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Appendix A: MATRIX ALGEBRA: VECTORS A–2

§A.1 MOTIVATION

Matrix notation was invented1 primarily to express linear algebra relations in compact form. Com-
pactness enhances visualization and understanding of essentials. To illustrate this point, consider
the following set of m linear relations between one set of n quantities, x1, x2, . . . xn , and another
set of m quantities, y1, y2, . . ., ym :

a11x1 + a12x2 + · · · + a1 j xj + · · · + a1n xn = y1
a21x2 + a22x2 + · · · + a2 j xj + · · · + a2n xn = y2
· · · · · · · · · · · · · · · · · · · · ·

ai1x1 + ai2x2 + · · · + ai j xj + · · · + ain xn = yi
· · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · · + amj xj + · · · + amn xn = ym

(A.1)

The subscripted a, x and y quantities that appear in this set of relations may be formally arranged
as follows: 



a11 a12 . . . a1 j . . . a1n
a21 a22 . . . a2 j . . . a2n
...

...
. . .

...
. . .

...

ai1 ai2 . . . ai j . . . ain
...

...
. . .

...
. . .

...

am1 am2 . . . amj . . . amn







x1
x2
...

xj
...

xn




=




y1
y2
...

yi
...

ym




(A.2)

Two kinds of mathematical objects can be distinguished in (A.2). The two-dimensional array
expression enclosed in brackets is a matrix, which we call A. Matrices are defined and studied in
Appendix B.

The one-dimensional array expressions in brackets are column vectors or simply vectors, which we
call x and y, respectively. The use of boldface uppercase and lowercase letters to denote matrices
and vectors, respectively, follows conventional matrix-notation rules in engineering applications.

Replacing the expressions in (A.2) by these symbols we obtain the matrix form of (A.1):

Ax = y (A.3)

Putting A next to x means “matrix product of A times x”, which is a generalization of the ordinary
scalar multiplication, and follows the rules explained later.

Clearly (A.3) is a more compact, “short hand” form of (A.1).

Another key practical advantage of the matrix notation is that it translates directly to the com-
puter implementation of linear algebra processes in programming languages that offer array data
structures.

1 By Arthur Cayley at Cambridge (UK) in 1858.
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A–3 §A.2 VECTORS

§A.2 VECTORS

We begin by defining a vector, a set of n numbers which we shall write in the form

x =




x1
x2
...

xn


 (A.4)

A vector of this type is called a column vector. We shall see later that although a vector may be
viewed as a special case of a matrix it deserves treatment on its own. The symbol x is the name of
the vector.

If n numbers are arranged in a horizontal array, as in

z = [ z1 z2 . . . zn ] (A.5)

then z is called a row vector. If we use the term “vector” without a qualifier, it is understood to be
a column vector such as (A.4).

§A.2.1 Notational Conventions

Typeset vectors will be designated by bold lowercase letters. For example:

a, b, c, x, y, z

On the other hand, handwritten or typewritten vectors, which are those written on paper or on the
blackboard, are identified by putting a wiggle or bar underneath the letter. For example:

a
˜

The subscripted quantities such as x1 in (A.4) are called the entries or components2 of x, while n
is called the order of the vector x. Vectors of order one (n = 1) are called scalars. These are the
usual quantities of analysis.

For compactness one sometimes abbreviates the phrase “vector of order n” to just “n-vector.” For
example, z in the example below is a 4-vector.

If the components are real numbers, the vector is called a real vector. If the components are complex
numbers we have a complex vector. Linear algebra embraces complex vectors as easily as it does
real ones; however, we rarely need complex vectors for this exposition. Consequently real vectors
will be assumed unless otherwise noted.

2 The term component is primarily used in mathematical treatments whereas entry is used more in conjunction with the
computer implementation. The term element is also used in the literature but this will be avoided here as it may lead to
confusion with finite elements.
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Appendix A: MATRIX ALGEBRA: VECTORS A–4

x =
[

x1

x2

] x =

 x1

x2

x3




x1

x1

x2

x2

x3

Figure A.1. Standard visualization of 2-vectors and 3-vectors as
position vectors in 2-space and 3-space, respectively.

EXAMPLE A.1

x =




4
−2
3
0




is real column vector of order 4, or, briefly, a 4-vector.

EXAMPLE A.2

q = [ 1 1 1 1 1 1 ]

is a real row vector of order 6.

Occassionally we shall use the short-hand “component notation”

x = [xi ] (A.6)

for a generic vector. This comes handy when it is desirable to show the scheme of notation for the
components.

§A.2.2 Visualization

To aid visualization a two-dimensional vector x (n = 2) can be depicted as a line segment, or arrow,
directed from the chosen origin to a point on the Cartesian plane of the paper with coordinates (x1,
x2). See Figure A.1. In mechanics this is called a position vector in 2-space.

One may resort to a similar geometrical interpretation in three-dimensional Cartesian space (n = 3);
see Figure A.1. Drawing becomes a bit messier, however, although some knowledge of perspective
and projective geometry helps.

The interpretation extends to all Euclidean spaces of dimensions n > 3 but direct visualization is
of course impaired.
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A–5 §A.3 VECTOR OPERATIONS

§A.2.3 Special Vectors

The null vector, written 0, is the vector all of whose components are zero.

The unit vector, denoted by ei , is the vector all of whose components are zero, except the i th

component, which is one. After introducing matrices (Appendix B) a unit vector may be defined
as the i th column of the identity matrix.

The unitary vector, called e, is the vector all of whose components are unity.

§A.3 VECTOR OPERATIONS

Operations on vectors in two-dimensional and three-dimensional space are extensively studied in
courses on Mathematical Physics. Here we summarize operations on n-component vectors that are
most useful from the standpoint of the development of finite elements.

§A.3.1 Transposition

The transpose of a column vector x is the row vector that has the same components, and is denoted
by xT :

xT = [ x1 x2 . . . xn ] . (A.7)

Similarly, the transpose of a row vector is the column vector that has the same components. Trans-
posing a vector twice yields the original vector: (xT )T = x.

EXAMPLE A.3

The transpose of

a =
[

3
−1
6

]
is b = aT = [ 3 −1 6 ]

and transposing b gives back a.

§A.3.2 Equality

Two column vectors x and y of equal order n are said to be equal if and only if their components
are equal, xi = yi , for all i = 1, . . . n. We then write x = y. Similarly for row vectors.

Two vectors of different order cannot be compared for equality or inequality. A row vector cannot
be directly compared to a column vector of the same order (unless their dimension is 1); one of the
two has to be transposed before a comparison can be made.

§A.3.3 Addition and Subtraction

The simplest operation acting on two vectors is addition. The sum of two vectors of same order n,
x and y, is written x + y and defined to be the vector of order n

x + y def=




x1 + y1
x2 + y2

...

xn + yn


 . (A.8)
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Appendix A: MATRIX ALGEBRA: VECTORS A–6

x =
[

x1

x2

]

y =
[

y1

y2

]
x + y =

[
x1 + y1

x2 + y2

]

Figure A.2. In two and three-dimensional space, the vector addition operation
is equivalent to the well known parallelogram composition law.

If x and y are not of the same order, the addition operation is undefined.

The operation is commutative: x + y = y + x, and associative: x + (y + z) = (x + y) + z.

Strictly speaking, the plus sign connecting x and y is not the same as the sign connecting xi and yi .
However, since it enjoys the same analytical properties, there is no harm in using the same symbol
in both cases.

The geometric interpretation of the vector addition operator for two- and three-dimensional vectors
(n = 2, 3) is the well known paralellogram law; see Figure A.2. For n = 1 the usual scalar addition
results.

For vector subtraction, replace + by − in the previous expressions.

EXAMPLE A.4

The sum of

a =
[

3
−1
6

]
and b =

[
2
1

−4

]
is a + b =

[
5
0
2

]

§A.3.4 Multiplication and Division by Scalar, Span

Multiplication of a vector x by a scalar c is defined by means of the relation

c x def=




cx1
cx2
...

cxn


 (A.9)

This operation is often called scaling of a vector. The geometrical interpretation of scaling is: the
scaled vector points the same way, but its magnitude is multiplied by c.

If c = 0, the result is the null vector. If c < 0 the direction of the vector is reversed. In paticular, if
c = −1 the resulting operation (−1)x = −x is called reflexion about the origin or simply reflexion.
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A–7 §A.3 VECTOR OPERATIONS

Division of a vector by a scalar c �= 0 is equivalent to multiplication by 1/c. The operation is
written x

c
≡ x/c

def= (1/c)x (A.10)

The operation is not defined if c = 0.

Sometimes it is not just x which is of interest but the “line” determined by x, namely the collection
cx of all scalar multiples of x, including −x. We call this Span(x). Note that the span always
includes the null vector.

§A.3.5 Inner Product, Norm and Length

The inner product of two column vectors x and y, of same order n, is a scalar function denoted by
(x, y) — as well as two other forms shown below — and is defined by

(x, y) = xT y = yT x def=
n∑

i=1

xi yi
sc= xi yi (A.11)

This operation is also called dot product and interior product. If the two vectors are not of the same
order, the inner product is undefined. The two other notations shown in (A.11), namely xT y and
yT x, exhibit the inner product as a special case of the matrix product discussed in Appendix B.

The last expression in (A.11) applies the so-called Einstein’s summation convention, which implies
sum on repeated indices (in this case, i ) and allows the

∑
operand to be dropped.

The inner product is commutative: (x, y) = (y, x) but not generally associative: (x, (y, z)) �=
((x, y), z). If n = 1 it reduces to the usual scalar product. The scalar product is of course
associative.

EXAMPLE A.5

The inner product of

a =
[

3
−1
6

]
and b =

[
2
1

−4

]
is (a, b) = aT b = 3 × 2 + (−1) × 1 + 6 × (−4) = −19.

REMARK A.1

The inner product is not the only way of “multiplying” two vectors. There are other vector products, such as
the cross or outer product, which are important in many applications such as fluid mechanics and nonlinear
dynamics. They are not treated here because they are not defined when going from vectors to matrices.
Furthermore they are not easily generalized for vectors of dimension n ≥ 4.

The Euclidean norm or 2-norm of a real vector x is a scalar denoted by ‖x‖ that results by taking
the inner product of the vector with itself:

‖x‖ def= (x, x) =
n∑

i=1

x2
i

sc= xi xi (A.12)
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Appendix A: MATRIX ALGEBRA: VECTORS A–8

Because the norm is a sum of squares, it is zero only if x is the null vector. It thus provides a “meter”
(mathematically, a norm) on the vector magnitude.

The Euclidean length or simply length of a real vector, denoted by |x|, is the positive square root
of its Euclidean norm:

|x| def= +
√

‖x‖. (A.13)

This definition agrees with the intuitive concept of vector magnitude in two- and three-dimensional
space (n = 2, 3). For n = 1 observe that the length of a scalar x is its absolute value |x |, hence the
notation |x|.
The Euclidean norm is not the only vector norm used in practice, but it will be sufficient for the
present course.

Two important inequalities satisfied by vector norms (and not just the Euclidean norm) are the
Cauchy-Schwarz inequality:

|(x, y)| ≤ |x| |y|, (A.14)

and the triangle inequality:
|x + y| ≤ |x| + |y|. (A.15)

EXAMPLE A.6

The Euclidean norm of

x =
[

4
3

]
is ‖x‖ = 42 + 32 = 25, and its length is |x | = √

25 = 5.

§A.3.6 Unit Vectors and Normalization

A vector of length one is called a unit vector. Any non-null vector x can be scaled to unit length by
dividing all components by its original length:

x/|x| =




x1/|x|
x2/|x|

...

xn/|x|


 (A.16)

This particular scaling is called normalization to unit length. If x is the null vector, the normalization
operation is undefined.

EXAMPLE A.7

The unit-vector normalization of

x =
[

4
3

]
is x/|x| = x/5 =

[
0.8
0.6

]
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A–9 §A.3 VECTOR OPERATIONS

§A.3.7 Angles, Orthonormality and Projections

The angle in radians between two unit real vectors x and y, written � (x, y), is the real number θ

satisfying 0 ≤ θ ≤ π (or 0◦ ≤ θ ≤ 180◦ if measured in degrees). The value is defined by the
cosine formula:

cos θ = (x, y) (A.17)

If the vectors are not of unit length, they should be normalized to such, and so the general formula
for two arbitrary vectors is

cos θ = (
x
|x| ,

y
|y| ) = (x, y)

|x| |y| (A.18)

The angle θ formed by a non-null vector with itself is zero. Note that this will always be the case
for n = 1. If one of the vectors is null, the angle is undefined.

The definition (A.18) agrees with that of the angle formed by oriented lines in two- and three-
dimensional Euclidean geometry (n = 2, 3). The generalization to n dimensions is a natural one.

For some applications the acute angle φ between the line on x and the line on y (i.e., between
the vector spans) is more appropriate than θ . This angle between Span(x) and Span(y) is the real
number φ satisfying 0 ≤ φ ≤ π/2 and

cos φ = |(x, y)|
|x| |y| (A.19)

Two vectors x and y connected by the relation

(x, y) = 0 (A.20)

are said to be orthogonal. The acute angle formed by two orthogonal vectors is π/2 radians or 90◦.

The projection of a vector y onto a vector x is the vector p that has the direction of x and is orthogonal
to y − p. The condition can be stated as

(p, y − p) = 0, where p = c
x
|x| (A.21)

and it is easily shown that

c = (y,
x
|x| ) = |y| cos θ (A.22)

where θ is the angle between x and y. If x and y are orthogonal, the projection of any of them onto
the other vanishes.

§A.3.8 Orthogonal Bases, Subspaces

Let bk, k = 1, . . . m be a set of n-dimensional unit vectors which are mutually orthogonal. Then
if a particular n-dimensional vector x admits the representation

x =
m∑

k=1

ckbk (A.23)
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Appendix A: MATRIX ALGEBRA: VECTORS A–10

the coefficients ck are given by the inner products

ck = (x, bk) =
n∑

i=1

xi b
k
i

sc= xi b
k
i . (A.24)

We also have Parseval’s equality

(x, x) =
m∑

k=1

c2
k

sc= ckck (A.25)

If the representation (A.23) holds, the set bk is called an orthonormal basis for the vector x. The
bk are called the base vectors.

The set of all vectors x given by (A.24) forms a subspace of dimension m. The subspace is said to
be spanned by the basis bk , and is called Span(bk).* The numbers ck are called the coordinates of
x with respect to that basis.

If m = n, the set bk forms a complete orthonormal basis for the n-dimensional space. (The qualifier
“complete” means that all n-dimensional vectors are representable in terms of such a basis.)

The simplest complete orthonormal basis is of order n is the n-dimensional Cartesian basis

b1 =




1
0
...

0


 , b2 =




0
1
...

0


 , · · · bn =




0
0
...

1


 (A.26)

In this case the coordinates of x are simply its components, that is, ck ≡ xk .

* Note that if m = 1 we have the span of a single vector, which as noted before is simply a line passing through the origin
of coordinates.
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A–11 Exercises

Homework Exercises for Appendix A: Vectors

EXERCISE A.1

Given the four-dimensional vectors

x =




2
4
4

−8


 , y =




1
−5
7
5


 (EA.1)

(a) compute the Euclidean norms and lengths of x and y;

(b) compute the inner product (x,y);

(c) verify that the inequalities (A.15) and (A.16) hold;

(d) normalize x and y to unit length;

(e) compute the angles θ = � (x, y) and φ given by (A.19) and (A.20);

(f) compute the projection of y onto x and verify that the orthogonality condition (A.22) holds.

EXERCISE A.2

Given the base vectors

b1 = 1
10




1
−7
1
7


 , b2 = 1

10




5
5

−5
5


 (EA.2)

(a) Check that b1 and b2 are orthonormal, i.e., orthogonal and of unit length.

(b) Compute the coefficients c1 and c2 in the following representation:

z =




8
−16
−2
26


 = c1b1 + c2b2 (EA.3)

(c) Using the values computed in (b), verify that the coordinate-expansion formulas (A.24) and Parseval’s
equality (A.25) are correct.

EXERCISE A.3

Prove that Parseval’s equality holds in general.

EXERCISE A.4

What are the angles θ and φ formed by an arbitrary non-null vector x and the opposite vector −x?

EXERCISE A.5

Show that
(αx, βy) = αβ (x, y) (EA.4)

where x and y are arbitrary vectors, and α and β are scalars.
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Appendix A: MATRIX ALGEBRA: VECTORS A–12

Homework Exercises for Appendix A - Solutions

EXERCISE A.1

(a)
‖x‖ = 22 + 42 + 42 + (−8)2 = 100, |x| = 10

‖y‖ = 12 + (−5)2 + 72 + 52 = 100, |y| = 10

(b)
(x, y) = 2 − 20 + 28 − 40 = −30

(c)
|(x, y)| = 30 ≤ |x| |y| = 100

|x + y| =
√

32 + (−1)2 + (−11)2 + (−3)2 =
√

140 ≤ |x| + |y| = 10 + 10 = 20

(d)

xu = x
10

=




0.2
0.4
0.4

−0.8


 , yu = y

10
=




0.1
−0.5
0.7
0.5




(e)
cos θ = (xu, yu) = −0.30, θ = 107.46◦

cos φ = |(xu, yu)| = 0.30, φ = 72.54◦

(f)
c = |y| cos θ = −3

p = c xu = −3




0.2
0.4
0.4

−0.8


 =




−0.6
−1.2
−1.2
2.4




y − p =




1.6
−3.8
8.2
2.6




(p, y − p) = −0.96 + 4.56 − 9.84 + 6.24 = 0

EXERCISE A.2

(a)
‖b1‖ = 0.12 + (−0.7)2 + 0.12 + 0.72 = 1, |b1| = 1

‖b2‖ = 0.52 + 0.52 + (−0.5)2 + 0.52 = 1, |b2| = 1

(b1, b2) = 0.05 − 0.35 − 0.05 + 0.35 = 0

(b)
c1 = 30, c2 = 10

(by inspection, or solving a system of 2 linear equations)

(c)
c1 = (z, b1) = 0.8 + 11.2 − 0.2 + 18.2 = 30

c2 = (z, b2) = 4.0 − 8.0 + 1.0 + 13.0 = 10

c2
1 + c2

2 = 302 + 102 = 1000 = ‖z‖ = 82 + (−16)2 + (−2)2 + 262 = 1000
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A–13 Solutions to Exercises

EXERCISE A.3

See any linear algebra book, e.g. Strang’s.

EXERCISE A.4

θ = 180◦, φ = 0◦

EXERCISE A.5

(αx, βy) = αxi βyi = αβ xi yi = αβ (x, y)

(summation convention used)
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