
with 14 model time steps per day. Based on the leading
Lyapunov exponent, the error-doubling time of this
model is about 2.4 days.

Starting with a random perturbation superimposed
upon a resting state, the model is integrated for 400
days. The first 200 days are discarded. Observations are
generated by sampling the model output at selected lo-
cations every 12 h, with random noise added to simulate
observation error. There are 46 observation locations,
defined by a geodesic grid such that points are roughly
equally spaced on the surface of the hemisphere at an
interval of approximately 2300 km (Fig. 5). At each
observation location, there are observations of winds at
250 and 750 hPa and temperature at 500 hPa. The error
standard deviations for wind and temperature are set to
1 m s21 and 1 K, respectively. Here, 20-member en-
sembles are used, and the initial ensemble consists of
randomly selected model states from the reference in-
tegration. Assimilation experiments are run for 180
days, and statistics are computed over the last 120 days.
Experiments were conducted using the EnSRF and the
EnKF with perturbed observations for a range of co-
variance filter length scales and covariance inflation fac-
tors. Observations were processed serially in both the
EnSRF and the EnKF. EnKF experiments with simul-
taneous observation processing for selected parameter
settings produced nearly identical results, so serial pro-

cessing was used because it runs faster and requires less
memory.

Figures 6 and 7 summarize the results for 500-hPa
potential temperature rms error and rms ratio, as a func-
tion of covariance filter length scale and covariance in-
flation factor. The gray-shaded areas indicate filter di-
vergence. The results are qualitatively similar to those
obtained with the 40-variable Lorenz model. The min-
imum rms error for the EnSRF is 0.096 K, which occurs
for a covariance filter length scale of 9500 km and a
covariance inflation factor of 1.05. For the EnKF, the
minimum error is 0.125 K, which occurs at L 5 7500
km and r 5 1.10. The rms ratios are generally larger
for the EnKF indicating that relative to the EnSRF, en-
semble variance is smaller relative to ensemble mean
error. The EnSRF also is less susceptible to filter di-
vergence than the EnKF, also in agreement with the
Lorenz 40-variable results.

6. Conclusions

If the same gain and the same observations are used
to update each ensemble member in an ensemble data
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FIG. 7. As in Fig. 4, but for the idealized two-level primitive equa-
tion GCM described in the text. The thicker contour is 0.725, which
is the expected value for a 20-member ensemble.

assimilation system, analysis-error covariances will be
systematically underestimated, and filter divergence
may occur. To overcome this, an ensemble of perturbed
observations can be assimilated, whose statistics reflect
the known observation errors. In the limit of infinite
ensemble size, in a system where all sources of error
(both observation and model) are correctly sampled, this
approach yields the correct analysis-error covariances.
However, when ensemble sizes are finite, the noise add-
ed to the observations produces spurious observation-
background error covariances associated with sampling
error in the estimation of the observation-error covari-
ances. Using a very simple example, we demonstrate
how sampling error in both the background and obser-
vational error covariances can affect the accuracy of
analysis-error covariance estimates in ensemble data as-
similation systems. Because of the nonlinear depen-
dence of the analysis-error covariance on the back-
ground-error covariance, sampling error in the estima-
tion of background-error covariances will cause anal-
ysis-error covariances to be underestimated on average.
Thus, techniques to boost ensemble variance are almost

always necessary in ensemble data assimilation to pre-
vent filter divergence. The addition of noise to the ob-
servations in an ensemble data assimilation system has
two primary effects: 1) reducing the accuracy of the
analysis-error covariance estimate by increasing the
sampling error, and 2) increasing the probability that the
analysis-error covariance will be underestimated by the
ensemble. The latter is a consequence of the fact that
the perturbed observations act as a source of multipli-
cative noise in the analysis system, since the amplitude
of the noise in the analysis-error covariances is pro-
portional to the background-error estimate. Underesti-
mation of error covariances is undesirable, and has a
larger impact on analysis error than a commensurate
overestimation. Given these effects, we expect that en-
semble data assimilation methods that use perturbed ob-
servations should have a higher error for a given en-
semble size than a comparable system without perturbed
observations. Designing an ensemble data assimilation
system that does not require perturbed observations is
therefore a desirable goal.

Various techniques for ensemble data assimilation
that do not require perturbing the observations have
recently been proposed. We have designed and tested
an algorithm which is called the ensemble square-root
filter, or EnSRF. The algorithm avoids the systematic
underestimation of the posterior covariance which led
to the use of perturbed observations in EnKF by using
a different Kalman gain to update the ensemble mean
and deviations from the ensemble mean. The traditional
Kalman gain is used to update the ensemble mean, and
a ‘‘reduced’’ Kalman gain is used to update deviations
from the ensemble mean. The reduced Kalman gain is
simply the traditional Kalman gain times a factor be-
tween 0 and 1 that depends only on the observation and
background error variance at the observation location.
This scalar factor is determined by the requirement that
the analysis-error covariance match what would be pre-
dicted by the traditional Kalman filter covariance update
equation [Eq. (3)] given the current background-error
covariance estimate. The EnSRF algorithm proposed
here involves processing the observations serially, one
at a time. This implementation is attractive because, in
addition to being algorithmically simple, it avoids the
need to compute matrix square roots and thus it requires
no more computation than the EnKF with perturbed
observations and serial observation processing.

The benefits of ensemble data assimilation without
perturbed observations are demonstrated by comparing
the EnKF and the EnSRF in a hierarchy of models,
ranging from a simple scalar model to a idealized prim-
itive equation GCM with O(103) state variables. In all
cases, the EnSRF produces an analysis ensemble whose
ensemble mean error is lower than the EnKF for the
same ensemble size.

The EnSRF as formulated here requires observations
to be processed one at a time, which may pose quite a
challenge in an operational setting where observations
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can number in the millions. It will be crucial to develop
algorithms that allow observations at locations where
background errors are uncorrelated to be processed in
parallel. The treatment of model error, which we have
not considered in this study, will likely be a crucial
element in any future operational system. These will
continue to be active areas of research as ensemble data
assimilation methods are implemented in more complex
and realistic systems.
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APPENDIX

The Double EnSRF

As discussed in section 2, in any ensemble data as-
similation system the nonlinear dependence of the gain
matrix on the background-error covariance will result
in a biased estimate of analysis-error covariances, and
the analysis system will weight the first-guess forecasts
too heavily on average. Houtekamer and Mitchell (1998)
referred to this problem as the ‘‘inbreeding effect.’’ Left
unchecked, this problem may eventually lead to a con-
dition called ‘‘filter divergence,’’ in which the ensemble
spread decreases dramatically while the ensemble mean
error increases and the analysis drifts further and further
from the true state. To prevent this, covariance inflation
(Anderson and Anderson 1999) simply inflates the de-
viations from the ensemble mean first-guess by a small
constant factor for each member of the ensemble, before
the computation of the background-error covariances
and before any observations are assimilated. The ‘‘for-
getting factor,’’ used by Pham (2001), plays essentially
the same role. Another way to deal with this problem,
the so-called double EnKF was introduced by Houtek-
amer and Mitchell (1998). The double EnKF uses par-
allel ensemble data assimilation cycles in which the
background-error covariances estimated by one ensem-
ble are used to calculate the Kalman gain for the other.
Van Leeuwen (1999) presents an analysis of the double
EnKF that shows how it compensates for the biases
associated with nonlinearity in the Kalman gain. Here
we present a comparison between a double EnSRF and
the double EnKF to complement the results for the single
filters with covariance inflation presented in section 4.

In the double EnKF, the expected value of the anal-
ysis-error covariance for an infinite ensemble is

a b b T T b T TP 5 P 1 K (HP H 1 R)K 2 P H Ki i 32i i 32i i 32i

b2 K HP (A1)32i i

(van Leeuwen 1999), where the subscripts i, 3 2 i (i
5 1, 2) denote which ensemble the quantity was cal-

culated from. Therefore, the counterpart of Eq. (9) for
the double EnSRF is

Tb˜ ˜(I 2 K H)P (I 2 K H)ii i

b T T b T T5 K (HP H 1 R)K 2 P H K32i i 32i i 32i

b2 K HP . (A2)32i i

As before, if observations are processed one at a time,
H HT and R reduce to scalars. However, substituting K̃i

bPi

5 aKi does not result in a scalar quadratic equation for
a, since Ki does not factor out of the equation. There-TKi

fore, even when observations are processed serially, one
at a time, the computation of K̃i involves the computation
of matrix square roots. Since this negates the advantage
of serial processing, we elect to process all the obser-
vations at once. Defining Ai 5 I 2 H results in theK̃i

following equation for Ai,

21b aA 5 ÏP [ÏP ] , (A3)i i i

where is given by Eq. (A1). This expression for AaPi

is identical to the one derived in the appendix of An-
derson (2001). The matrix square roots are computed
using a lower-triangular Cholesky factorization. The
double EnKF is solved as described by Houtekamer and
Mitchell (1998).

Figure A1a shows the ensemble mean rms error for
the double EnSRF and the double EnKF, as a function
of covariance filter length scale L (the covariance in-
flation factor is not needed in the double filter) for 20
total ensemble members (10 in each ensemble). The
experimental setup is as described in section 4, except
that two parallel data assimilation cycles are run. For
all but the shortest L, the double EnSRF is more accurate
than the double EnKF. The minimum error for the dou-
ble EnSRF (EnKF) is 0.2 (0.25) for L 5 20 (17). This
is quantitatively similar to the results obtained for the
single filters with covariance inflation in section 4, sug-
gesting that the conclusions and interpretations pre-
sented there are not sensitive to the method used to
counter the tendency for filter-divergence associated
with nonlinearity in the Kalman gain [i.e., the inbreed-
ing effect noted by Houtekamer and Mitchell (1998)].
Fig. A1b shows the ensemble mean rms error for the
double filters as a function of ensemble size. Values are
plotted for ‘‘optimal’’ covariance filter length scales,
that is, those values of L at which the error is a mini-
mum. Clearly, the double EnSRF is more accurate for
a given ensemble size than the double EnKF. The hor-
izontal line in that figure is shown to illustrate the fact
that a double EnSRF with a total of 14 members (7 in
each ensemble) is as accurate as the double EnKF with
38 total members (19 in each ensemble). However, as
formulated here, in addition to the extra computational
overhead associated with running two 10-member en-
sembles instead of one, the double EnSRF requires the
computation of two m 3 m Cholesky lower-triangular
matrix square roots, as well as the inverse of a lower-
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FIG. A1. Double-filter results for the 40-variable Lorenz model.
(a) Ensemble mean error as a function of covariance filter length
scale for the double EnSRF and double EnKF with 10 members in
each ensemble. (b) Ensemble-mean error as a function of ensemble
size (as defined by the total number of members in both ensembles).
Values in (b) are calculated with the covariance filter length scale L
that yields the minimum error. The horizontal line in (b) denotes the
error of the double EnSRF with 7 members in each ensemble (an
ensemble size of 14). See the appendix for further details.

triangular matrix, where m is the dimension of the model
state vector. This makes the double EnSRF much more
computationally expensive than either the double EnKF
or the single EnSRF.
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