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ABSTRACT

In this paper the standard variational analysis scheme is modified, through a simple transform, to avoid the
inversion of the background error covariance matrix. A close inspection of the modified scheme reveals that it
is possible to use a filter to replace the multiplication of the covariance matrix. A variational analysis scheme
using a filter is then formulated, which does not explicitly involve the covariance matrix. The modified scheme
and the filter scheme have the advantage of avoiding the inversion or any usage of the large matrix for analyses
using gridpoint representation. To illustrate the use of these schemes, a small-sized and a more realistic analysis
problem is considered using real temperature observations. It is found that both the modified scheme and the
filter scheme work well. Compared to the standard and modified schemes the storage and computational re-
quirements of the filter scheme can be reduced by several orders of magnitude for realistic atmospheric appli-
cations.

1. Introduction

Objective atmospheric data analysis is widely used
in observational studies, numerical weather prediction
(NWP), and for verifying new models and theories. In
many analysis schemes, observations are optimally used
together with a background field in a statistical sense.
At most NWP centers, a particular implementation of
an Optimal Interpolation (OI) (Eliassen 1954; Gandin
1963) or a variational data assimilation (VAR) (Lorenc
1986) is used. In the OI and VAR formulations, the
observation and background error covariance matrices,
R and B, are required. The sizes of R and B are of order
105 3 105 to 107 3 107 for realistic atmospheric ap-
plications (Courtier 1997). Special considerations are
needed in handling of R and B in each implementation,
especially when their inverse is needed.

In most OI implementations B is computed at the
observation locations, HBHT, where H is a linear ob-
servation operator that maps variables from model grids
to observation locations. The inverse of HBHT 1 R is
required by OI. Data selection algorithms, for example,
the box structures in the OI implementation at the Eu-
ropean Centre for Medium-Range Weather Forecasts
(the ECMWF OI was replaced by a variational scheme
in 1997), are needed to reduce HBHT 1 R to a man-
ageable size.
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In most VAR implementations there is no OI-type
data selection. The most common assumption about R
is that the observation errors are not correlated (for most
variables), which makes R diagonal (e.g., Courtier et al.
1998). Using spectral representations, B is also diagonal
(Parrish and Derber 1992; Courtier et al. 1998; Gus-
tafsson et al. 1999). However, if an implementation of
the VAR scheme using a gridpoint formulation is de-
sirable, the inversion of B is nontrivial. There are at
least two potential problems, both due to the size of B.
The first is how to invert B. This is impossible for a
realistic atmospheric implementation and avoided by
different transforms (Lorenc 1988; Derber and Rosatti
1989). The second is how to handle the storage and
computation related to B. This is a difficult issue in
operational implementations.

In this paper the first problem is addressed by mod-
ifying the standard variational analysis scheme, so that
the inversion is not needed. The second problem is then
addressed by formulating a new scheme that uses a filter
to replace the use of the matrix so that B itself does not
enter the analysis. The modified scheme has been pro-
posed by Lorenc (1988) and Derber and Rosati (1989)
to speed up the convergence of descent algorithms such
as the steepest descent and conjugate-gradient methods.
Here this scheme is reconsidered with the emphasis on
the possibility of avoiding the matrix inversion and pro-
ducing further simplifications. The latter leads to the
new filter scheme. The basic idea of the new filter
scheme, using a filter to model the full background error
covariance matrix, is common in a number of existing
analysis schemes using spatial filters (Lorenc 1992; Dé-
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vényi and Benjamin 1998). However, the way the filter
is applied in the new scheme makes the scheme more
flexible in practical implementations.

This paper is organized as follows. The standard, the
modified, and the new schemes are described in section
2 together with comparisons to other related schemes.
An illustrative example is given in section 3 using real
2-m temperature observations, followed by another
more realistic example in section 4. The conclusions are
summarized in section 5.

2. Analysis methods

a. VAR: Variational analysis

Briefly, a three-dimensional variational analysis
(3DVAR) can be formulated as the minimization of the
following cost function (Lorenc 1986; Courtier 1997):

J(x) 5 J (x) 1 J (x)b o

1
b T 21 b5 {(x 2 x ) B (x 2 x )

2
T 211 [H(x) 2 y] R [H(x) 2 y]},

where x is the analysis vector (on model grid points),
xb is the background vector (on model grid points), y
is the observation vector (on observation locations), H
is the (nonlinear) observation operator that converts
model variables to observations, B is the background
error covariance matrix, R is the observation error co-
variance matrix that includes the effects of both instru-
ment and representativeness, ( · )T indicates transpose,
and ( · )21 indicates inversion. In most practical imple-
mentations a penalty term for noise control is included
in addition to Jb and Jo, but it is omitted here. The
notations closely follow Ide et al. (1997).

Starting with an initial guess field x0, normally x0 5
xb, the final analysis xVAR 5 x` can be obtained using
a minimization algorithm. The simplest method is the
so-called steepest descent, which can be expressed as

xn11 5 xn 2 a=xJ, (1)

where the superscript denotes the iteration cycle number,
a is a constant (a . 0), and =xJ is the gradient of the
cost function J with respect to x:

=xJ 5 B21(x 2 xb) 1 HTR21[H(x) 2 y], (2)

where H is the tangent linear operator of H.
Given N model grid points and M observation loca-

tions, then x and xb are vectors of length N, y is a vector
of length M, B is a N 3 N matrix, and R is a M 3 M
matrix.

b. VAN: Variational analysis with no inversion of B

To avoid the inversion of B, a new vector v is intro-
duced, defined as

v 5 B21(x 2 xb) (3)

and the cost function J can now be written as

J(v) 5 J (v) 1 J (v)b o

1
TT b T5 {v B v 1 [H(Bv 1 x ) 2 y]

2
21 b3 R [H(Bv 1 x ) 2 y]}.

The transform from x to v using (3) and the redefi-
nition of the cost function with respect to v were pro-
posed by Lorenc (1988) and Derber and Rosati (1989)
to speed up the convergence of descent algorithms such
as the steepest descent and conjugate-gradient methods.
In this note, VAN is used to provide guidance for the
formulation of a new scheme. VAN is also used as a
reference when the new scheme is tested.

Using v as the control variable, the minimization
scheme (1) is now rewritten as

vn11 5 vn 2 a=vJ, (4)

where =v is the gradient of J with respect to v:

=vJ 5 BT{v 1 HTR21[H(Bv 1 xb) 2 y]}.

Starting with an initial guess field v0,

v0 5 B21(x0 2 xb),

the minimum of J is reached at v` and the final analysis
xVAN becomes

xVAN 5 xb 1 Bv`.

In this scheme B21 is only needed to provide the initial
guess value for the control variable. Consequently, if
we assume

v0 5 0,

we have obtained a variational analysis scheme that
needs no inversion of B. This assumption is certainly a
reasonable one. It simply uses the background vector
as the initial analysis vector as done in most existing
analysis schemes.

The modified scheme is called VAN, variational anal-
ysis with no inversion of B, and is summarized as

0v 5 0,
T T 21 b= J 5 B {v 1 H R [H(Bv 1 x ) 2 y]},v

n11 nv 5 v 2 a= J, andv

VAN b `x 5 x 1 Bv . (5)

The preconditioning has not been discussed. As the
optimal preconditioning is the inverse of the Hessian
matrix, which is (BT 1 BTHTR21HB)21 for VAN, some
simplifications are needed to really avoid the explicit
inversion of B. This issue will be discussed further in
the next subsection.

c. VAF: Variational analysis using a filter

In NWP applications, the matrix B (N 3 N ; 1014)
is too large to be stored in memory by present-day com-
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puters and therefore has to be calculated every time it
is needed. In VAN, B is required during each iteration
loop. This makes an operational implementation of
VAN difficult. However, a close inspection of VAN, in
particular of the gradient of the cost function =vJ, re-
veals that B may be modeled by a spatial filter. The
relation between the multiplication of B and an appli-
cation of a filter has been discussed by Lorenc (1992).
Linear transforms are necessary to construct a filter from
B when a nonuniform grid is used. In this paper, a uni-
form grid is chosen for simplicity. The generalization
of the following scheme to nonuniform grids should be
considered in future implementations.

Multiplying a vector x by the B matrix, the result
vector x* has its elements

N

x* 5 b x , (6)Oi i j j
j51

where bij are the elements of B (i 5 1, N; j 5 1, N).
In the case of a uniform grid, (6) could be considered
as filtering x with a spatial filter with the filter coeffi-
cients bij and the filter span covering the whole model
domain. Therefore the VAN scheme can be written by
using a filter to model B. This new scheme is called
VAF, variational analysis using a filter, and can be sum-
marized as

0v 5 0,
T 21 b= J 5 G{v 1 H R [H(Gv 1 x ) 2 y]},v

n11 nv 5 v 2 a= J, andv

VAF b `x 5 x 1 Gv , (7)

where G is a spatial filter that should be designed based
on the a priori knowledge of the covariance matrix B.

For example, consider a two-dimensional univariate
problem with homogeneous and isotropic background
error correlations. The following Gaussian function
could be used to calculate B (Daley 1991)

2ri j2b 5 s exp 2 , (8)i j b 1 2[ ]L

where sb is the standard deviation of the background
error, rij is the distance between model grid points i and
j, and L is a length scale that can be determined theo-
retically or by observations. If the B matrix is con-
structed by (8), then the multiplication in (6) is equiv-
alent to applying a Gaussian filter to the vector.

The motivation for using a filter to model B is to
reduce the memory consumption of storing B and the
computational burden caused by multiplying B. Lorenc
(1992) and Hayden and Purser (1995) have demonstrat-
ed that a multiple iteration recursive filter (no extra
memory is required) asymptotically approaches to a
Gaussian filter as the iteration tends to infinity. In this
paper, a truncated Gaussian filter is used. Although some
extra memory is needed to store the filter coefficients,

this approach is more flexible. Other forms of B (Daley
1991) may easily be used to determine the filter coef-
ficients. By using a truncated Gaussian filter, we in fact
set many elements in B to zero. There is no guarantee
of positiveness of the modified B. An additional filter
windowing is necessary for the convergence of itera-
tions.

Let Nl 3 Nf 5 N, l, and f denote coordinates in
the west–east and south–north directions, respectively.
A two-dimensional filter is chosen for G, with the filter
coefficients calculated by (8) and modified by a Lanczos
window:

x* 5 Gx,

x* 5 g x ,Oi i j j
20.5I#(l 2l )/Dl#0.5Ij i

20.5J#(f 2f )/Df#0.5Jj i

2ri j2g 5 w s exp 2 , andi j i j b5 1 2 6[ ]Lf

sin[(l 2 l )p/(0.5I 1 1)Dl]j i
w 5i j (l 2 l )p/(0.5I 1 1)Dlj i

sin[(f 2 f )p/(0.5J 1 1)Df]j i
3 , (9)

(f 2 f )p/(0.5J 1 1)Dfj i

where x* is a filtered vector with its elements , gij isx*i
the filter coefficient, wij is the Lanczos window, I and
J are the filter orders in the l and f directions, Dl and
Df are grid distances in the l and f directions, and Lf

is a length scale related to L in bij. Note that the ex-
pression in the curly brackets is the same as bij except
for the length scale. In practice, L is determined by
statistics while Lf is based on L and modified due to
the filter truncation and window selection.

Due to the symmetry of the filter, the storage of the
filter coefficients is (0.5I 1 1)(0.5J 1 1) and the com-
putation required is ,(I 1 1)(J 1 1) 3 N (, is used
here because the filter does not take on values outside
of the analysis domain). The choice of I and J depends
on the characteristics of B. Intuitively, the following
approximations should hold (correlations less than 10%
can be ignored):

IDl JDf
ø ø Ï2.

2L 2Lf f

Take a typical two-dimensional regional analysis do-
main, 100 3 100 grid points, with the grid distance Dl
5 Df 5 30 km and the error covariance scale L 5 200
km. The dimension of B and the multiplications of B
required by each VAN iteration are N 3 N 5 108 and
2 3 108, respectively. The required storage size for the
filter is approximately (0.5I 1 1)(0.5J 1 1) ø 102 and
the filter multiplications required by each VAF iteration
is 2 3 (I 1 1)(J 1 1) 3 N ø 8 3 106. (For a VAR
scheme using the spectral technique, the storage re-
quired for and the multiplications in each iterationb*ii
are N 5 104.)
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If the background error at every analysis grid point
is correlated with all other grid points, 2(Nl 2 1) and
2(Nf 2 1) should be chosen for I and J. In this special
case, the VAF scheme without the Lanczos window
should give exactly the same solution as the VAN
scheme, which makes this particular case useful for
checking a VAF implementation.

If the background constraint is removed from the VAF
scheme, that is, take away the first term v from the
gradient of the cost function =vJ, the scheme becomes
a form of successive correction (Bergthorsson and Döös
1955; Cressman 1959; Barnes 1964), which could lead
to an analysis fitting observations exactly when the it-
erations converge. However, if the background contains
useful information, as it does for most NWP applica-
tions, the constraint should remain. An in-depth dis-
cussion on the relations among different analysis
schemes can be found in Lorenc (1986).

In a later paper Lorenc (1997) presented a variational
assimilation scheme that uses a recursive filter to model

B. He used B to define a new control variable v,Ï Ï
Bv 5 x 2 xb,Ï

and there is no inverse of B (or B) in his proposedÏ
scheme. Dévényi and Benjamin (1998) also used BÏ
to define the new control variable in their 3DVAR
scheme. Instead of using recursive filters, an exponential
filter was used to model B. One argument for usingÏ

B when defining the new control variable has beenÏ
that it provides a better preconditioning for minimiza-
tion, compared to using B itself. However, as discussed
by Dévényi and Benjamin (1998) this B precondi-Ï
tioning is still not good enough for effective operational
applications. Some simplified analysis error covariance
matrix is needed for the preconditioning. In addition, it
is not straightforward to model B if B has complicatedÏ
structures [e.g. a series of Bessel functions (Lönnberg
and Shaw 1987)]. In their latest version of 3DVAR Dé-
vényi and Benjamin also went from modeling B toÏ
B (D. Dévényi 1999, personal communication).

d. BLUE: The Best Linear Unbiased Estimation

By setting the gradient of the cost function, (2), to
zero and using the linearized observation operator H,

B21(x 2 xb) 1 HTR21(Hx 2 y) 5 0,

rearranging the equation,

x 5 xb 1 (B21 1 H R21H)21H R21(y 2 Hxb),T T

and using the following identity relation,
T T T T21 21 21H R (HBH 1 R) 5 (H R H 1 B )BH , or

T T T T21 21 21 21 21(B 1 H R H) H R 5 BH (HBH 1 R) ,

the Best Linear Unbiased Estimation (BLUE) can be
derived (see, e.g., Courtier 1997):

xBLUE 5 xb 1 BH HBH 1 R)21(y 2 Hxb),T T( (10)

where xBLUE is the BLUE solution, which in the linear
case should be the final solution of variational schemes
and therefore can be used as a reference.

The numerical solution for BLUE depends on the
accuracy of (HBHT 1 R)21, which could be problematic,
especially when M is large. The size of the matrix BHT

is N 3 M. The elements of this matrix are the back-
ground error covariance between all analysis grid points
and observation locations. The size of HBHT is M 3
M. The elements of this matrix are the background error
covariances between all observation locations. Simpli-
fications to BHT (dimension N 3 M) and (HBHT 1 R)21

lead to the widely used OI scheme. In most OI scheme
implementations (e.g., Lönnberg and Shaw 1987), dif-
ferent data selection strategies are used to reduce M and
N. With the reduced M, both HBHT and BHT are ap-
proximated and directly coded.

e. PSAS: Physical-space Statistical Analysis Scheme

The Physical-space Statistical Analysis Scheme
(PSAS) described by Cohn et al. (1998) is another var-
iational analysis scheme avoiding the inversion of B.
The BLUE solution can be rewritten as

TBLUE bx 5 x 1 BH w and
T 21 bw 5 (HBH 1 R) (y 2 Hx ).

Instead of solving w exactly, which needs the inversion
of (HBHT 1 R) and has the same difficulties in practical
applications as discussed in the previous subsection,
PSAS obtains w through minimizing the following cost
function:

1
TT T bJ(w) 5 w (HBH 1 R)w 2 w (y 2 Hx ).

2

The PSAS solution is given as

xPSAS 5 xb 1 BHTw`,

where w` is the minimization result.
Although PSAS does not invert (HBHT 1 R), this M

3 M matrix could still lead to significant computational
expenses. In the implementation of Cohn et al. (1998),
simplifications are used to make the matrix sparse,
which in a way mimics the OI data selection.

The major difference between PSAS and VAN (VAF)
is where the control variable is based. In PSAS, the
minimization is performed at the observation locations.
The research efforts have been devoted to simplifying
(HBHT 1 R), which is also in the observation space. In
VAN (VAF), the minimization is performed at the mod-
el grid points. Research efforts are also required to sim-
plify B. As shown in the previous subsections, a simple
spatial filter can be used to model B.

3. An illustrative example

To demonstrate the use of the VAN and VAF schemes
described in section 2, a small-sized two-dimensional
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FIG. 1. The 2-m temperature observations (locations are indicated
by stars and values are in 8C) at 0300 UTC 3 Mar 1992 and the
background temperature field (indicated by the contour lines) used
in all analyses discussed in section 3.

FIG. 2. The background error covariance [b(r)] and the Gaussian filter coefficients [g(r)], as
functions of distance (r).

univariate analysis problem, for which the BLUE so-
lutions are easily obtained as references to evaluate the
new schemes, is considered. (A numerical lab, AN-
ALAB, for VAR, VAN, VAF, OI, and PSAS schemes,
written in FORTRAN-77, has been developed by the
author for educational purposes at the Danish Meteo-
rological Institute. The complete ANALAB is available
from the author. ANALAB is based on the OILAB,
which has been used in undergraduate courses for many
years at the Department of Meteorology, Stockholm
University.)

a. Grid, y, xb, and H

A regular latitude–longitude grid is chosen. The num-
ber of analysis grid points is 21 3 21 (N 5 441). The
grid resolution is 0.38 in latitude and 0.68 in longitude.
The analysis domain is shown in Fig. 1. The center of
the model domain is located at (56.5, 14.0). Using this

coordinate, the grid resolution is about 37 km in the
east–west direction and 33 km in the north–south di-
rection.

Real 2-m temperature observations are used in this
illustrative example. The observations are shown in Fig.
1. They are collected mainly in Denmark and southern
Sweden at 0300 UTC 3 March 1992. A total of 38
observations are in the database (M 5 38). The obser-
vation locations are indicated by stars. The observed
values in degrees Celsius are printed to the right of their
locations.

The background temperature field is also shown in
Fig. 1. It is clear that the large-scale features of the
temperature field are captured by the background. It is
the purpose of the analysis with a smaller error co-
variance scale to extract the small-scale information in
the observations in a statistically optimal way.

The observation operator, H, needed for the following
experiments is a simple bilinear interpolation.

b. R, B, and G

In the following experiments, the observation errors
are assumed noncorrelated. The matrix R is therefore a
diagonal matrix with all diagonal elements equal to the
square of the observation standard deviation, , and2s o

we choose so 5 18C.
The background errors are assumed correlated and

the Gaussian function, defined in (8), is used to calculate
the elements in B. The background standard deviation,
sb, is also chosen to be 18C. Using the analysis grid
defined earlier, the error covariance between one arbi-
trary grid point and the neighboring grid points is cal-
culated using (8) and plotted against distance in Fig. 2.
In the figure, b200 and b100 are covariances using L 5
200 km and L 5 100 km, respectively. In the testing of
the VAF code, the 40th-order Gaussian filter without
the Lanczos window is used and the filter coefficients,
g200p40pnowin, are identical to b200 plotted in Fig. 2.

From the figure, it is clear that the covariance be-
comes less than 10% only when two grid points are
separated by more than 10 grid points when L 5 200
km and by more than 5 grid points when L 5 100 km.
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FIG. 3. BLUE analyses using (a) L 5 200 km and (b) L 5 100 km.

FIG. 4. (a) The cost functions Jo, Jb, and J at each iteration. (b) The rms difference in 8C between VAN solution at each iteration and the
BLUE solution. Logarithmic scales are used.

Using these numbers, a 20th-order filter and a 10th-order
filter are chosen in the VAF experiments.

Due to the Lanczos window, the effective scale of the
Gaussian filter is reduced. To compensate this scale re-
duction, Lf 5 260 km is chosen for the 20th-order filter
and Lf 5 128 km is chosen for the 10th-order filter.
(The choice of Lf will be discussed later.) The Gaussian
filter coefficients, calculated using (9), as functions of
distance are also plotted in Fig. 2, where g260p20 is for
a 20th-order filter and g128p10 is for a 10th-order filter.

As can be seen from the figure, these two filters closely
resemble the two covariance functions.

c. The BLUE solution

The BLUE analyses are shown in Fig. 3. They are
obtained by using L 5 200 km and L 5 100 km, re-
spectively. As has been discussed in section 2d, the
BLUE solution is the final solution of the variational
schemes assuming the observation operator is linear and
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FIG. 5. VAN analyses obtained after (a) 1, (b) 10, (c) 100, and (d) 1000 iterations.

the inversion of (HBHT 1 R) is exact. The inversion is
computed using lower triangular and upper triangular
(LU) decomposition and routines from Press et al.
(1989). This solution is used as a reference to compare
the results in the following subsections.

d. Minimization

To solve the variational problems discussed in section
2 an algorithm for minimizing the cost function is need-
ed. In this study, for illustration purposes, the steepest
descent minimization algorithm is used. There is no
general rule for the choice of the minimization step size,
a, used in (4). In the experiments described in this paper,
a 5 0.002 is chosen, which is approximately the largest
value with which the steepest descent minimization
method converges for all the experiments.

e. VAN solutions

In the experiment using the VAN scheme, the pa-
rameters are set to be the same as those used to obtain
the BLUE solution with L 5 200 km. The cost func-
tions Jo , Jb , and J at each iteration (up to 1000) are
plotted in Fig. 4a. Note that a logarithmic scale is
used.

The choice of the analysis grid, the number of ob-
servations, the observation, and back ground error co-
variances leads to Jo /Jb ; 5; that is, the difference
between the cost functions of the analysis and obser-
vations is about five times larger than that between
analysis and background. With different parameters
this ratio can change. As can be seen from Fig. 4a, the
largest changes in the cost function occur during the
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FIG. 6. VAF analyses using a 20th-order Gaussian filter after (a) 1, (b) 10, (c) 100, and (d) 1000 iterations.

first iterations. Even 10 iterations are enough for prac-
tical purposes.

Since the BLUE solution could be considered as the
final solution for VAN iterations, the rms difference
between the VAN solution at each iteration and the
BLUE solution is plotted in Fig. 4b. Using this measure,
it is shown that the convergence to the final solution
could take more time. However, the rms difference is
less than 0.18C after 10 iterations.

The VAN analyses after 1, 10, 100, and 1000 itera-
tions are shown in Fig. 5. The VAN analysis obtained
after one iteration is already quite different from the
background and has many features of the BLUE solu-
tion. The VAN analyses after 10, 100, and 1000 itera-
tions could be considered the same using any subjective
judgment, although minor differences, for instance close
to the northern boundary, do exist.

f. VAF solutions

Using the Gaussian filter (9) with different orders, a
series of experiments using the VAF scheme are con-
ducted. First, a 40th-order filter without the Lanczos
window is used as a check of the coding, since the VAF
scheme is equivalent to the VAN scheme when the filter
parameter (0.5I 1 1) 3 (0.5J 1 1) is equal to the number
of grid points of the analysis domain Nl 3 Nf , which
are all 21 3 21. The VAF results (not shown) are iden-
tical to the VAN results as expected.

Reducing the filter order by a factor of 2 (I 5 J 5
20), the solutions (Fig. 6) are practically the same as
the VAN solutions (Fig. 5). The solutions after 10 it-
erations are actually very close to the BLUE solution
using L 5 200 km (Fig. 3a).

A further halving of the filter order (I 5 J 5 10)



2596 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 7. VAF analyses using a 10th-order Gaussian filter after (a) 1, (b) 10, (c) 100, and (d) 1000 iterations.

leads to a VAF solution with a smaller spatial scale (Fig.
7). As expected from the characteristics of the filter, the
solutions converge to the BLUE solution using L 5 100
km (Fig. 3b).

g. Selection of Lf for VAF

Ideally the background error covariance matrix, B, is
computed from statistics and there is nothing left to be
tuned. In practice, some kind of analytical function, for
example, the Gaussian function (8), is used to model bij

and, in this case, the length scale L is computed from
statistics. In other words, L should not be a free param-
eter to be adjusted.

As discussed in sections 2c and 3b, the length scale
Lf used in VAF schemes is not necessarily the same as

L due to the filter truncation and window selection. In
most cases, Lf should be longer than L.

Using the BLUE solution as the ‘‘true solution’’ and
the VAN solution as a reference solution, numerical
experiments have been performed varying Lf . The re-
sults are summarized in Fig. 8, where the rms difference
between VAF and BLUE solutions are shown as a func-
tion of iterations for the selected experiments. Note that
logarithmic scales are used. There are two groups of
experiments, one for VAN using L 5 200 km and the
20th-order filter (Fig. 8a), and the other for VAN using
L 5 100 km and the 10th-order filter (Fig. 8b).

The selection of Lf 5 260 km for L 5 200 km and
Lf 5 128 km for L 5 100 km was based on the final
solution of each experiment, which has the minimum
in the rms difference. As can be seen from the figure,
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FIG. 8. The rms difference in 8C between VAN/VAF and BLUE solutions at each iteration for (a) VAF200 (L 5 200 km) and VAF schemes
with different Lf (from 220 km to 300 km) and (b) VAF100 (L 5 100 km) and VAF schemes with different Lf (from 110 km to 150 km).
Logarithmic scales are used.

the VAN solution is best at the end of iterations. This
should be expected, since VAF is just an approximation
to VAN.

A closer inspection of Fig. 8 also reveals a few in-
teresting aspects of the VAF solutions. First of all, with-
in the first 10 iterations the VAF solutions are not sen-
sitive to Lf for a large range of Lf . This means that in
practical applications the precise value of Lf may not
be crucial. Second, there is an iteration range between
10 and 100 in which VAF solutions could be better than
the VAN solutions. In practical implementations, there
is often a predetermined maximum iteration number that
could be in this range. In that case, it may be possible
to improve the analysis by taking a Lf that is somewhat
shorter than that selected based on the final solutions.
Third, the distance between some VAF solutions and
the ‘‘true solution’’ decreases through the early itera-
tions and reaches the minimum at, for example, around
100 iterations. Further iterations would lead to an in-
crease in the distance. Finally, it should be stressed that
the rms difference between different solutions is plotted
on logarithmic scales in Fig. 8 and is much smaller than
the assumed errors in both background and observa-
tions.

4. A more realistic example

To give a more realistic picture, some of the exper-
iments described in section 3 have been repeated with
the following changes:

1) An increase of analysis grid points from 21 3 21 to
101 3 101.

2) An increase of observations from 38 to 1062.

Other parameters, for example, Dl, Df, so, and sb,
remain unchanged except that a 5 0.0005. The dimen-
sion of B is now 108, which makes the VAN scheme
impossible to run even on some supercomputers. There-
fore only a VAF solution is shown. The dimension of
(HBHT 1 R) is now 106, which makes the matrix in-
version of the BLUE scheme nontrivial to handle.

In this example, 2-m temperature observations at
0000 UTC 5 May 1999 within 358–658N and 108W–
508E are selected from the Danish Meteorological In-
stitute operational database. The locations and values of
the observations are given by Fig. 9. The full analysis
domain is shown in the figure. As in the previous sec-
tion, the background field has the reasonable, large-scale
structure of the observations (Fig. 9a).

Both the BLUE solution (with L 5 200 km; Fig. 9b)
and the VAF solution (with Lf 5 260 km at the 1000th
iteration; Fig. 9c) add smaller-scale information from
observations to the background. Comparing the two
analyses subjectively, it is obvious that the VAF solution
is a good approximation of the BLUE solution. To give
a quantitative comparison, the rms difference between
the VAF and BLUE solutions as a function of iterations
is plotted in Fig. 10. Based on this figure and the results
from the previous section, it could also be argued that
10 iterations may be enough for the VAF scheme to
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FIG. 9. The 2-m temperature observations (locations are indicated by stars and values in 8C) at 0000 UTC 5 May
1999 and the (a) background field, (b) BLUE analysis, and (c) VAF analysis.
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FIG. 10. The rms difference in 8C between VAF and BLUE solu-
tions at each iteration. Logarithmic scales are used.

produce an analysis of approximately the same quality
as the BLUE solution.

5. Conclusions

In this paper, we have addressed two issues related
to the variational data assimilation, VAR, as formulated
by Lorenc (1986). The first is how to avoid the inversion
of the large dimensioned background covariance matrix
B. The second is how to avoid explicit storage and com-
putation of B.

Following Lorenc (1988) and Derber and Rosati
(1989), we have shown that a simple transform of the
control variable leads to a modified scheme, named
VAN—variational analysis with no inversion of the
background error covariance matrix. The remaining
storage and computation difficulties in VAN are mainly
due to the presence of the matrix itself. Although a full-
sized implementation of the VAN scheme is still dif-
ficult, the VAN scheme is considered as a step forward
from VAR. The problems related to the inversion of a
very large and often ill-conditioned matrix are avoided.

A limitation of the VAN scheme is the lack of pre-
conditioning. If some preconditioning, for example, us-
ing the inverse of the Hessian matrix, is needed, the
inversion of the background error covariance matrix
may enter the preconditioning and approximations
would be needed to avoid inversions.

Based on the VAN scheme, we have formulated a
new scheme, named VAF—variational analysis using a
filter, which uses a spatial filter to model the background
error covariance matrix and does not require the matrix
explicitly. Using a truncated filter the spatial scale of
the analysis is changed slightly. A redefinition of the

length scale in the filter is necessary to adjust the ef-
fective scale of the analysis. The storage and compu-
tation required by the VAF scheme could be orders of
magnitude smaller than the VAR and VAN schemes. A
full-sized implementation of the VAF scheme is pos-
sible.

To illustrate how these schemes work, a small-sized
and a more realistic two-dimensional univariate analysis
problem are considered using real 2-m temperature ob-
servations. As the observation operator involved is lin-
ear, the best linear unbiased estimates are used as ref-
erence. It is shown that both VAN and VAF work sat-
isfactorily.

In this paper, a Gaussian function is used to model
B, which leads naturally to a Gaussian filter in VAF. In
realistic applications, the form of B should be tuned
statistically using both background and observations.
Other forms of B, for example, a series of Bessel func-
tions, may also be constructed and used to determine
the filter coefficients for VAF. However, without a mean-
ingful verification package it is difficult to compare dif-
ferent B formulations. Further studies of this are needed.

In the construction of the spatial filter, a Lanczos
window is introduced to reduce the truncation-related
Gibbs oscillations. During the development of the VAF
scheme, many problems caused by noise have occurred
when the truncation was severe and the window was
inactive. The Lanczos window is our first attempt and
seems to be quite effective in removing noise. Although
other windows may be used, a proper comparison meth-
od needs to be established to select a better window.

One of the advantages of using VAR, VAN, or VAF
is the ability of assimilating indirect data. We plan to
use the VAF scheme to include the ground-based Global
Positioning System data in the type of analyses shown
here. A more sophisticated minimization algorithm and
a better preconditioning algorithm, for example as dis-
cussed by Dévényi and Benjamin (1998), will have high
priority in the future development. A nonuniform grid
version of VAF needs to be derived, as shown by Lorenc
(1992), for more realistic implementations. A full-sized
three-dimensional multivariant problem should be con-
sidered. In order to make efficient use of asynoptic data
and to obtain a coherent four-dimensional analysis, a
time-dependence and a numerical weather prediction
model should also be included by the VAN and VAF
schemes. These will be research subjects in the future.
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