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Hybrid EnVar 

 

 

Because the error covariance estimated from limited sized ensemble can be 

unreliable, and in particular is rank deficient, one possible way is to linearly 

combine static background error covariance B typically used in 3DVar and 

ensemble derived covariance P, forming the so-called hybrid covariance.  

 

Hamill and Snyder (2000) first suggested this approach, where the forecast error 

covariance B in 3DVar is replaced by a linear combination of the (static) 3D-

Var covariance 
3DVARB  
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  is a tunable parameter that varies from 0, corresponding to using 100% 

ensemble covariances, to 1 corresponding to 100% static B. pure 3D-Var.  

 

For a small enough problem, one can simply define P according to the above 

equation, and use it within a 3DVar cost function.  As discussed earlier, for 
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practical NWP problems, this P is usually too large to define and use explicitly. 

More computational efficient procedure is needed.  

 

Hamill and Snyder (2000) tested the hybrid En3DVar with a low-resolution 

quasi-geostrophic model and simulated data in a perfect model setting. By 

running the hybrid analysis system multiple times with perturbed observations, 

the system is able to provide an ensemble of analyses. It was found that the 

analysis performs the best when BEC is estimated almost fully from the 

ensemble, especially when the ensemble size was large (100 in their case). 

When the ensemble is smaller, the system benefits from a lesser weighting given 

to the ensemble-based covariances.  

 

Lorenc (2003) proposed an elegant, alternative hybrid formulation, in which 

the control variables of the regular variational cost function are augmented by 

extended control variables (hereafter, ECV), which are preconditioned upon the 

square root of ensemble covariance. The ECV formulation involves adding an 

additional term to the variational cost function for the ECVs which has a similar 

form as the original background term, and is therefore relatively easy to 

implement based on an existing variational DA framework. Wang et al. (2007) 
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proved that the ECV formulation is mathematically equivalent to that of Hamill 

and Snyder (2000).  

 

The potential for the hybrid system to perform better than a pure EnKF 

when the ensemble size is relatively small makes it attractive for operational 

implementation where computational constraint is often a significant issue. A 

variational framework used by the hybrid scheme also makes it easier to include 

additional equation constraints in the cost function.  

 

Furthermore, for observations whose forward operators are non-local, such 

as those of satellite radiance data, the state-space-based covariance localization 

used in the hybrid formulation is potentially advantageous (Campbell et al. 

2010).  

 

As suggested by Lorenc (2003), Buehner et al. (2010a, b), both (traditional) 

3DVar and 4DVar can be formulated to use the ensemble covariance with the 

extended control variable method, and such ensemble-variational formulations 

are called 3DEnVar and 4DEnVar, respectively, or EnVar in general.  

 
 



 4 

 

Based on Lorenc (2003) and Wang et al (2007), the analysis increment x  
is a sum of two terms, defined as 

'
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where 
1x  is the analysis increment associated with static BEC B and the second 

term on the right hand side is the increment associated with the ensemble 

covariance. 
'

kx  is the kth ensemble background perturbation normalized 

by 1K  , where K  is ensemble size. Vectors ( 1, , )k k K a  in the second term 

are the extended control variables. Analysis increment x  is obtained by 

minimizing the following cost function: 
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which gives the solutions of partial increment 
1x  and ECV a . Vector a  is 

formed by concatenating K vectors 
ka . Compared to a traditional 3DVar cost 

function, a weighted sum of 
bJ  and 

oJ  is replaced by the sum of weighted 
bJ  

and 
eJ  terms and 

oJ , where 
bJ  is the traditional background term associated 

with static covariance B , 
oJ  is the observation term as in traditional 3DVar. 

eJ  

is the additional term associated with flow-dependent covariance for the ECV. 

Weighting factors 
1   and 

2  are placed in front of 
bJ  and 

eJ  terms, 

respectively, and they are constrained by  

 

1 2

1 1
1

 
  ,        (3) 

to conserve the total variances in the hybrid implementation. 
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Flowchart of a full EnSRF-En3DVar hybrid data assimilation cycle, with one-way or two-way 

coupling between the EnSRF (upper portion) and En3DVar hybrid control analysis (lower portion 

denoted En3DVar). The thick upward pointing arrow indicates the feedback of the En3DVar hybrid 

analysis to the EnSRF in the two-way coupling procedure, when the En3DVar hybrid control 

analysis is used to replace the ensemble mean of the EnSRF analyses. 
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The NCEP GFS system currently employs a hybrid 4DEnVar DA system, coupled with 

an EnKF system using the EnSRF algorithm.  The operational RAP and NAM systems 

also employ a hybrid algorithm, borrowing ensemble perturbations from the global EnKF 

system. Significant forecast improvement was achieved with GFS when moving from the 

original 3DVar algorithm to the EnVar algorithm.  
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