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Motivation

• Ensemble forecasting : Provides flow-dependent 
estimate of uncertainty of the forecast.

• Data assimilation : requires information about 
uncertainty in prior forecast and observations.  

• More accurate estimate of uncertainty, less error in 
the analysis. Improved initial conditions, 
improved ensemble forecasts.

• Ensemble forecasting  data assimilation. 



Example: where flow-dependent 

first-guess/background errors help

Courtesy: Thomas Hamill



A new observation 

is taken near the 

front that is 

inconsistent with 

first guess 

Courtesy: Thomas Hamill



3DVAR with 

typical background 

error covariance B

produces an 

analysis, bowing 

the front out just in 

the region of the 

observation.

The way an observation influences surrounding points is always

the same in 3D-Var --- typically concentric rings of decreasing

influence the greater the distance from the observation.

Courtesy: Thomas Hamill



Here’s the front you’d 

re-draw based on 

synoptic intuition, 

understanding that     

the errors are flow 

dependent.

How can we 

teach data 

assimilation 

algorithms to 

do this?

In this special case, your

synoptic intuition would 

tell you that temperature

errors ought to be 

correlated

along the front, from 

northeast to southwest.  

However, you wouldn’t 

expect that same NE-SW 

correlation if the 

observation were near the 

warm front.  Analyses 

might be improved 

dramatically if the errors 

could have this flow-

dependency.

Courtesy: Thomas Hamill



Ensemble-based data 

assimilation algorithms

• Can use ensemble to model the statistics of 

the first guess (“background”) errors.

• Tests in simple models show dramatically 

improved sets of objective analyses

• These sets of objective analyses could also 

be useful for initializing ensemble forecasts.



4D-Var: As far as data 

assimilation can go?

• Finds model trajectory that best fits observations 

over a time window.

• BUT:

– Requires linear tangent and adjoint (difficult to code, 

and are linearity of error growth assumptions met?)

– What if forecast model trajectory unlike real 

atmosphere’s trajectory? (model error)

• Ensemble-based approaches avoid these problems 

(though they have their own, as we’ll see). 



Example: assimilation of a sparse 

network of surface-pressure observations



From first principles:

Bayesian data assimilation
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Bayesian data assimilation: 

2-D example

Computationally expensive! Here, probabilities explicitly updated on 100x100 

grid; costs multiply geometrically with the number of dimensions of model state.



Data assimilation terminology

• y : Observation vector (raobs, satellite, etc.)

• xb : Background state vector (1st guess)

• xa : Analysis state vector

• H : (Linear) operator to convert model state  obs

• R : Observation - error covariance matrix

• Pb : Background - error covariance matrix

• Pa : Analysis - error covariance matrix



Simplifying Bayesian D.A.: 

toward the Kalman Filter
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(manipulation of Baye’s rule) 

Maximizing (@) equivalent to minimizing –ln(@), i.e., minimizing the functional

(@)

so



Kalman filter derivation continued
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After much math, plus other assumptions about linearity, we end 

up with the “Kalman filter” equations (see Lorenc, QJRMS, 1986).
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How the background errors at the next data assimilation time 

are estimated.  M is the “tangent linear” of the forecast model M

Assumed .

This “update” equation tells how to estimate the analysis state.

A weighted correction of the difference between the 

observation and the background is added to the background.

K is the “Kalman Gain Matrix.” It indicates how much

to weight the observations relative to the background and

how to spread their influence to other grid points

Pa is the “analysis-error covariance.  The Kalman filter

indicates not only the most likely state but also quantifies

the uncertainty in the analysis state.
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How the forecast is propagated.  In “extended Kalman 

filter” M is replaced by fully nonlinear M



Kalman filter update equation:

example in 1-D
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Kalman filter problems

• Covariance propagation step Pt
a
 Pb

t+1

very expensive

• Still need tangent linear/adjoint models for 

evolving covariances, linear error growth 

assumption questionable.



From the Kalman filter to the 

ensemble Kalman Filter

• What if we estimate Pb from a random 
ensemble of forecasts? (Evensen, JGR
1994)

• Let’s design a procedure so if error growth 
is linear and ensemble size infinite, gives 
same result as Kalman filter.



Canonical ensemble Kalman filter 

update equations
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The ensemble Kalman filter: a schematic

(This schematic

is a bit of an

inappropriate

simplification, 

for EnKF uses

every member

to estimate

background-

error covariances)



How the EnKF works: 

2-D example

Start with a random sample from bimodal distribution used

in previous Bayesian data assimilation example.  Contours reflect 

the Gaussian distribution fitted to ensemble data.



Why perturb the observations?

histograms denote the ensemble values;

heavy black line denotes theoretical

expected analysis-error covariance 



How the EnKF may achieve its 

improvement relative to 3D-Var:

better background-error covariances

Output from a “single-observation” experiment.  The EnKF is cycled for a long 

time in a dry, primitive equation model.  The cycle is interrupted and a single 

observation 1K greater than first guess is assimilated. Maps of the analysis minus 

first guess are plotted. These “analysis increments” are proportional to the 

background-error covariances between every other model grid point and the 

observation location.



Why are the biggest increments 

not located at the observation?



Analysis increment: 

vertical cross section through front



More examples of flow-dependent 

background-error covariances



Computational trickery in EnKF:

(1) serial processing of observations

EnKF
Background

forecasts

Observations

1 and 2

Analyses

EnKF
Background

forecasts

Observation

1

Analyses

after obs 1 EnKF

Observation

2

Analyses

Method 1

Method 2



Computational trickery in EnKF:

(2) Simplifying Kalman gain calculation
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The key here is that the huge matrix Pb is never explicitly formed



Different implementations of 

ensemble filters

• Double EnKF (Houtekamer and Mitchell, MWR, March 
1998)

• Ensemble adjustment filter (EAKF; Anderson, MWR, Dec 
2001)

• Ensemble square-root filter (EnSRF; Whitaker and Hamill, 
MWR, July 2002)

• Ensemble transform Kalman filter (ETKF; Bishop et al, 
MWR, March 2001)

• Local ETKF or LETKF (Hunt et al. 2007, Phys. D)

• Others as well (Lermusiaux, Pham, Keppenne, Heemink, 
etc.)



Why different 

implementations?

• Save computational expense

• Problems with perturbed obs.  Suppose

Pb ~ N(0,1),    R ~ N(0,1),      E[corr(xb, y')] = 0

Random sample xb : [0.19, 0.06, 1.29, 0.36, -0.61]

Random sample y' : [-1.04, 0.46, -0.12, -0.65, 2.10]

Sample corr (xb, y') = - 0.61 !

Noise added through perturbed observations can introduce spurious 
correlations between background, observation errors.  However, there 
may be some advantages to perturbed observations in situations where 
the prior is highly nonlinear. See Lawson and Hansen, MWR, Aug 
2004.



Adjusting noisy background-

error covariances: 

“covariance localization”



The commonly used localization ‘Gaspari-

Cohn’ function

Gaspari and Cohn (QJ 1999)

The ensemble covariances is 

multiplied by this distance-z-

based function. 2c is the cut off 

radius



Covariance 

localization

in practice

from Hamill review paper, to appear

in upcoming Cambridge Press book.

See also Houtekamer and Mitchell, MWR,

March 1998



How does 

covariance 

localization 

make up for 

larger 

ensemble?

(a) eigenvalue spectrum from

small ensemble too steep,

not enough variance in trailing

directions.  (b) Covariance 

localization adds directions, 

flattens eigenvalue spectrum)

source: Hamill et al, MWR, Nov 2001



Covariance localization and size of 

the ensemble

Smaller ensembles achieve lowest 

error and comparable spread/error 

with a tighter localization function

(from Houtekamer and Mitchell, MWR, Jan 2001)



Problem: “filter divergence”

Ensemble of solutions drifts away from true solution.  

During data assimilation, small variance in background 

forecasts causes data assimilation to ignore influence of 

new observations. 



Filter divergence: some causes

• Observation error statistics incorrect.

• Too small an ensemble.  

– Poor covariance estimates just due to random sampling.

– Not enough ensemble members.  If M members and 
G > M growing directions, no variance in some 
directions.

• Model error.

– Not enough resolution.  Interaction of small scales with 
larger scales impossible.

– Deterministic sub-gridscale parameterizations.

– Other model aspects unperturbed (e.g., land surface 
condition)

– Others



Effects of misspecifying 

observation error characteristics



Possible filter divergence remedies

• Higher-resolution model, more members (but 
costly!)

• Covariance localization (discussed before)

• Possible ways to parameterize model error

– Apply bias correction

– Covariance inflation

– Integrate stochastic noise

– Add simulated model error noise at data assimilation 
time.

– Multi-model ensembles



Remedy: covariance inflation
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Disadvantage: what if model error in altogether different subspace?

source: Anderson and Anderson, MWR, Dec 1999



Remedy: integrating stochastic noise
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Remedy : integrating stochastic 

noise, continued

• Questions 

– What is structure of S(x,t)?

– Integration methodology for noise?

– Will this produce ~ balanced covariances?

– Will noise project upon growing structures and increase 

overall variance?

• Early experiments in ECMWF ensemble to 

simulate stochastic effects of sub-gridscale in 

parameterizations (Buizza et al., QJRMS, 1999).



Remedy : adding noise 

at data assimilation time
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Idea follows Dee (Apr 1995 MWR) and Mitchell and 

Houtekamer (Feb 2000 MWR)



Remedy : adding noise 

at data assimilation time

Integrate deterministic model forward to next analysis

time.  Then add noise to deterministic forecasts 

consistent with Q.



Remedy : adding noise 

at data assimilation time (cont’d)

• Forming proper covariance model Q important

• Mitchell and Houtekamer: estimate parameters of Q from 

data assimilation innovation statistics. (MWR, Feb 2000)

• Hamill and Whitaker: estimate from differences between 

lo-res, hi-res simulations 

(www.cdc.noaa.gov/people/tom.hamill/modelerr.pdf)



Remedy :  multi-model ensemble?

• Integrate different members with different 

models/different parameterizations.

• Initial testing shows covariances from such 

an ensemble are highly unbalanced (M. 

Buehner, RPN Canada, personal 

communication).



Other Covariance Inflation Methods

• Multiplicative inflation – multiply perturbation by a factor

• Additive inflation – add noise or perturbations to 

perturbations

• Relaxation to prior perturbation (RTPP) Zhang et al. (MWR 2004)

• Relaxation to prior spread (RTPS) Anderson (Tellus 2009); Whitaker and 

Hamill (2010)

When c=1, sb is fully restored. 

When c < 1, sb is partially restored

• Other adaptive inflation (e.g., El Gharamti MWR 2018; Gharamti et 

al. MWR 2019)
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Conclusions

• Ensemble data assimilation literature growing rapidly 
because of 

– Great results in simple models

– Coding ease (no tangent linear/adjoint)

– Conceptual appeal (more gracefully handles some nonlinearity)

• However:

– Computationally expensive

– Requires careful modeling of observation, forecast-error 
covariances to exploit benefits.  Exploration of these issues 
relatively new.

• Acknowledgments:  Chris Snyder, Jeff Whitaker, Jeff 
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• For more information
– www.cdc.noaa.gov/people/tom.hamill/efda_review.ppt

– www.cdc.noaa.gov/people/tom.hamill/efda_review5.pdf
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