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SUMMARY

Bayesian probabilistic arguments are used to derive idealized equations for finding the best analysis for
numericat weather prediction. These equations are compared with those from other published methods in the
light of the physical characteristics of the NWP analysis problem; namely the predetermined nature of the basis
for the analysis, the need for approximation because of large-order systems, the underdeterminacy of the
problem when using observations alone, and the availability of prior relationships to resoive the
underdeterminacy.

Prior relationships result from (1) knowledge of the time evolution of the model {which together with the
use of a time distribution of observations constitutes four-dimensional data assimitation); (2) knowledge that
the atmosphere varies slowly (leading to balance relationships); (3) other nonlinear relationships coupling
parameters and scales in the atmosphere.

Methods discussed include variational techniques, smoothing splines, Kriging, optimal interpolation,
successive corrections, constrained initiahization, the Kalman—Bucy filter, and adjoint model data assimilation.
They are all shown to relate to the idealized analysis, and hence to each other. Opinions are given on when
particular methods mght be more appropriate. By comparison with the idealized method some insight is gained
into appropriate choices of parameters in the practical methods.

1. INTRODUCTION

The problem of determining the best inttial conditions for numerical weather pre-
diction (NWP) is of great practical importance, and has been the subject of many studies
by people from different backgrounds. Not surprisingly these studies result in apparently
rather different methods; however, on closer inspection they can usually be shown to be
closely related. In this paper we derive a general form for the *best’ analysis, emphasizing
the particular characteristics of the practicai NWP analysis problem, and we relate this
to other published methods. A thorough review of earlier work 1s not attempted in this
introduction; the reader is referred to papers in Bengtsson ef al. (1981) and Williamson
(1982) (especially Wahba (1982), which relates many of the ideas discussed here), as well
as the papers referenced in section 4.

One practical definition of the best analysis is that which gives the best subsequent
forecast. However, forecast models are imperfect and subject to improvements, so it is
better to define the best analysis so as to exclude the possibility of the analysis com-
pensating for errors in the forecast model. It is necessary, however, to consider the
particular forecast model to be used; this has a discrete basis for its model state which
we will denote throughout this paper by a vector x with dimension N,. Similarly we
represent the observed data by a vector y of dimension N,. The analysis required for
NWP must be expressed in terms of this model basis. It must be consistent with the actual
observed values y,. We need to know the relationship between the model basis x and
the observations y; we assume that this can be represented by an explicit operator K,
such that

y = K, (x) (1)

is the best estimate of y for a given x. The subscript n reminds us that K, might
be nonlinear, although it is often just a simple interpolation operator. The precise
meteorological interpretation of x, y and X, 1s discussed further in section 3(a).

Our analysis problem is thus to find the ‘best’ x which inverts (1) for a given y,,
allowing for observation errors and other prior information; this is a discrete inverse
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problem (Menke 1984). In keeping with inverse theory nomenclature, the function K_ is
often referred to as the ‘forward process’ or ‘forward model’. However, in our NWP
context this can lead to confusion with the forecast model, so in this paper we will use
the term ‘generalized interpolation’ instead. In section 2 we derive, using Bayesian
methods, a generalized inverse to (1) in terms of probability distribution functions (PDFs)
which are in principle estimatable. An explicit solution is derived for the case when K,
18 linearizable and the PDFs are Gaussian.

In section 3 the characteristics of the NWP analysis problem which distinguish it
from other inverse problems in the physical sciences are discussed. These are (a) the use
of a predetermined basis x, with very large order N,; (b) the search for an inverse which
is In general underdetermlned by the observations alone; and (c) the availability of much
useful prior knowledge which enables us to resolve the underdeterminacy. These features
need to be considered in practical implementations of the equations of section 2. This
we do in section 4, while comparing our analysis equations with those used in other
published methods. We show that the methods are all related, and clarify some of their
properties by regarding them as approximations to the idealized equations of section 2.
We finish by deriving an iterative solution to the ideal generalized analysis problem,
which is practically possible and which uses prior knowledge about the atmospheric state,
its nonlinear evolution, and its balance. Finally in section 5 we summarize.

2. DERIVATION OF ANALYSIS EQUATIONS

In this section we proceed from a completely general Bayesian analysis equation,
(3), expressed in terms of multi-dimensional probability distribution functions, through
a fairly standard set of assumptions, to a variational equation for the ‘best’ analysis, (22).
Linearized, this can be solved to give explicit formulae for the best analysis, (26, 27, 28),
and its expected error variance, (29). The Bayesian approach is not original, nor are the -
equations which are derived. References to earlier work are given in section 4. Our
objective i1s to show that one logical progression can lead to all the various equations
given, showing what assumptions and approximations are implicit in equations which are
often justified directly as a constrained variational best fit, (22), or as a minimum variance
best estimate, (28). The details of the derivation of (22) are not essential for understanding
the rest of this paper.

Bayes’ theorem states that the posterior probability of an event A occurring, given
that event B is known to have occurred, is proportional to the prior probability of A,
multiplied by the probability of B occurring given that A is known to have occurred:

P(A[B) « P(B|A) P(A). (2)

This is clearly applicable to our inverse analysis problem. If A is the event x = x, and B
is the event y = y,, then

P(x=x|y=y,) * P(y=Y,|x=x,) P(x=x,). (3)

Subscript t indicates the true value, and o indicates the observed value. (3) defines an
N,-dimensional PDF, which we shall call P,(x), specifying all we can know about the
analysis. We will later decide that the ‘best’ estimate x, is either the mean or the mode
of P,(x), i.e. either

;a = f x P,(x) dx (4}

Oor
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x, = x such that P,(x) is maximum. (5)

These are, respectively, the minimum variance and the maximum likelihood estimates
of x,. For a complete solution to the generalized inverse problem we need to know also
the accuracy of x;; this information too is contained in P,(x).

The prior probability P(x=x,) encapsulates our knowledge about x before the
observations are taken. We shall write this in terms of deviations from some known
background x, (remembering, however, that it might be a function of x, if there is a
nonlinear relationship between likely values of the elements of x):

P(x=x} = Py(x — x). (6)

Any physical observation is subject to random observational errors. If we know that
the true values of y are given by y, = y, then these errors can be expressed by

P(y=y,l¥1=¥1) = Po{¥, — ¥0)- (7)

Again, P, might also be a function of x,, or even of x,. For (3) we need to know

P(y=y,Jx=x,), which we shall write as P(y, — y;} where y;= K,(x,). If the generalized
interpolation K, is exact then y; = y, and

P{‘.lf(y{‘.' — yf) = Pn(?n - yf) (8)
But in general K| is inexact; we shall describe its error by
P(y,=y|x=x) = P(y: — ¥1). (9)

Now P(A) = [P(A|B) P(B)db, where B is the event that some parameter has a value
between b and b + db. So

Py=yaix=x) = | P(y=yx=x and y,=y) P(y: =y/x=x)dy, (10)
PoYo = ¥o) = f Po(y: = ¥o) Py — o) dy,. (11)
Substitution into (3) then gives
Pa(x) o Pnf(y'(: — Kn(x))Pb(x o xh) (12)
P o { | Pulys = ¥ Pelys = Koy, | Potx = ). (13)

In using this nomenclature we have anticipated the assumption that Py(x — x,) and
Py (y, — K,(x)) are independent, i.e. that background errors and observational errors.
are uncorrelated. It is possible to work through the following derivation without this
assumption, by considering their joint PDF.

To proceed further we need to specify the PDFEs Py, P, and P; of (13), and solve (4)
or (5). A common assumption, which simplifies the solution, is that the PDFs are multi-
dimensional Gaussian functions:

Py(x — xp) o exp[—3(x — x) B! (x — x,)] - (14
Py — ¥o) < exp[~(y = ¥0)'O7'(y — ¥o)l (15)
Py — y) o exp[~#y — y)"F ' (y — ). (16)

It can be shown that for these Gaussian PDEs B, O, F are covariance matrices, so that
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B = {(% ~ %) (xo — X)) (17)
O =((¥ ~ ¥ (¥o — ¥ (18)
= ({y. — Ka(x)Hy: — Ka(x)}) (19)
also that P, defined in (11), is given by
Pot(yo = ¥1)  exp[—3(y, = ¥9' (O + F)"'(y, — ¥9)|- (20)

Furthermore the minimum variance and maximum likelihood estimates (4) and (5) are
identical. For the maximum likelihood estimate we wish t0 maximize

P,(x) = Poslyo — Ku(X))Pp(x — Xp)
< exp[—Hy, — K (%)} (0 + F)"Hy, — Ky(®x)} — #(x — %) B! (x — x)].
Maximizing P, is equivalent to minimizing —In(P,)}, i.e. to minimizing
J=1{¥, = Ky(x)}' (0 + F) "y, — Ku(x)} + (x + x) B! (x — xy,). (22)

If we write K for the matrix of partial derivatives of K, with respect to the components
of x, then

(21)

Ki(x+dx)=K,(x)+Kdx (23)
and that x, which minimizes J is given by
0=K'(0+F) "y, - Ku(x)} + B7(x, ~ x,). (24)

If the linearization of K, is valid in the entire range of probable values of x in the region
of x;,, then an explicit solution can be found by evaluating K at x = x,, and writing

Kﬂ(xﬂ) = Kn(xb) + K(xa o Kb)- (25)

Substitution in (24) gives an explicit solution which can be manipulated into several
forms, three of which we will be referring to later:

X, = X, + {BK'(0 + F) 'K + I} "1BK"(0 + F) Yy, — K,(x,)} (26)
X, = X, + BKT(0O + F)y"{KBKT(O + F) ! + I} Yy, — K, (%)} 27)
X, = x, + BK'(KBK" + O + F) Yy, — K,(x;)}. (28)
The expected analysis error covariance for this linearized Gaussian case is given by
(%, = x)(x, — x)") =B — BK'(KBK' + O + F)"'KB (29)

and the solution x, also minimizes this.

Iterative solution methods for (24) can also be found, usually related in form to (26)
or (27). By reevaluating K, (x) and if necessary K each iteration, nonlinearity in K, is
allowed for. By varying (for instance) 0, non-Gaussian errors can be allowed for. By
approximating the large matrix inverse in (26) or (27) computationally practical methods
can be found. These methods are discussed further in section 4.

Throughout this derivation we have assumed that matrices such as B and B~! are
non-singular. If one of these is singular a similar derivation can be achieved by the
expedient of replacing it by a modified matrix with the same eigenvectors and with zero
eigenvalues replaced by g, and letting € tend to zero as the final step. Note that (28) and
(29} do not require B to be non-singular if O is 1on-singular, as is usually the case for
random observational errors. So, except when there are perfect, redundant observations,
the Iimiting process converges.
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3. CHARACTERISTICS OF THE NWP ANALYSIS PROBLEM

Equations like those of section 2 have been used to analyse data in many branches
of the physical sciences, for example in the inversion of satellite-observed radiances to
derive temperature profiles (Rodgers 1976), and in geophysics and oceanography (Menke

1984; Marshall 1985). We now discuss the aspects of the NWP problem which distinguish
it from other applications.

(a) Pre-defined discrete basis

The first important assumption in our approach is that a discrete basis for the model
state has been pre-defined independently of the analysis process. Note that we require a
precise definition; we assume the existence of a unique x; determined by the state of the
real atmosphere. (Some grid-point models do not have a precise definition; values being
used sometimes as grid box averages and sometimes as spot values.) x, is the vector of
coefficients obtained by projecting the true state of the atmosphere onto the model basis.
The definition of the basis has implications for the generalized interpolation K, even in
the simplest case when K 1s just a spatial interpolation from grid points to observation
positions. In the general case any basis can be used, e.g. components of a spectral
model, with K, representing the evaluation of values at observation positions from the
coefficients. Also any observations can be used; for satellite radiance observations K, is
the radiative transfer equation from the model temperature profile.
| The externally specified discrete basis (on criteria of accuracy of NWP, and com-
puting economy) removes the need to discuss trade-offs between resolution and accuracy,
an important consideration in other fields. It also enables us to use simpler matrix
methods, rather than methods based on function theory.

Having distinct model and observational bases clarifies questions of resolution and
representativeness which arise in some methods (for instance optimum interpolation,
see section 4(c)). Because of the definition of x,, the background error covariance of
X, — X, (B) does not contain errors of representativeness. Similarly the observational
error covariance of y, — y, (O) contains only instrumental errors. The errors of repre-
sentativeness which are often included in the observational error are now separated into
the errors F of the generalized interpolation K,,.

Since an NWP model uses the same basis for initial conditions and forecast, the
generalized interpolation K, is appropriate for both. For instance if surface air tem-
perature and wind forecasts are derived from a NWP forecast whose basis does not contain
them, then for consistency the same K, should be used when analysing observations of
the same parameters.

(b) Need for approximation

Having derived suitable analysis equations, we might in many problems obtain
solutions using standard computer techniques. However, in the NWP case the best
forecasts usually come from models for which the storage and processing of the vector x
of dimension N, uses up most of the available computer resources. One cannot envisage
processing matrices such as B with its N2 elements, and approximations must be made.
In fact many successful analysis schemes have been constructed empirically, without
reference to idealized solutions. However, an understanding of how approximations
relate to the ideal can guide us in their development and shorten lengthy empirical tuning.

(¢c) Underdeterminacy: the need for prior information
With the continuing increase in computer power, there has been a corresponding
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increase in the size and complexity of NWP forecast models. Important weather phe-
nomena such as fronts and severe storms need very high resolutions to forecast them
well. It seems that for some time to come the size of models (N,) will continue to increase
as fast as computing considerations allow. Thus despite progress in remote sensing and
other automatic observing systems, which is increasing the number of data (N,), it seems
likely that the NWP analysis problem will remain underdetermined, with N, > N,.
Certainly we will never have observations for every model value, and the problem will
be at least partially underdetermined.

Formally in section 2 we resolve this underdeterminacy by assuming prior knowledge
to justify constraining x on or near a surface or point in the N,-dimensional space of x.
This is expressed generally by (6), and for Gaussian PDFs by (14). We shall see in section
4(a) how any linear constraints and prior knowledge about x can be incorporated into x,
and B and how nonlinear constraints and relationships can be handled. In the rest of this
section we discuss the physical sources of prior knowledge for our NWP problem, in
addition to the assumptions of smoothness and closeness to the long-term norm (clima-
tology) that are commonly used for this sort of problem.

(d) Time evolution

Since the atmosphere is being regularly observed, one way of increasing N, is to
consider data from a longer time period. The equations of section 2 are general; the
model basis of x is not restricted to an instantaneous three-dimensional picture. We could
consider the basis to be a four-dimensional array in space and time. In this case to
increase the time period of useful observations would lead to a corresponding increase
in N,, and the underdeterminacy problem would not be resolved. However, the fact that
we are attempting NWP implies that we know relationships for the time evolution of
model fields. These can be used as constraints on the possible four-dimensional values
of x. Thus use of a space and time distribution of observations together with knowledge
of evolution equations can resolve the underdeterminacy; the process of achieving this
has become known as four-dimensional data assimilation (Bengtsson 1975).

(¢) Balance

It is an observed fact that atmospheric fields are usually slowly varying, considering
the magnitudes of the mmdividual forces involved; i.e. that the forces are in approximate
balance. The relationships this implies can be used to constrain x and reduce the
underdeterminacy. Techniques to achieve such a balance after the analysis and before a
forecast are called initialization. Ideally the analysis should use all prior information,
fitting balance relationships simultaneously with fitting the data. Ways of doing this using
mifialization techniques as part of the analysis process are discussed in section 4(g). A
separate initialization step after the analysis is useful only if the analysis method is
mmperfect in 1ts use of prior information about balance.

(f) Nonlinear coupling

Interactions exist between different scales of motion and parameters of the atmos-
phere, which means that some scales and parameters are not completely independent
but to a large extent determined by forcings from boundaries and other scales and
parameters. For instance the boundary layer structure depends largely on the surface
heating and the synoptic situation, the high resoclution detail of a front depends on frontal
dynamics and the large-scale forcing, and the humidity field depends on past evaporation
and vertical motion. The pioneering experiment of Charney et al. (1969) showed that
wind and surface pressure could be deduced from temperature data; Lorenc and Tibaldi
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(1980) showed that realistic frontal humidity fields could be deduced from height and
wind data; and Errico and Baumhefner (1986) showed that smaller scales could be
deduced from surface forcing and larger scales. These relationships reduce the effective
number of degrees of freedom to less than N,. They are becoming more important now
that models have higher resolutions and more sophisticated representations of physical
processes. Although these relationships are in principle not very different from those
discussed in sections 3(d) and (e), they are in practice quite different since their nonlinear
effects actually aid the analysis process. Analysis based on a coarser resolution basis,
followed by interpolation to finer resolution, cannot fully use them, and it is not possible,
for instance, for a linear analysis method, given observational data for the larger scales,
to analyse consistent smaller-scale detail for features such as fronts.

4. RELATIONSHIP TO OTHER METHODS

(a) Variational methods: constraints

Equations similar to (22) appear in many variational approaches to the analysis of
data. The first term measures the fit to the data, the second the fit to additional prior
knowledge and constraints. Any relationships which are linear in x can be imposed to
any desired amount by a penalty function of the form used for the second term of (22),
which was called by Sasaki (1970) a weak constraint. We showed in section 2 that
Gaussian PDFs (14), (15), (16) lead to a variational problem with L, norms (22), which
has a linear solution (28). Other forms of PDF give other norms and nonlinear solutions.
A useful property of L, norms is that any number of weak constraints can be combined
into a single L, penalty. There is no formal need to consider individually in the analysis
information from separate sources, such as climatology x, and a forecast x; the two can
be combined to form a new background xy, and corresponding error covariance D:

(x — xp) B7H{x — %) + (x — x)TC71(x — ¢) = (x — X)"D7!(x — x4) + constant (30)
xs = D(B~'x, + C~'x,) (31)
D!=B!'+C. (32)

Other prior information, such as the linearized balance constraint of section 4(g), can be
similarly merged.

We mentioned at the end of section 2 a technique for coping with singular matrices,
by using instead a small value &, and letting it tend to zero. The same method can be
used here. If this is done for matrix C then x — x_ is constrained to be orthogonal to the
corresponding eigenvectors; the same constraint is imposed by using instead x4 and D.

The imposition of constraints on the analysis through the background covariances
was discussed by Lorenc (1981), who pointed out that (using our notation) the analysis
equation (28) can be rewritten

(%2 — Xb)" = {(¥o = Ky(x,))"(KBK" + O + F) '}(KB).

Thus changes made to the background field are linear combinations of the rows of KB,
i.e. of the background error covariances between each observation and the model field.
Any linear relationship satisfied by these covariance vectors is thus satisfied by the
analysis increments. The imposition of balance constraints, and the need (or lack of it)
for a separate initialization step was discussed by Phillips (1982) and Wahba (1982). A
comprehensive discussion of the relationship between the covariance matrix and weak
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and strong constraints is given by Ikawa (1984a and b). We discuss balance constraints
further in 4(g).

Other methods can be used in variational analysis to impose a relationship exactly
(a strong constraint in Sasaki’s (1970) terminology). One is called by Le Dimet and
Talagrand (1986) reduction of the control variable. If constraints exist which enable
certain elements (v) of vector x to be calculated from the rest (u):

x' = (u',vl) (33)
v = F(u) (34)

then the constrained analysis problem for x reduces to an unconstrained problem for u.
The generalized interpolation K, needs to be modified to contain the constraint equation

Ky(x} = Kofu, F(u)} = K (w). (35)

Methods which analyse the mass field only, calculating the wind field by a balance
equation, are using this technique.

An important application is to the data assimilation problem of section 3(d). If we
assume that we know the prognostic equations sufficiently well to use them as a strong
constraint, we can take the general four-dimensional analysis equations and reduce the
control variable to a three-dimensional field at one time {the beginning of the period if
the NWP forecast model is not reversible in time}. The modified generalized interpolation
K, thus consists of two stages—a forecast to the time of observations followed by an
interpolation in space only. The four-dimensional assimilation problem is reduced to
determining a three-dimensional field; note, however, that the three-dimensional solution
together with the NWP forecast model define a four-dimensional analysis which is equally
good at other times. This technique is used in section 4(A).

(b) Smoothing splines and Kriging

A smoothing spline is usually defined as a function g(¢) which minimizes a penalty
J given by

7= /N, 2 widy(e) = g + 4 [ Jlg)e 36)

where y(¢,) is the observational datum at position ¢; and J(g) is a penalty on smoothness,
and A is the relative weight given to the smoothness penalty (Reinsch 1967). For a one-
dimensional case, with smoothness related to the mth derivative of g

Jo={g"®F (37)

this leads to polynomial splines of order 2m — 1. Wahba (1978) showed that this 1s
equivalent to Bayesian estimation with diffuse prior estimates of polynomials of degree
less than m, i.e. assuming that the mean and first m — 1 derivatives of g are entirely
determined by the observations, with no useful prior estimates or constraints. If we
replace differentiation by the equivalent matrix operation on our finite basis x, then it
can be seen that (36) is a special case of (22). Wahba and Wendelberger (1980) related
m to the rate of fall-off of the power spectrum of the field. Similar relationships can be
made for the general form (22), since the covariance is the Fourier transform of the
power spectrum,

In the above mentioned paper, and others by Wahba and her collaborators, the
variational method is extended to the case where we know the form of the constraints
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embodying prior knowledge, but not the coefficients. This procedure, known as
generalized cross validation, can for instance be used to find the A and m from (36) and
(37) most consistent with the data. It is not limited to splines; for instance Seaman and
Hutchinson (1985) used it for calculation of correlation coefficient parameters in statistical
(optimal) interpolation.

Splines are «n aesthetically pleasing method of estimating a field from noisy data,
using as few prior assumptions as possible. For our NWP analysis problem, when we have
a predetermined discrete basis and useful prior information, they are less appropriate. In
particular, from forecasts and climatology, we often have fairly accurate prior estimates
of the mean and mean gradient of the field, while some observing systems can have
correlated errors such that the mean is poorly observed. Deriving the mean and mean
gradient from the observational data alone can cause a spline-fitting analysis to give
poor values when extrapolating beyond the edge of areas with data (e.g. Seaman and
Hutchinson 1985).

A common analysis technique used in the mining industry is Kriging (Matheron
1963). This is a minimum variance estimate of deviations from a trend field, which in
Universal Kriging (Journel 1977) can be a low-order polynomial obtained by a minimum
variance best fit to the observational data. Despite its apparently different derivation this
technique can be shown to be equivalent to the use of a polynomial spline.

(¢) Optimal interpolation, observational errors, and indirect observations

A technique very commonly used for meteorological analysis is optimal interpolation
(Ol). As first used (Gandin 1963) it was very similar to Kriging except that some prior
knowledge of a climatological background was assumed, and explicit account was taken
of observational errors. Generalized to use a forecast background, three-dimensional
multivariate data, and constraints such as non-divergence and geostrophy (e.g. Lorenc
1981), it can be written in a matrix form very similar to (28). The important difference
is that the background, and hence potentially the analysis, is assumed to be continuous.
No account is taken of the generalized interpolation K, a continuous covariance function
repiaces B, and KBK' is replaced by a matrix of this function evaluated at observation
positions. This has three effects: (i) If the number of observations used is limited by
selection, then the order of matrices to be processed (N,) is much less than that of section
2 (N,). This makes the solution of the equations a practical possibility, although the data
selection has other implications, discussed in 4(d). (ii) The continuous approximation
used for KBK' imposes differential forms of constraints such as geostrophy, rather than
the forms appropriate to the model basis. (1i1) Errors in the generalized interpolation (F)
are not explicitly considered; their effect is obtained by including in O ‘errors of
representativeness’.

These errors of representativeness are justified by redefining ‘truth’ to contain only
those scales that we wish to analyse (e.g. Lorenc 1981). Observational errors quoted for
use 1in OI analysis schemes are thus dependent on the predetermined basis, and should
not be compared directly between schemes of different resolution. Equation (28) is more
satisfactory in avoiding the somewhat circular definition of ‘truth’, and clearly separating
errors into a part (O) dependent on the observing process and a part (F) dependent on
the generalized interpolation K, and the resolution of the model basis. When evaluating
the covartance function for OI, observations are treated as point values. This is an
approximation, since all data are actually averages over sometimes large regions of space
and time. Explicit consideration of K, as in (28) allows for this; O is the observational
error for these averages, and F is the error of the generalized interpolation in estimating
these averages. Because OI has in principle a continuous form for the analysis, its prior
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estimate (the background), and the background error covariances, it is not immediately
apparent which spectral scales should be included in the background error. This is
important because the atmosphere has a continuous energy spectrum with significant
components at scales unresolved by NWP models. To be consistent we must redefine the
background error in terms of the redefined ‘truth’ used to justify observational errors of
representativeness. The forms, in (28), of KBK! and BK! for the covariance functions
show clearly that only scales resolved by the model basis should be included.

Some so-called ‘indirect’ observations in fact result from an inversion identical to
that of section 2. Examples are temperature soundings, derived from satellite radiances,
and low-level winds over oceans derived from satellite microwave scatterometers. If
satellite radiances are used as data then K| includes the radiative transfer equation (e.g.
Rodgers 1976; O’Sullivan and Wahba 1985). It is theoretically advantageous to combine
the inversion and analysis stages if K, is nonlinear or the errors are non-Gaussian (Lorenc
et al. 1985; Wahba 1985). For linear K, and Gaussian errors the sequential inversion and
analysis can give the same result as simultaneous analysis and inversion of the basic
observational data, in a manner analogous to the combination of penalties from different
prior constraints discussed in section 4(a), and to the Kalman-Bucy filter discussed in
section 4(#). Note that this requires a matrix of statistics to be passed from the inversion
step to the analysis step, as well as the retrieved indirect observation. The background
information used in the inversion also has to be passed, if it is different from that used
in the analysis. Many of the awkward error properties of indirect observations, such as
the spatial correlations of errors for satellite temperature soundings (Schlatter 1981), are
due to errors in the prior information used in the inversion process and to errors in the
forward model, rather than to errors in the basic observed quantity. The errors and
covariances of indirect observations can in principle be calculated during a statistical
inversion procedure using equations like (29), and used in a subsequent analysis.

Ol in its general multivariate form can thus be considered as a continuous approxi-
mation to our ideal discrete generalized inverse analysis. Not surprisingly therefore,
Wahba and Wendelberger (1980) have shown that Ol can also be expressed in terms of
the solution of a variational problem.

(d) Data selection

OI, by modelling KBK' directly, reduces the order of matrices to be processed from
N, to N,, and enables a further reduction by data selection. This is achieved in practice
by dividing x into sections, and for each section selecting only a subset of y. This
-approximation removes two features of the full optimal solution. Firstly, that the analysis
X, also gives directly the optimal, minimum variance, estimate of any linear combination
of the elements of x. For instance the spatial gradient of an analysed field may not be a
good estimate, if it 1s calculated using a difference of elements of x which were estimated
from different subsets of y. Secondly, that linear constraints can be imposed through use
of appropriate background and covariances. If these constraints are a good embodiment
of the sort of useful prior information discussed in section 3, then this is clearly a loss.
However, if the covariance model is itself approximate, as is always the case in practice,
then it can be advantageous not to enforce its implications too strongly. For instance
Lorenc (1981) showed that because of data selection, large-scale divergences could be
analysed even when using a covariance model which assumed non-divergent errors. For
simple climatological backgrounds, which contribute little useful prior information, and
with no useful prior relationships between analysis variables, it is advantageous to restrict
the number of data selected to less than about 10 (Gandin, personal communication) in
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order that inappropriate covariances should not adversely affect the analysis. However,
with improved covariance models, more can be used (Seaman and Hutchinson 1985).

(e) Successive corrections

The successive correction method (Bergthorsson and Doos 1955; Cressman 1959;
Barnes 1973) is a very successful empirically based iterative analysis method. The
(1 + 1)th iteration can be expressed

x{u + 1] = x[u] + QW{y, — K, (x[u])} (38)

W being a N, XN, matrix of weights which depend on the distance between observations
and grid points and on the observational errors. Q is a N, XN, matrix of normalization

factors. This is very similar to an iterative solution to (24), related to (26), which can be
written

x[u + 1] = x[u] + Q(W{y, — Ku(x[]) + x, — x[ul}) (39)

where
W = BK'(O + F)! | (40)
Q=(WK+D. (41)

The original version (38) omits a term (x, — x[«]}, forcing the analysis towards the
background, it will thus converge towards an exact fit to the observations. Some later
implementations have included this. Replacing BK' by a continuous function, as in OI,
we see that (40) is indeed like the empirically derived scheme. If the observations are

regularly distributed and K is a simple interpolation operator then a fair approximation
to Q i1s a diagonal matrix such that

Qix = (2 Wi + 1)-1- (42)

Here the subscript & indicates a particular element of x (e.g. one grid point), and the
sum over i covers those data selected as influencing it. This is like some versions of the
empirical scheme; others omit the 1 (effectively the weight given to the background). In
the original empirical schemes, the weighting function used to calculate the elements w,,
of W contained little useful prior information, so in keeping with section 4(d), data
selection was limited, and furthermore the weighting function was changed for each
iteration.

Because of the approximate form necessary in practice for Q, (38) does not converge
to the ideal solution as u tends to infinity, nor does it impose any constraints implicit in
B. Franke and Gordon (1983) and Bratseth (1986) have shown that a modified form can

do so:
x[u + 1] = x[u] + WQ'{y, — K,(x[u])}. (43)
Here Q' is a N,XN, matrix of normalization factors whose exact form should be
Q =(KW+D! (44)

as can be seen by comparison with (27). A suitable approximation for Q' will make (43)
converge to a solution which imposes any constraints implicit in B and which fits the data
exactly. A solution which allows for observational errors may be found by treating the
estimation problem as a two-stage process; firstly finding the best estimate of the true
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values for the observed parameters, then interpolating these estimates as if they were
exact. (Smoothing splines and OI can also be considered in this way.) The modified
successive correction method then becomes

ylu + 1] = y[u] + (0 + F) ' Q/{y[u] — Kq(x[u])} (45)
xX[u + 1] = x[u] + WQ'{y[x] — K, (x[u])}. (46)

With y{0] = y,. x[0] = x,,, and K|, linear, this iteration converges to a solution of (24) for
any approximation to Q' which satisfies the condition that the eigenvalues of
{I-(0+F + KBK")Q'} must have modulus less than one. This may be proved by
considering (45) minus K times (46), which gives

ylu+ 1] — Kx[u + 1] = {I — (O + F + KBK")Q'H{y[u] — Kx[u]}. (47)

Repeated substitution of (47) into the equation obtained by linearizing K, in (46),
summation of the series, and taking the limit as u tends to infinity, shows that the
approximation does converge to (28).

(f} Non-Gaussian PDFs and quality control

Purser (1984) showed how simple non-Gaussian error distributions could be handled
in an iterative maximum likelihood solution of (12), by using the Gaussian solution, and
making the observation error variances used in each iteration depend on the last estimate
of x,. Many meteorological observations have error distributions which can be modelled
by Gaussian distributions with enlarged tails due to occasional gross errors. Lorenc (1984)
showed that in this case a reasonable approximation is to perform an observation quality
control, rejecting extreme data, and treating accepted data as if their error distribution
was (Gaussian.

(g) Initialization and balance constraints

Most early analysis schemes for NWP, designed for extra-tropical latitudes, applied
a geostrophic or similar relationship as a strong constraint by a reduction of the control
variable, analysing only the mass field. More recently other variational techniques have
been used to impose more general balance relationships, such as that implied by nonlinear
normal mode initialization (see for example papers in Bengtsson er al. (1981) and
Williamson (1982)). Since the empirical justification of slowly varying fields and balance
in the atmosphere is not strong for all scales of motion, and since numerical methods of
representing this balance are only approximate, it seems appropriate to apply our prior
knowledge of balance as a weak rather than a strong constraint. If E'x is a projection of
x onto normal modes, and if x. is a nonlinearly balanced state near x,, then with
the assumptions usual in normal mode initialization, E'(x — x,) should have near-zero
elements for fast gravity modes. Thus we can add a penalty term (x — x. )’ EWE(x — x,)
to the penalty function J in (22). W is a diagonal matrix with 1/¢ for the unwanted gravity
modes and ¢ elsewhere. Combining this with the term in x,, and B, using (30), (31) and
(32) gives a new background and error covariance matrix. If we let ¢ tend to zero then
it 1s easy to show that the new background must satisfy the constraint, and the new
covariance matrix must have zero eigenvalues for the unwanted gravity modes. Thus a
constraint on balance is roughly equivalent, when linearized, to a combination of two
steps which are standard practice in many operational schemes: (1) ensuring that the
background is balanced by incorporation of nonlinear normal mode initialization into
the analysis—forecast cycle, or by using a damping time integration scheme; (2) modelling
the covariances used with geostrophic and non-divergence assumptions, or in some other
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way ensuring that deviations of the analysis from the background are in approximate
linear balance. It is interesting to note that empirical studies of the error covariances for
such a balanced background state (Hollingsworth and Lonnberg 1986) are similar to

those obtained assuming equipartition of energy amongst Rossby (i.e. balanced) normal
modes (Phillips 1986).

(h) Data assimilation: the Kalman—Bucy filter and adjoint models

In section 3(d) we defined data assimilation as the resolution of underdeterminacy
by the use of observations for a period of time together with knowledge of the equations
governing evolution of model states with time. In section 4(a) we discussed how this time
evolution constraint could be achieved in a generalized 4-dimensional analysis framework
by a reduction of the control variable, making K, consist of a forecast to the observation
time, followed by the interpolation of the observed parameters. Let us represent the
forecast model as a sequence of discrete forecasting steps:

X;r1 = Mpy(X;) (48)
and divide the observations into corresponding groups
Yoo =(¥o0 sto1 -+ Yoi »-+-Yon ) (49)

each with its own K,{(x) = L, (x;), where the additional subscripts denote values at =
particular time. If we linearize the M,; and L,; in the same way as for (23) then the
product rule for partial differentials gives us

K;‘T = MGTMlTMzT e ME-—ITL:'T- (50)

These are the discrete adjoint models of our forward process (Le Dimet and Talagrand
1986; Lewis and Derber 1985). Now for our forecast model to be a suitable strong
constraint its errors must be small, so we assume that any errors in the forward processes
are restricted to the L,;, and that observation errors at different times are uncorrelated.
(22) can then be written as

J= E} Vo — K (X0 + F) " Hyoi — Kns(X)} + (x = x5) TB 7 (x — x3). (51)

For K,; linear it is easy to show, in a manner analogous to that of (30), (31) and (32),
that the terms in J can be sequentially combined in any order. In particular the term for
i = 0 can be combined with the background to give a new background valid at { = 0 and
assoclated error covariance incorporating the information from i = ( observations. These
can in turn be multiplied by My and combined with the i = 1 observations and so on; at
each stage the combination is equivalent to a three-dimensional analysis using (28) and
(29) followed by a forecast of a new background and covariance. Thus the optimal
four-dimensional analysis reduces to a sequence of three-dimensional analyses with
appropriate forecasts using M; of the background and background error covariance; this
is the Kalman-Bucy (K-B) filter (Ghil et al. 1981). The K-B filter method can be
extended to imperfect and nonlinear models; it is then no longer precisely equivalent to
an optimal four-dimensional analysis with a strong constraint on time-evolution.

The big practical disadvantage of the K-B fiiter method is that it requires knowledge
of and processing of very large matrices such as B. Approximations such as retaining
only a number of diagonals of the matrix can make the method feasible for simple models
(Parrish and Cohn 1985), but it seems unlikely that it will be feasible for the very high
resolution models with sophisticated physical parametrizations which are needed to
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model the effects discussed in section 3(f). Le Dimet and Talagrand (1986), and Lewis
and Derber (1985) described an iterative method of minimizing (51) which allowed K.
to be nonlinear, and which by ignoring the term in B avoids large matrix manipulations.
The basic advantage of their method is that the forecast model M,; and its derivatives M,
must have been factorized into simple very sparse steps in order for M, to be a practicable
forecast model. The same factorization can be used to implement multiplication by M,T;
this 1s the adjoint model. Le Dimet and Talagrand’s method ignored completely the
background term (x ~ x,)'B~'(x — x,) in (51), a valid approximation only if the assimi-
lation period is sufficiently long to contain enough observations to determine x without
the prior information implicit in x, and B. Here we derive a more general iteration.

Starting from (51), and linearizing about the current best estimate of its minimizer x[x],
we get a new estimate

x[u+ 1] = x[u] + (2 K, (O, +F) 'K, + B"1)"! x
(2 K;T(0; + F) "y = Kuy(x[u]} + B~ x, — x[ul}). (52)

Le Dmmet and Talagrand proposed integrating the prediction model forward in time from
x[u], remembering the model fields at times i = 1 to n, then integrating the adjoint model
backward in time. The remembered model fields are used to calculate the M,T, and the
vector 2K, (0; + F)) Yy, — Kn(x[u])} is accumulated by taking out the common
factors My ... M;_,” from K, using (50). Assuming B~ to be negligibly small, this gives
the direction of descent in N,-dimensional space towards the minimum of (51), but not
the distance, which they had to obtain from some descent algorithm. The full equation
(52) gives also the distance, but only at the cost of manipulating very large matrices in
the first summation term.
If B~ is not negligible, (53) is a more appropriate form:

x[u+ 1] = x[u] + {B 2 K,"(0; + F,) 'K, + [} "' x
(B ;=E1 K; ' (0; + F) Yyy — K (x[u])} + xp, ~ x[u]). (53)

We saw mn section 4(g) how multiplication by B could be approximated by projection
onto normal modes, multiplication by a diagonal matrix of weights for each mode, and
projection back to the model basis. These operations are practically achievable. It remains
to estimate {B ZK;"(O; + F,;) 'K, + I} !; calculation of this is impracticable, but guid-
ance may be obtained by comparing (53) with (38). Equation (53) is just a generalization
of the successive correction method, and the term we have to estimate is the normalization
factor Q. Unfortunately the adjoint model integration which is used to calculate the other
summation in (53) avoids explicit calculation of W, so an approximation like (42) is
difficult to find. Moreover, just as for the successive correction method, an approximation
for Q will not retain any constraints on the increments imposed by the multiplication by

B. The modified successive correction method (43) suggests one method for avoiding this
latter problem, by using

X(u + 1} =x{u] + B ;1 K "0, +F))'Q iy — K (x[u])t. (54)
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This does not allow for observation errors; the method used for (45) and (46) might do
this, but cannot be shown to give the same convergence limit as (52) for K, nonlinear.

5. DISCUSSION AND CONCLUSIONS

In section 2 we derived idealized analysis equations for NWP using Bayesian
probabilistic arguments, and showed how a maximum likelihood best estimate could be
found as the solution of a variational problem. For the practical implementation of
these equations, the physical characteristics of the NWP analysis problem need to be
considered. These were discussed in section 3 and are as follows:

a. Considerations of forecast model accuracy and economy predetermine the model
basis, rather than data resolution. |

b. Approximations are necessary because of the very large order of the model and
number of data.

¢. Prior information or assumptions are essential; the analysis is underdetermined using
observations alone.

d. A time history of observations, plus knowledge of predictive equations constraining
possible four-dimensional solutions, can help resolve the underdeterminacy; this is the
basis of four-dimensional data assimilation.

¢. The empirical knowledge that atmospheric fields are usually slowly varying, implying
a balance between the forces acting on them, can be used to reduce the underdeterminacy.
Techniques to achieve this are related to initialization.

f. Relationships exist between different atmospheric fields and different scales of
motion, which mean that some of these are largely determined by others. In contrast
to the simple linearizable relationships such as geostrophy, many potentially useful
relationships require complex nonlinear models to represent them. It is difficult to
incorporate these into a linear analysis method.

Most of the methods which have been proposed for analysis for NWP can be related
to the idealized method of section 2, and hence also to each other. These include
variational methods, splines, Kriging, optimal interpolation, successive corrections, con-
strained initialization, Kalman-Bucy filters, and data assimilation using adjoint models.
In section 4 these methods were discussed in the light of the physical characteristics of
the NWP analysis problem. None of these methods is ideal in all respects; which is
preferred depends on which of the characteristics are considered more important. Some
possible cases follow.

(1) If the observations are most important, with little weight given to the prior relation-
ships, then methods such as the traditional successive correction method, smoothing
splines, Kriging, and OI with a limited data selection are appropriate. This might be the
case if there are plentiful data, for instance from satellites, and relatively less accurate
forecast models, as in nowcasting and very-short-period forecasting. These methods are
also appropriate for analyses for other purposes than NWP, e.g. diagnostic studies.

(ii) If an accurate NWP forecast model is available, then this and other prior information
such as balance must be effectively and efficiently used. Methods linearized about this
accurate background are appropriate. There are relatively fewer effective data, so balance
relationships should be used, either through the background error covariance B (and in
OI a large selection of data), or explicitly by setting constraints on the increments.
Specification of B is difficult, requiring either extensive data studies, or theoretical
approaches such as the Kalman—Bucy filter. A practical choice of method here needs to
take account of the cost-effective use of available computer power.
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(iii) As NWP models get more complex, with high resolution and sophisticated rep-
resentations of convection, cloud, rain, radiation, and the planetary boundary layer, then
their degrees of freedom increase and the nonlinear relationships discussed in section
3(f) become more important. At present our best method of expressing such relationships
1s 1n terms of the NWP model, which, if it is well designed, tends to satisfy them. Thus
a data assimilation scheme designed around the complete NWP model is needed. For such
NWP models we now have quite good representations of the generalized interpolation K|,
for observations like cloud amount, rainfall rate, outward long-wave radiation, convective
activity, and surface pressure tendency. However, these are not easily linearized in order
to do a linear explicit analysis. Iterative techniques such as that of Eq. (53) give the hope
that such observations can nevertheless be effectively used.

Whichever practical analysis technique is chosen, comparison with the idealized
equations of section 2 can give insight into the suitable choice of parameters in the
approximate method. The following points were made as each method was discussed in
section 4; |
(1) The penalty function used in variational analysis is related to the PDFs of background
and observations and their error covariances. Any linearizable constraints can be com-
bined with other background fields and covariances and need not be explicitly included
as separate terms. Accurate prior relationships can be applied as strong constraints by a
reduction of the control variable. *

(2) Smoothing spline approximation is a special case of the idealized method; the
penalty on smoothness is related to the assumed spectral error characteristics of the
background (or for a zero background, of the field).

(3) Observational ‘errors of representativeness’ as used in OI are shown to be the errors
in the generalized interpolation K. Only scales resolved by the model basis should be
included in the background error covariance function of OI.

(4) The number of data selected in OI governs the extent to which prior information
implicit in the background and its error covariance is used.

(5) The successive correction method can be modified, by appropriate specification of
its weighting function and normalization factor, to converge towards a solution of the
ideal analysis equation. |

(6) Observation rejection criteria in quality control procedures can be related to the
non-Gaussian form of their error distributions.

(7) Nonlinear balance constraints can be treated explicitly if they can be linearized
above some model state. To achieve this it is necessary that the background used is in
nonlinear balance and that the covariance matrix and analysis increments satisfy the
linear relationship.

(8) Four-dimensional data assimilation is covered by the same equations if the inter-
polation K, is generalized to include time extrapolation. A descent algorithm for a
nonlinear variational analysis using the adjoint model method can be suggested by
analogy with the successive correction method.
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