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ABSTRACT

An objective analysis scheme based on the Barnes technique and designed for use on an interactive
computer is described. In order to meet the specific needs of the research meteorologist, the interactive
Barnes scheme allows real-time assessments both of the quality of the resulting analyses and of the impact
of satellite-derived data upon various meteorological data sets. Display of a number of statistical and mapped
analysis quality control indicators aid the impact assessments. Simple means for taking account of the
spatially clustered nature typical of satellite data are included in the internal computations of the relative
weights of data at grid point locations.

An analyst is allowed the capability of modifying values of certain input parameters to the interactive
Barnes scheme within internally set limits. These constraints were objectively determined and tested in a
number of different situations prior to implementation. The following constraints are employed: 1) calculation
of the weights as a function of a data spacing representative of the data distribution; 2) automatic elimination
of detail at wavelengths smaller than twice the representative data spacing; 3) placement of bounds upon
the grid spacing by the data spacing; and 4) setting of a fixed limit on the number of passes through the data
to achieve rapid and sufficient convergence of the analyzed values to the observed ones. A mathematical
analysis of the convergence properties of the Barnes technique is presented to support the validity of the
latter constraint.

Despite these constraints, the interactive Barnes scheme remains versatile because it accepts limited inputs
to the data and grid display areas, to the data and grid spacings, and to the rate of convergence of the analysis
to the observations, Input parameter values are entered through a series of questions displayed on a computer
video terminal and by manipulation of display function devices. The analyst immediately sees a plot of the
data, the contoured grid values, superimposed in various colors if desired, and the effects of choice of analysis
options. Examples of both meteorological and satellite data analyses are presented to demonstrate the objectivity,
versatility and practicality of the interactive Barnes scheme.
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1. Introduction

For several years, meteorological satellites have
provided high quality fields of atmospheric temper-
ature, moisture, and winds. Yet, their potential for
enhancing mesoscale analyses and forecasts cannot
be realized until certain problems in interpretation
and assimilation are solved. In the case of satellite
cloud motion wind data, high quality data sets are
now available for mesoscale analysis (Hasler et al.,
1977; Wilson and Houghton, 1979; Peslen, 1980;
Negri and Vonder Haar, 1980). However, the prob-
lems of assigning accurate cloud heights and placing
the data onto a coordinate surface which minimizes
errors due to vertical wind shear must be solved prior

to their insertion into numerical prediction models
(Peslen er al., 1982). Also, the smallest scale at which
new information can be provided by satellite-derived
data has yet to be determined.

Moisture and temperature profiles retrieved from
multispectral infrared and microwave sensors aboard
polar-orbiting satellites (Smith, e al., 1979) have been
available for several years for weather analysis (Hay-
den, 1973; Horn, et al, 1976) and large-scale nu-
merical weather prediction (Tracton, er al., 1980). A

‘major advance in the area of remotely determined

soundings occurred recently when the Visible and
Infrared Spin-Scan Radiometer (VISSR) Atmo-
spheric Sounder (VAS) was added to the Geostation-
ary Operational Environmental Satellites (GOES).
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The VAS instrument produces data from up to 12
infrared channels in addition to the visible, and
makes possible frequent soundings of temperature
and moisture needed for mesoscale analysis (Chesters
et al., 1982). Initial results indicate VAS can depict
meaningful patterns of mid-level dryness, low level
moisture, and mesoscale regions of potential insta-
bility (Petersen et al., 1982). Yet, these data can be
used quantitatively only after their useful spatial res-
olution and compatibility with conventional rawin-
sonde data have been objectively determined.

The cloud motion wind and VAS data types are
both highly non-uniformly distributed in space. Sat-
ellite winds are characteristically available in clusters
because trackable clouds exist in clumps, whereas
satellite soundings can be retrieved only where sub-
stantial cloud cover is not present. The analysis of
either satellite data alone or of satellite data combined
with meteorological data must take into account the
spatial clustering problem before the issues of spatial
resolution and compatibility can be addressed.

An assessment needs to be made of the impact that
merger of high quality, high resohution data from
these remote sensors with conventional data has upon
the analysis and prediction of mesoscale processes
relevant to severe convective storm development and
evolution. At the NASA Goddard Laboratory for
Atmospheric Sciences (GLAS), experience has shown
that satellite impact assessments can be more readily
made when the capability exists to analyze objectively
the data sets composed of data from different ob-
serving systems (satellite, conventional, special net-
work, etc.), with the analysis results made available
in real time. This capability has been achieved with
an interactive software program which has as its foun-
dation the Barnes (1973) objective analysis technique.
The interactive Barnes scheme has been developed
with the multiple aims of 1) obtaining analyses re-
sulting from use of objective constraints, 2) having
a scheme that is versatile enough to account for the
particular characteristics of combined data sets, and
3) implementing the scheme on an interactive com-
puter so that it is both practical and fast. The scheme
is implemented on an interactive, minicomputer-
based processing and display system known as the
Atmospheric and Oceanic Image Processing System
(AOIPS), described in detail by Billingsley (1976) and
Heymsfield et al. (1983). Other real-time data analysis
and display systems include the MCIDAS at the Uni-
versity of Wisconsin (Smith, 1975), the ADVISAR
at Colorado State University (Smith et al., 1978), the
Pennsylvania State analysis and forecasting system
(Cahir et al.,, 1981), and the workstation developed
by PROFS (Reynolds, 1983).

The interactive Barnes scheme is an integral part of
a softward package on AOIPS known as GEMPAK
(General Meteorological data assimilation, analysis,
and display software Package). GEMPAK enables the
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research meteorologist to create discrete files of data,
to analyze numerous fields, to merge different types
of data file structures and to display the analyses. The
user interacts with GEMPAK through terminal com-
mands and function control switches on AOIPS. Ma-
nipulation of these various devices allows the user to
quickly alter and visualize changes in the contoured
analyses that result from changes in the values of the
input parameters to the scheme. Furthermore, analyses
of different meteorological variables or different data
sets can be overlaid by combining images from several
memory channels in different colors.

The interactive Barnes scheme is designed with fea-
tures that attempt to account for the highly non-uni-
form distribution of satellite data and which also
tackle the problems of merging satellite and conven-
tional data. Negri and Vonder Haar (1980), Peslen
(1980) and others show that computed kinematic
fields are highly sensitive to the clustered nature of
trackable clouds in satellite imagery. Other problems
lie in the interpretation of an objective analysis near
boundaries and in knowing how much smoothing is
justified. Objective constraints are built within this
scheme to deal with all these problems.

The next section discusses the characteristics of the
Barnes (1973) objective map analysis scheme that
make it particularly adaptable to these needs. Section
3 shows how the scheme is specifically tailored to
meet those needs. Section 4 is concerned with the
effects of input parameter variations upon objective
analyses of various kinds of data sets. These analyses
have been made to assess the impact 1) of satellite-
derived winds upon SESAME (Severe Environmental
Storms and Mesoscale Experiment) rawinsonde wind
data (Peslen, et al., 1982), 2) of VAS soundings upon
synoptic-scale rawinsonde data and upon the ability
to delineate potential regions of severe convective
development (Petersen et al., 1982), and 3) of SES-
AME regional and storm-scale rawinsonde data upon
the ability to diagnose frontal and jet streak-related
processes at the subsynoptic scale (Uccellini and Ko-
cin, 1981). The Appendix contains a proof of nu-
merical convergence for the Barnes (1973) scheme
and a demonstration that two passes through the data
provide sufficient convergence of the analyzed values
to the observed ones. A detailed explanation of the
stepwise procedure that is taken in conducting a
GEMPAK Barnes objective map analysis can be
found in Koch et al. (1981).

2. Characteristics of the Barnes objective map anal-
ysis scheme suitable for implementation on an
interactive computer

The Barnes (1973) objective map analysis scheme
is a computationally simple, Gaussian weighted-av-
eraging technique which assigns a weight to a datum
solely as a known function of distance between datum
and grid point. The weight w,, is assigned according
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to the distance r,, between the datum f(x,,, ) and
the (i, §) grid point as

T
Wen = exp(— —K—) s (1)
where « is a parameter that determines the shape of
the filter response function. Since this scheme is
Gaussian in nature, then an “influence radius” R may
be thought of as that radius where w,, = ¢~'. It will
be shown later that « can be chosen to provide in-
formation in the analysis only at scales resolvable
with a particular data distribution. The Barnes tech-
nique has gained wide acceptance in mesoscale anal-
ysis (e.g., Doswell, 1977; Maddox, 1980; Koch and
McCarthy, 1982), because of this analogue of the
weighting function to a simple Gaussian low-pass fil-
ter and the a priori determination of the response
function. :

When only one pass through the data is made, the
spectral response [derived by Barnes (1964) upon the
supposition that the data distribution can be repre-
sented by two-dimensional Fourier integrals] is

D, = exp[—xo(g)z] @)

as a function of horizontal wavelength A. This yields
an interpolated field given by

&di, §) = f(x, »)D,, 3

where f(x, y) is an idealized monochromatic data field
of the form 4 sin(2wx/\). Figure 1 shows that use of
smaller values of the dimensionless weight parameter
k¥ = k,/L? results in greater filter response during the
first pass, particularly for the short waves. Here L is
an arbitrary scale length based upon the data distri-
bution.

Barnes (1973) has modified the earlier (1964) version
of his technique in order to decrease the amount of
computer time necessary to achieve desired response
at small wavelengths. This modification consists in
applying only a single correction pass through (iteration
upon) the initial interpolated field g.(i, §), rather than
making several iterations as before. To accomplish this,
parameter « is decreased from its first pass value (x,)
to a correction pass value of

KL= YKo, C)

by using a numerical convergence parameter v(0 < v
< 1) that forces a high degree of convergence (agree-
ment) between the observation field f(x, y) and the
correction (second) pass interpolated field g,(x, y). Of
course, it is not always desirable to have the inter-
polation field fit the data exactly. The analyst obtains
the desired response following the second data pass by
manipulating the value of .

The “correction (second) pass” grid field g(i, j)
is the result of adding to the first pass field the
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FIG. 1. Relationship of first pass response D, to dimensionless
wavelength A* = \/L for various values of dimensionless weight
parameter ¥ = x,/L? in which L is an arbitrary scale length based
upon the data distribution (e.g., L = 2An).

smoothed residual difference between the observed
data values and the first pass estimated values “at”
the data locations g,(x, y), or

i, 1) = glis ) + [f(x%, 3) — &% VD1, (5)
where (after Barnes, 1973)
D, = exp[—x\(m/N)?]

= exp[—yko(m/N)]
= D,” (6)
is the response function corresponding to the weight
function
Win = €Xp(~Tm’/YKo). @)
A simple bilinear interpolation between the values of
8., §) at the four surrounding grid points can be
used to obtain an estimate for g,(x, y) at each data
location. The actual correction pass value at each grid
point is computed as the sum of the weighted averages

from the two passes with M observations according
to [after (5)]:

M
2 Wmf(-xM9 ym)
&, ) ="=———
2 W
m=1

M
El Wil f(ms Ym) — 8okXms Ym)]
+ =

®

M
2 Wi
m=1
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Since it follows from (5) that (omitting arguments for
convenience)
- & — 8o
f — & ’
the function (6) might be referred to as a difference-
field response function. The true correction pass re-
sponse function [i.e., that one which corresponds to
the first pass response function given by (2)] is

D, (€))

ot =%, (102)
which upon substitution from (5) gives
DY =D,+ (1 — D,)D,, (10b)

and upon further substitution from (6) we have
(Barnes, 1973)
D¥ =D 1+ D, ' — D). (11)
The response function DY is the proper measure of
the degree of analysis convergence or, in other words,
how closely the interpolated values agree with the
observed ones after a second pass through the data.
Making a second pass will increase the degree of con-
vergence when 0 < vy < 1, and particularly so when
v < 0.5. The amount of increase and the resulting
" final response are known a priori from (11). The
greatest increase in response occurs at the shorter
wavelengths.

A mathematical analysis of the effect of making
additional passes (N = 2 iterations) through the data
appears in the Appendix. It is proven there that no
real benefit can be gained in making more than one
correction pass becuse of the rapidity with which con-
vergence is approached when 7 is chosen small enough.
It is also proven that the 1973 version of the Barnes
objective analysis technique using the y parameter is
absolutely convergent [the 1964 version without use
of 4 has also been shown to be convergent (Barnes,
1964), though several more passes are required to reach
the same degree of convergence as with the 1973 ver-
sion]. This fact enables the analyst to control the
amount of small-scale detail in the analyzed data fields.

Thus, an important reason for selecting the Barnes
technique for interactive usage is that only two passes
through the data are required to achieve the desired
scale resolution because of the rapidity with which con-
vergence is reached. Even when a large influence radius
(weight factor «) is chosen to reduce small-scale noise
due to variations in observation density, convergence
is still attainable.

Another desirable feature of the Barnes technique
is that the weight function is not sensitive to whether
or not a finite value is used for the cutoff radius R,
(beyond which all weights are assigned a value of ex-
actly zero). By setting R, = oo, all the data in a given
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data set would be incorporated in determining each
grid point value. However, for reasons of computa-
tional economics R. may be set to some finite value
as long as the value of the weight function at R, is
some very small number (i.e., so long as R, > R).
Since the weighting function decreases to zero asymp-
totically, the influence of data may be extended to
any distance R, to ensure that a sufficient number of
observations influence each grid point value. Some
care must be taken to ensure that R, is sufficiently
large that there be no noticeable effect upon either
the weight function or the response characteristics.

It is of some interest to provide a comparison be-
tween the Barnes (1973) and Cressman (1959) objective
analysis schemes, as they both are weighted-averaging
techniques in common usage. One important difference
concerns the choice of R.. The Cressman weights do
not asymptotically approach zero with increasing dis-
tance as they do in the Barnes technique, but instead
abruptly become zero at r,, = R,.. This aspect of the
Cressman scheme can present serious difficulties when
the data distribution is non-uniform. In particular,
those fields that havevery irregular data densities over
the domain can present a problem termed ballooning,
which is characterized by large amplitude and phase
distortions in the neighborhood of any grid point whose
value is determined primarily by the value of only one
datum.

In general, this problem can be reduced by re-
quiring that at least several observations be used in
the calculation of each grid point value. In the Barnes
technique, this is accomplished by extending the dis-
tance R, (with no resulting effect upon the weight
function). In some applications of the Cressman tech-
nique, the radius of influence is locally increased to
ensure that a sufficient number of data influence each
grid point value (Inman, 1970). However, noise in-
troduced by such a locally varying weight function
must be suppressed with additional numerical filters,
thus producing an unknown final response and re-
quiring additional computer time. Another correc-
tional method sometimes applied with the Cressman
technique is to increase the influence radius on the
first pass throughout the entire domain. Yet such a
procedure requires more passes to achieve the desired
final response.. .

Classical sampling theory (Peterson and Middleton,
1963) dictates that a wave whose horizontal wavelength
does not exceed at least twice the average observation
spacing (2An) cannot be resolved since five data points
are required to describe the wave and its derivatives.
The Cressman (1959) and Barnes techniques both em-
ploy the method of successive corrections. Accordingly,
an adjustment is made to the first pass analysis by
decreasing the influence radius in the second pass
through the data to restore the amplitude of small
wavelength components larger than the 2An scale sup-
pressed in the first interpolation-filtering pass. In the
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Cressman case, neither the number of additional passes
(typically 4-6) nor the value of the influence radius
at the second pass are governed explicitly by the data
distribution; thus, neither is the filter response. Ste-
phens and Stitt (1970) show that an optimum choice
for the Cressman influence radius on the first pass can
be made in terms of An for a uniform data distribution.
However, the optimum influence radius is not well-
known theoretically on additional passes, so the final
filter response is rather arbitrary. Random errors in
the observations generate fictitious 2An waves (Barnes,
1964). Therefore, it is desirable to filter these from the
analysis as much as possible. It will be shown later
that the Barnes filter response characteristics can be
determined prior to the analysis so that pattern scales
resolvable by the data distribution will be revealed to
a known degree.

3. The Barnes scheme tailored to GEMPAK needs

The GEMPAK version of the Barnes scheme in-
cludes the following features:

1) Specific kinds of data and grid domains are used
to permit easy manipulation of data file structures
and to obtain a uniformly reliable analysis through-
out the entire grid area displayed.

2) Differences in the nature of conventional and
satellite data are accounted for. In particular, satellite
data tend to occur in clumps or swaths separated by
varying distances. Two different data spacings are
calculated from the given data set to inform the user
when clustering is significant. This is needed because
the Barnes scheme assumes uniform distribution of
data.

3) The maximum allowable detail in the interpo-
lated fields is governed by the data spacing (in that the
2An wave is filtered from the analysis). The weights
are calculated internally as a sole function of the data
spacing,

4) The results of the mathematical analysis of the
Barnes convergence properties (Appendix) are incor-
porated by making two passes through the data.

5) Bounds to the grid spacing are uniquely deter-
mined by the data spacing. Since the magnitude of
derivative fields like divergence and vorticity is highly
sensitive to grid size, then this size must be justified
on theoretical grounds.

6) Measures of analysis quality are made available
to the analyst to allow objective determination of the
effect of the analyst’s manipulation of the analysis
filter control parameters upon the resulting objective
analysis, and to assure the analyst that a sufficient
number of observations influence each grid point
value.

7) The interactive Barnes scheme can easily be
used by one who does not possess an understanding
of the theoretical aspects of the scheme, but who does
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have the ability to judge the quality of the resulting
objective analysis in terms of its physical content,
consistency with other meteorological fields, and tem-
poral continuity. A minimum of human intervention
is necessary. Analyses can be produced and displayed
at the rate of one every 2 min once the input param-
eters have been decided upon.

These features provide for a reasonable balance
between manipulation and objectivity. The details of
each of these features are now discussed.

a. Domain definitions

A common problem in conducting a numerical
map analysis is that errors are introduced by extrap-
olating observed values to typically data sparse re-
gions near the edges of a data region. The Barnes
scheme is not immune to this problem. To help pre-
vent this, specific domain definitions are used in the
interactive scheme (Fig. 2). One of these domains is
termed the data file, which consists of the entire data
set to be tentatively considered for the Barnes objec-
tive analysis. The subset of the data file in which grid
point values are actually computed from the data by
the interactive scheme is termed the data area. Those
observations which lie outside of the data area do not
influence any grid point value. A kind of data area
frequently considered is one in which the distribution
of the data is more uniform than that within the data
file (as shown). The grid display area is that portion
of the entire gridded domain (i.e., data area) which
is displayed as “‘the objective analysis™ to the analyst.
The grid display area should lie entirely within the
data area to avoid attempted interpretation of the
analysis near the data-sparse boundaries of the data
area (the dashed region). If the grid display area were
allowed to cover the entire data area, the data would
be simply extrapolated by the Barnes scheme because
there are not enough data nearby to give reliable grid
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HG. 2. Schematic illustration of data and mesh domains
used within the interactive Barnes scheme.
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point estimates. A good approach to take is to have
at least one or two observations within the data area
remain beyond each side of the grid display area. This
is almost always possible even with satellite data sets
composed of highly non-uniformly spaced observa-
tions.

b. Non-uniform data distributions

The problem of handling non-uniform distribu-
tions within the data area is dealt with in the following
manner. First, the distance between each observation
and its nearest neighbor is determined. The average
of these distances over the entire data area is termed
the computed data spacing, An,. Its value determines
the maximum detail permitted in the objective anal-
ysis. Then, a smoother analysis can be obtained by
manually inputing any An > An.. This should be
‘done, for example, when examining the synoptic-
scale impact of clustered mesoscale satellite data upon
a field of synoptic-scale conventional data. An ap-
propriate choice in this case is the An computed from
the data area comprised only of the conventional
data. In other words, the purpose of the analysis
should govern the choice for An, under the constraint
that An = An,.

When the data spacing is severely non-uniform, an-
other computed data spacing called the “random data
spacing” can be used as a guide. The value of An,
represents what the average data spacing would be
inside a square data area A if M observations were
uniformly distributed across the area. If the data set
is severely clustered, then An, will greatly exceed An,.
Effectively An, can be used as a simple guide for de-
termining which data spacing larger than An, to em-
ploy:

An, = AP[(1 + M2))(M — 1)). (12)

¢. Control of detail in a two-pass Barnes analysis

Once the data spacing has been defined, the analyst
“fine tunes” the degree of analysis detail (or conver-
gence of the interpolated field towards the observed
field) by choosing a value for the numerical conver-
gence parameter (). In the interactive Barnes scheme,
the maximum detail is obtainable with v = 0.2,
whereas the least detail results with vy = 1.0, for a
given value of An. The analyst must decide how
closely the final analysis should be forced to fit the

- data. It is justifiable to use a small v value only when
errors in the data are a small fraction of the signal
present over the field and when the observations are
not substantially contaminated by subgrid-scale at-
mospheric processes. The degree of spatial uniformity
of the data is an additional factor that can enter into
this decision. The important thing here is that the
interactive Barnes scheme only imposes an upper
limit on the amount of resolvable detail.

Under the two-phase constraint and the further
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constraint that 0.2 < v < 1.0, the range of permissible
responses can be found for the value of An used (Fig.

-3). The first pass value of the response function D, as

a function of wavelength is arrived at by choosing an
appropriate value for D, 2An) and calculating D,(}\)
from (A18). The second pass values D¥()\) are then
calculated from (11). The value of 0.0064 for D (2An)
is selected to give a second pass response of D¥ = ¢!
at the 2An wavelength when ¥ = 0.2. Since in the
GEMPAK Barnes scheme the maximum response and
best fidelity characteristics of the scheme’s inherent
low-pass filter are arrived at by choosing this v value,
use of D (2An) = 0.0064 lets us obtain a baseline value
by which responses at muitiples of the 2An wave can
be calculated. It is important to realize that under
these conditions, the weight parameter «, is fixed by
the data spacing, since when A = 2An is inserted into
(2) with D (2An) = 0.0064,

2
Ko = —(&) InD,(2An)
T

2
2An) ' (13)

= 5.052(——

T
In other words, the weight parameter «, is fixed by
the data spacing to give maximum response of no

A/2Mn

FIG. 3. Permissible second (correction) pass filter responses as
functions of multiples of the 2An wavelength in the interactive
Barnes scheme.
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more than ¢! at the 2An scale (y = 0.2). The analyst
has the option of either accepting this default analysis
or of making a smoother, less detailed one by selecting
a larger v value (0.2 < vy < 1.0).

d. Objective determination of grid size

Typical bounds on the ratio between the grid spac-
ing Ax and the data spacing Arn appear to lie in the
range of ~0.3-0.5 (Barnes, 1964, 1973; Doswell,
1977; Maddox, 1980; Koch and McCarthy, 1982).
There are sound reasons underlying these empirical
findings. Since five grid points are required to rep-
resent a wave (Peterson and Middleton, 1963) on a
grid, and the minimum resolvable wave is of 2An
scale, then Ax must be no larger than one-half of
An to guarantee proper representation of resolvable
wavelengths (as shown in Fig. 4). As for the lower
limit, it is widely understood that calculations of de-
rivative quantities like divergence and vorticity are
highly sensitive to grid length. An unrealistically noisy
derivative field may result when the grid is too fine.
Therefore, if such derivative fields are to represent
only resolvable features, a grid length should be cho-
sen that is not much smaller than the data spacing.
For these reasons, the interactive GEMPAK Barnes
scheme imposes the constraint that 3 < Ax/An < V.

Even though the scheme places stringent limits on
the mesh size, it remains versatile enough that it can
accommodate round-off of the computed mesh size
to convenient whole numbers (1.0 deg latitude, 10.0
km, etc.). This versatility may be necessary when
making comparisons of objectively analyzed data to
numerical model output, for instance.

e. Quality control indicators

A measure of analysis quality is the field-averaged
rms difference (rmsd) between the interpolated and
observed fields. This number is displayed to the an-
alyst after both the first and second passes through
the data to show how the amount of rms reduction
between passes varies with the chosen v values. The
rmsd can then be compared to known observational
errors to help the analyst decide upon how much
smoothing to accept in the final product.

Another useful quality control indicator is a display

DATA POINTS
fe— An—
GRIDPOINTS + + + <+ +
o

FIG. 4. Determining the proper relationship between grid size
and data spacing from elementary considerations.
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of the degree to which the individual interpolated
values have converged to the observed data values.
The scheme can, if desired, be asked to interpolate
the grid point values g,(i, j) back to the data locations
and to calculate the difference between the g,(x, »)
and the data f(x, y) fields. Then, one can either dis-
play these interpolation differences at those locations
or do an objective analysis of the differences. The
latter option allows the analyst to easily visualize pat-
terns in interpolation-related rmsd. It will be shown
in several examples in the next section how such in-
formation can be extremely useful when one merges
data sets with different characteristics. It is also help-
ful to examine the rmsd field when the data are non-
uniformly distributed across the data area, and when
there is concern about the choice of grid display area
and boundary effects.

As discussed earlier, serious “ballooning’ problems
can occur when an insufficiently small number of
data determine the value at a grid point. In order to
avoid such problems, a warning flag appears to the
analyst whenever less than three datum determine the
value of any grid point (M = 3 is the result of em-
pirical tests with the scheme). Such a problem is most
likely to occur when the grid display area is chosen
so large that it extends into data-void regions. It is
desirable to caution the analyst that a better choice
for the grid display area should have been made.

The warning flag appears, in effect, because the cutoff
radius R, (see Section 2) is finite. There may be some
grid points which are not influenced by at least three
datum whenever the data distribution is extremely
clustered, or when the grid display area is chosen too
large so that it extends beyond the area in which the
data can exert much influence on grid point values.
It is important to maintain a large but finite value for
R, to warn the analyst of clustering or domain choice
problems. The cutoff radius has the additional practical
benefit of increasing the speed of weight calculations
(by eliminating calculation of extremely small weights),
without noticeably deteriorating the quality of the
analysis. We employ R, = (20«,)'/? at which distance
R,/R = 4.5 and the actual weight value would be w,,
= 2 X 107 [from (1)]. In terms of grid spacing when
Ax = An/2, it follows from (13) that R,/Ax = 12.8.
Thus, R, is chosen sufficiently large that the filter re-
sponse characteristics remain virtually unaffected.

[ Balance between versatility and objectivity

The GEMPAK Barnes scheme is a versatile, easy-
to-use, practical objective analysis package. Its ver-
satility lies in its acceptance of user inputs to data
area, grid display area, data spacing, grid spacing, and
the numerical convergence parameter v.

The scheme maintains objectivity:

1) through the limits internally imposed on the
value of v (0.2 < v < 1.0), the number of passes
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through the data (2), and constraints on both Ax(An/
3 < Ax < An/2) and An(An = An,),

2) as a result of the fact that the weights are deter-
mined solely by An and calculated internally so that
the 2An wave is effectively removed from the analysis
according to (13).

The scheme remains practical and easy because:

1) an interactive, question-and-answer type for-
mat and various cursor/display controls on AOIPS
are employed to permit the analyst to quickly visu-
alize selected data .or grid domains and the effect of
variations in the values of the analysis control param-
eters on the analysis;

2) human manipulation is minimized;

3) quality control indicators speed the analyst’s
decision-making activitics; '

4) the same calculated weights can be applied to
many different parameter fields as long as the data
quality and distribution do not vary appreciably.

The last statement raises some interesting points.
Since the most time-consuming part of the objective
analysis is the computation of exponentials, large grids
or data areas containing a large number of stations
will limit the number of parameters that can be an-
alyzed at one time. The number of exponentials com-
puted is approximately N = 2(MYKXXKY), where M
is the number of observations and KX and KY are the
number of grid points in the x and y directions. Since
N is not a function of the number of parameters being
analyzed, it has been found most efficient to compute
as many parameters as possible during a single analysis.
In the most recent version of the GEMPAK Barnes
scheme, the exponentials are being saved as a file to
reduce CPU time.

The effect that use of the same exponentials on
different meteorological variables has upon the anal-
ysis of the variables should be clarified. All variables
observed within a network are analyzed with an iden-
tical set of weights, because the weight values in this
scheme are solely determined by the distances be-
tween grid points and observation points. However,
this does not mean that the analyses will appear sim-
ilar, nor that the temporal and spatial spectra of the
variables will be identical. The weights only affect the
degree of spatial smoothing. Thus, only the high fre-
quency cutoff and the resulting spectral slope of the
spatial spectra would be affected by the objective anal-
ysis-interpolation process when multiple use is made
of a given set of weights.

_ 4. Meteorological applications of the GEMPAK
Barnes scheme

In this section, the input parameters which allow
the analyst to interactively tailor the analysis of data
sets to his or her specific needs are each varied to
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illustrate the effects upon the objective analyses.
Three data sets are analyzed in this regard:

1) An almost uniformly distributed data set de-
rived from the SESAME regional-scale rawinsonde
network. An analysis is made of the wind speeds at
the 310 K isentropic surface at 2100 GMT 10 April
1979. This data file, consisting of 32 of the 42 stations
comprising this network, will be called SESAME
RAWIN.

2) A highly clustered, non-uniformly distributed
data set consisting of wind speeds reported at the 825
mb level of the SESAME regional-scale rawinsondes,
combined with satellite-derived-motions of tracked
low-level clouds. This combined wind data set, col-
lected at 1800 GMT 10 April 1979, constitutes the
data file to be called SESAME CLOUDWIND.

3) A totally satellite-derived data set with inter-
mediate degree of non-uniformity consisting of tem-
peratures derived from the VAS radiance measure-
ments. This data file, known here as VAS TEMP,
consists of temperatures assumed representative of
conditions at 920 mb over the central part of the
United States at 1202 GMT 20 July 1981.

In all of these analyses, the first task is to display a
map of the observations within the data file, plus an
additional data-free area of 1-3° latitude/longitude to
facilitate map display. Once the map has been gen-
erated, the vertical level, data set name, data and grid
display areas, etc., are entered. The domain areas can
be positioned visually by using a video cursor, or by
determining the appropriate coordinates of the lower-
left and upper-right corners of the area and then en-
tering these values on the terminal console.

a. Effect of parameter variations upon analysis of the
SESAME RAWIN data file

A comparison of two GEMPAK Barnes analyses
of the SESAME RAWIN data file generated by 1)
having the grid display area smaller than the data area
(Fig. 5a) and by 2) having the two areas equal (Fig.
5b), demonstrates the rationale behind choosing the
former option. A less reliable analysis results when
the data and grid display areas coincide, especially
near the eastern and southern sides of the box. Notice
that the observations at Nashville, Tennessee and
those throughout southern Texas are not incorpo-
rated into that analysis, resulting in loss of valuable
information on the strong wind speed gradients ac-
tually there. By comparison, the analysis displayed
in Fig. 5a was generated from grid points, each of
which have been influenced by values at station lo-
cations which totally surround it.

In both of these analyses, the numerical conver-
gence parameter v was assigned a value of 0.3. Anal-
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FIG. 5. Two analyses of the SESAME RAWIN data file (isotachs
in m s™"). Analysis generated by having (a) grid display area nested
2.0° within the 22 X 14 data area and (b) the two areas are coin-
cident. Both analyses are based on using An = 2.0°, Ax = 1.0°,
and v = 0.3. Data values are shown above station locations denoted
by crosses.

yses of the SESAME RAWIN data file with four dif-
ferent values of v (0.2, 0.3, 0.5, and 1.0) are displayed
in Fig. 6. The analysis produced with ¥ = 0.2 exhibits
noticeable detail at the 2An, scale. Larger values of
v lower the response to that scale [as given by (11)
and Fig. 3] and accordingly dampen the analysis de-
tail.

The analyst must judge which value of v produces
the best analysis for his or her purposes. There are
several tools available to the analyst within this inter-
active scheme to help in this decision. First, the rmsd
(rms difference between the interpolated and observed
fields) should be no larger than the estimated rms error
(rmse) in the observations. Since errors are additive,
it would be most desirable to keep the rmsd introduced
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by the analysis scheme considerably below the rmse
of the original observations. The computed rmsd can
help serve as an upper limit on the choice of . Second,
the meteorological features appearing in the analyses
should exhibit acceptable temporal and spatial con-
tinuity. The lower limit on v is determined by the
continuity considerations, which is best made by ex-
amining derivative fields like divergence and vorticity.
Third, the analyst should examine the interpolated
fields resulting from the largest v value first, and then
reduce v in steps until an unacceptably small signal-
to-noise ratio becomes evident.

Application of the rms quality criterion to the ob-
jectively analyzed wind speed fields is illustrated. An
observational rmse of 3-6 m s~! can be expected for
winds between the 700 and 400 mb pressure surfaces
(Fuelberg, 1974), through which the 310 K isentrope
passes in this case. The analysis rmsd, averaged over
the grid display area, exceeds 1.5 m s~ only for values
of ¥ = 0.5. Thus, the ¥ = 0.2 or ¥ = 0.3 analysis
would be preferred upon this basis.

The spatial distribution of the rmsd (interpolation
differences) as a function of the value chosen for y
is presented in Fig. 7. The maximum differences are
generally reduced by a factor of 2 when 4 is decreased
from 1.0 to 0.3. This result is consistent with the fact
that the analysis converges more to the observational
field (shows more detail) as v is reduced. A display
such as this enables the analyst to see that the greatest
differences occur 1) where gradients are strongest (in
eastern New Mexico and western Kansas), in that the
true magnitude of the gradient is underestimated, 2)
where there is small-scale variability (in Fig. 7b along
the Red River in northern Texas) and 3) generally
when v is largest. This kind of display can greatly
facilitate interpretation of the analysis.

For this data set, the computed value of the data
spacing is An, = 1.93° and the random data spacing
is An, = 2.49°, Thus, the data distribution is nearly
uniform. For convenience in incrementing the size of
the domain areas in steps of Ax, the analyst input a
data spacing of An = 2.00° and a grid spacing of Ax
= 1.00°. The bounds of Ax allowed by the scheme
for this data file are 0.65° (An/3) and 1.00° (An/2).
An objective analysis (not shown) was made using Ax
= 0.65° with no perceptible difference in the analysis.
The Ax limits in the scheme are designed to achieve
a convenient round number with which to work and
not to attempt the control of detail in the objective
analysis.

b. Analysis of non-uniformly distributed data in SES-
AME CLOUDWIND data file

A comparison is made in Fig. 8 between an objective
analysis of SESAME rawinsonde winds at 825 mb at
1800 GMT 10 April 1979 and an objective analysis
of the same winds combined with non-uniformly dis-
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tributed satellite data (the SESAME CLOUDWIND
data file). These analyses are being used in a continuing
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extent assignment of the cloud motion vectors to an
incorrect height will degrade a conventional analysis

investigation at NASA/GLAS to determine to what of winds at the SESAME regional scale (Peslen et al.,

FI1G. 7. Objective analysis of interpol

8

NN

ation differences (rmsd) for (a) ¥ = 1.0 and (b) v = 0.3 analyses as depicted in Fig. 6.
Contours are isotachs at intervals of 10™' m s™'.
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FIG. 8. Objective analyses of (a) nearly uniformly distributed and (b) highly non-uniformly distributed wind data sets. Data spacing in
(b) analysis (of SESAME CLOUDWIND data) is set equal to that in the (a) analysis (of SESAME rawinsonde data). Input parameter
values used were An = 2.0°, Ax = 1.0°, and v = 0.3. Both analyses utilize data at 825 mb for 1800 GMT 10 April 1979.

1982). With this purpose in mind, the grid display area
is adjusted to just barely cover the area of satellite data.
Likewise, for this purpose, the value of An input to
the coraputer is that of the uniformly distributed, con-
ventional rawinsonde data at the SESAME regional
scale (An = 2.00°), rather than the computed minimum
observation spacing An., which has a much smaller
value {0.69°) because of the small distances between
adjacent satellite observations.

Clearly, the satellite data exert an impact upon the
conventional wind analysis on scales resolvable by
the SESAME regional rawinsonde network. At least
part of the difference between the two analyses can
be explained by a systematic (rawinsonde scale) mis-
assignment of all the cloud vectors o one isobaric
level, when in actuality the clouds exist at different
heights above the local terrain (Peslen ef al., 1982).
The problem of misassignment of heights is most cru-
cial in a vertically sheared environment.

The rmsd interpolation difference map for the SES-
AME CLOUDWIND analysis (Fig. 8b) appears in Fig.
9. The differences are all smaller than 1.0 m s™! except
in two small areas near the southern edge of the grid
display area. In fact, over most of the analyzed area,
differences are no larger than 0.5 m s™!, which is quite
acceptable. The small “balloons” over southern Lou-
isiana and southwestern Texas are due to extrapolation
of values from the rawinsonde stations to grid points
in the data-void regions beyond the grid display area.
These two features could have been avoided by slightly
reducing the size of the grid display area. However, it

1s not necessary as long as their existence is recognized
in interpreting the objective analysis. It should be clear
that the analysis quality control factors neither measure
directly nor allude to the presence of systematic errors
in the data. Systematic misassignment of cloud heights
and the systematic effects of vertical wind shear on

F1G. 9. Objective analysis of interpolation differences resulting
from analysis in Fig. 8b (isotachs at intervals of 10~' m s™"),



1498

satellite cloud wind data sets are recognized problems
(Peslen et al.,, 1982) which must be dealt with prior
to conducting the objective analysis.

¢. Maintenance of smooth gradients in data-void
areas in VAS data file

An analysis of the VAS TEMP data file appears in
Fig. 10. This data set is not as severely clustered as is
the SESAME CLOUDWIND data set. Yet, large data
gaps like those in Nebraska and Kansas are evident.
This problem is perhaps made worse because significant
gradients might be anticipated there (visual interpo-
lation from the data locations to the gap areas). The
VAS data would appear with a regular spacing were
it not for the presence of clouds or data collection
problems at some points (Chesters et al., 1982). In this
case, An, = 0.82° and An, = 1.13° were computed by
the scheme. For convenience, the analyst input Arn
= 1.0° and Ax = 0.5°. In this case, the GEMPAK
Barnes scheme has been able to maintain smooth gra-
dients in the data-void regions. Furthermore, the in-
terpolation difference analysis (Fig. 11) shows that the
small-scale variability in the data (notably in Missouri)
has been smoothed out. Notice that such questionable
data values as the 27°C value in eastern Missouri have
little influence upon the resulting analysis. This
smoothing of noise introduced by data errors is a char-
acteristic of all objective analysis schemes. Such dis-
plays as these allow the analyst to determine the extent
of this smoothing,

8, \[ 8y

20, e 190 -20
‘7%1)9. 2\./197. b3

21} 19, B, =

/ m N\, 2. B.

FIG. 10. GEMPAK Barnes analysis of the VAS TEMP data file
(isotherms at 2°C intervals). Data values shown at locations denoted
by an asterisk.
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FIG. 11. GEMPAK Barnes analysis of the interpolation
difference field (°C) corresponding to Fig. 10.

5. Summary

An interactive Barmes (1973) objective analysis
scheme has been implemented as part of the GEM-
PAK interactive analysis package on the AOIPS data
processing system. The scheme is specifically tailored
to the needs of the research meteorologist to quickly
assess the impact of satellite-derived data on analyses
of conventional meteorological data sets. It allows the
analyst to modify the values of input parameters used
in the objective analysis within objectively deter-
mined, internally set limits and to quickly see the
effect of such manipulations upon the analysis. Spe-
cial features include methods for dealing with the spa-
tially clustered nature of satellite data and with the
different horizontal resolutions of the various data
types.

The Barnes scheme was selected for implementa-
tion on an interactive computer because it is com-
putationally efficient with filter response character-
istics that are known functions of the data distribu-
tion. It is proven here that the scheme adequately
recovers details after only two passes through the data
even when a large influence radius is used to ensure
that sufficient data influence is exerted at all grid
points. -

The interactive Barnes scheme incorporates several
objective constraints on the analysis over which the
analyst has no control, while still providing some user
input via an interactive computer video terminal. The
various features that make the scheme objective, ver-
satile, and practical are summarized in Fig. 12.

Three data sets were analyzed to illustrate these
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FIG. 12. A summary description of the unique features of the GEMPAK Barnes scheme.

characteristics. The first, that of a SESAME rawin-
sonde wind data set with nearly uniform spatial dis-
tribution, was one in which the data spacing used in
the analysis was the value calculated by taking the
average of the distance between each datum and its
closest neighbor (An.) over the entire data area. This
resulted in filtering the 2An, wave from the gridded
fields. Use of the quality control displays helped the
analyst determine how much smoothing was justified.

In the second case, a data set composed of satellite-
derived cloud motions combined with SESAME ra-
winsonde winds was studied. The resultant data file
was characterized by severe clustering of data. Use
of An, was judged inappropriate in this case, because
the smallest scale at which such satellite data provide
real information is presently unknown. The inter-
active scheme permitted the analyst to input a larger
effective data spacing than the calculated one, namely,
that calculated from the rawinsonde network only,
with the result that a less detailed analysis was made.
The scheme imposes an upper limit on the maximum
amount of detail that can be resolved with a given
data set.

The third data set, that of VAS-derived tempera-
tures, was characterized by an intermediate degree of
spatial non-uniformity and large data gaps. This data
set was chosen to demonstrate the capability of the
scheme to produce realistic gradients in otherwise
data-void regions and to filter out suspected gross data
errors. Thus, the analyst could assess the quality of
both the data and the analysis in real time. Of course,
it is advisable first to subject the data to quality con-
trol procedures to remove gross systematic errors be-
fore the step of objective analysis is taken, since no
variation of the input parameter values can remedy
that problem.

6. Future plans

Several modifications to the GEMPAK Barnes
scheme are both anticipated and possible with present
AOIPS computer resources. One highly desirable ad-
dition to the present package is a comprehensive,
automated, interactive data editing/quality control
routine that would allow the analyst to selectively
alter or omit troublesome observations. Displays of
data time series, time tendencies, map plots, hydro-
static and superadiabatic checks, etc., are envisioned
for this addition.

Work is being conducted to determine more ob-
jectively what data spacing to use with non-uniformly
distributed data sets. It is likely that the optimum
spacing will be a function of the representativeness,
or error magnitude, characteristic of the particular
data type as well as the nature or degree of non-uni-
formity of the data distribution (Maddox and Vonder
Haar, 1979). It is also possible that a first-guess field
provided by a mesoscale numerical weather predic-
tion model could be used to replace the first pass
through the data field.
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APPENDIX

Convergence Proof and Discussion

The mathematical-numerical analysis presented
here shows that the Barnes (1973) scheme is abso-
lutely convergent, but that no significant improve-
ment in filter response fidelity (steepness of response
curve) is obtained by making more than two passes
through the data when « is chosen sufficiently small.
It is concluded that only one correction pass is suf-
ficient to achieve acceptable analysis convergence at
resolvable wavelengths.

1. Convergence proof

Convergence in an absolute sense occurs when the
difference between the observed and analyzed data
fields vanishes as the number of passes through the
data approaches infinity, or stated mathematically

I}I{En [f(xs y) - gN(-x, y)] = 0’ (Al)

where gxy(x, ) is the interpolated ficld obtained after
N iterations (N + 1 passes). It was shown in the text
that a single application of the reduced weight param-
eter «,(4) upon the weight function w,,(1) results in
the true response function D¥(11) and the difference
field response function D,(6) at the second (correction)
pass. Weight functions at additional passes using suc-
cessively decreasing values of «y, assuming that v is
kept constant through all passes, are defined by

(A2)

Application of these additional filter functions results
in difference response functions at each pass given by

Dy = DY". (A3)

—_ — AN
KN = YEN—1 = 7 Ko

When the value chosen for v is less than unity, the
response is further accentuated at each additional
pass, particularly at short wavelengths where the ini-
tial response D, is small.

It follows from the expression for g; in (5) that the
third pass (N = 2) interpolated field is

&=8g*+(f—g)D, (A4)
or upon further substitution that
8 =8t (f — g)Di + D1 — Dy)]. (AS)

Following this procedure a step further, one can easily
show that on the fourth pass

& =8+ —g)D;
=go+(f_go)[Dl +D2(1 _Dl)

+ Dy(1 — D)1 — Dy)]. (A6)
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Accordingly, the general form of the equation de-
scribing the Nth pass interpolated field is

gN=go+(f_go)
N i
X{D+ 2 [D;I1 1 = D)1} (A7)
i=2 §=2
To obtain the condition for convergence, this equa-
tion is substituted into (A1), resulting in

lim (f - &)
N—wo
N i
X {1 —{D, +,§ [D; H2 (1-D;-)]}) = 0. (A8)
i= i=

Finally, because (f — g,) is a fixed constant, conver-
gence is attained when

Yn=1-D, (A9)

where D, is given by (6) and

N i
yw=2[D: Il (- D;})), 2<N<ow. (Al0)
§=2

i=2

Before proceeding with the analysis of the convergence
criterion, one should understand the relationship be-
tween it and the actual response function at the Nth
iterative pass D¥, defined by

D}'{,=g7N.

Use of (A7) in (A 11) results in the simple relationship:
D¥=D,+ (1 —D)XD,+¢n), 2<N< . (Al12)

(All)

Thus, convergence defined in the equivalent sense to
(A1), namely,

limgy = f (A13)
N—oo
demands that D%, as defined by (A12), approach unity
in light of criterion (A9).

The nature of the convergence properties of the
Barnes (1973) objective analysis scheme can be un-
derstood from an analysis of (A9), (A10) and (A12).
It can be shown analytically that (A 10) is a convergent
power series, and numerically that it converges to the
value given in (A9). Applying the ratio test for con-
vergence to (A10), we have

N+1

Dy IT (1= Dyy)

j=2

_ D

L =

DyI1 (1 - D)
§=2

D (1-Dy=L. (Al4)
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The series (A10) is absolutely convergent only if L
< 1. Substitution of (A3) into (A 14) results in

L =D "\1 — D). (A15)
Recalling that D, is constant for any given choice of
weight factor «, and has a value 0 < D, < 1, then L
must be a constant, as required for convergence. In
the limiting case as N — oo, both 4! — 0 and
¥¥ — 0 for the range 0 < v < 1, so that L — 0. Thus,
there is absolute convergence in the limiting sense as
N — oo.

The results of computing D¥(D,, v, N) (Fig. Al)
indicate that it converges rapidly to unity, as required.
Barnes (1973) noted that the fastest restoration of small
wavelength amplitude suppressed in the first pass
through the data is obtained with the smallest values
of v. For a choice of v = 0.20 and D, = 0.0064, the
value of D¥ approaches 1.0 to within ten decimal places
by the N = 6 iteration. The same degree of convergence
is reached by N = 9 when v = 0.45. Convergence is
obtained relatively quickly even for v = 0.8 and is
attainable in a finite time as long as y < 1. Thus, the
Barnes (1973) objective analysis scheme converges to
the value specified in (A9) when 0 < vy < 1. It is noted
that this scheme forces the interpolated fields to con-
verge much more rapidly to the observed fields than
does the Barnes (1964) scheme, as can be easily seen
by comparing (A12) to equation (20) of that paper.

2. Effect of multiple passes upon filter fidelity

Having thus verified that convergence is attainable,
we consider whether making more than two passes
through the data can effect a significant enhancement
of the small, but resolvable, waves. For most purposes,
it is desirable to suppress the response to a wave for
which scale does not exceed twice the average mini-
mum data spacing (A < 2Ar). Considering the Gaussian
nature to the response function, we note that then the
-final response at this minimum resolvable scale should
be limited by D¥(A = 2An) < e !, Under this constraint,
high frequency noise generated by random errors and
energy aliased from shorter wavelengths to larger
wavelengths will be effectively filtered from the analysis.
The aliased energy can result from both the data dis-
cretization process and sampling of the atmosphere
when it exhibits such subgrid-scale events as thun-
derstorms.

Thus, the question can be rephrased as, for a given
fixed weight parameter «,: Can the steepness of the
filter response curve at wavelengths larger than 2An
be appreciably increased ( filter fidelity enhanced) by
making more than two passes, under the constraint
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that the final response at A\ = 2An does not exceed
e”'? A comparison was made between the response
curves generated by a two-pass, small v filter (high
fidelity) and those generated by multiple pass, larger
~v filters.

The results of the comparison (Fig. A2) were ob-
tained by employing the following procedure. First,
the 2An wavelength was defined in terms of known
quantities. Since the weight parameter «, must be held
constant for the purpose of the comparison, and un-
der this condition a singular relationship exists be-
tween any wavelength A and the first pass response
at that wavelength D,(\), then a useful definition ac-
cording to (2) is:

1/2
—K,
lnD,,(ZAn)) ’
Since «, is constant here, one can form the ratio

R (lnD,,(2An))”2
2an \ InD,\)

Thus, the effectiveness of making additional passes at
larger + is examined as a function of multiples of the
2An wavelength. Each curve in Fig. A2 is the result
of the search for that value of vy which gives D¥(A
= 2An) = ¢ (N > 1); D% is then found at other wave-
lengths other than A = 2An by the following formula
derived from (A17):

2An = 7r( (A16)

(A1T)

Dy(N) = [D2An)J*", (A18)
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FIG. A2. Effective enhancement of filter response D produced
by making multiple passes, as function of resolvable wavelengths A
> 2An.

for integral values of (A\/2An), inserting the result in
(A12) for the chosen % value, and plotting D¥ against
multiples of the 2An wave according to (A17). The
selected value of D,(2An) = 0.0064 used in (A18) is
that one which gives a second pass response of D¥(2An)
= 0.37 = ¢! when v = 0.2 (see Fig. A1). The value
of ¥ = 0.2 is chosen to represent the two-pass, small
~ case. :

The results in Fig. A2 show that when N = 1, 2,
and 3 iterations through the data are made, the re-
sponses are 0.84, 0.92 and 0.96, respectively, at twice
the minimum resolvable scale. Differences between
these responses are no more than 12% and decrease
at larger wavelengths. These differences are further at-
tenuated when an even smaliler v value case is chosen
as the basis for comparison with multiple pass filters.
" Thus, one correction pass using a small vy value pro-
vides for a highly acceptable degree of filter fidelity.
Therefore, if one wishes to make the final objective
analysis fit the data as exactly as possible, the same
result can be obtained by making a greater number of
interpolation passes (which is computationally wasteful
and can cause greater ballooning effects in data-sparse
areas), or by using a small v value to reduce the cor-
rection pass influence radius.
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