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1. Introduction

During the last 10 years the use of adjoints in me-
teorology has been rapidly increasing. Meteorologists
working with adjoint models consider them exception-
ally powerful modeling tools that will enable many
outstanding problems to be solved efficiently and
many old problems to be reexamined more directly.
Three workshops [the first two reviewed by Errico
et al. (1993a) and Prager et al. (1995), respectively] and
a large portion of others have been devoted to the de-
velopment and applications of adjoints. Still, many in
the meteorological community are unaware of their
existence or how useful they may be for the problems
they are investigating.

Many questions investigated by research meteo-
rologists concern sensitivity (e.g., Langland et al.
1995). Answering these questions requires estimating
how much selected measured aspects of some synoptic
features will change if perturbations are made to physi-
cal or dynamical processes or precursor synoptic con-

ditions. Once the “how much” is estimated, the ques-
tion of “why” the change is as obtained can be more
easily addressed by focusing on the significant aspects.

When quantitative estimates of sensitivity are de-
sired, a mathematical model of the phenomena or re-
lationships is required. Models have been used since
their beginning to determine impacts of perturbations
and thereby to estimate sensitivity. A more efficient,
revealing, and direct way, however, is to use the
model’s adjoint (Errico and Vukic´ević 1992; Rabier
et al. 1992; Hall et al. 1982). The two methods, along
with their limitations, will be contrasted in the next
section.

Many meteorological questions also concern
optimality. The best example is in data assimilation,
where the optimal analysis is the one that fits all the
observations best, consistent with what is known about
the error characteristics of all the data used and as-
sumptions made (Daley 1991; Lorenc 1986). For these
applications, the adjoint is used as a tool for efficiently
determining the optimal solutions (Lewis and Derber
1985; Tarantola 1987). Without this tool, the optimi-
zation problem could not be solved in a reasonable
time for application to real-time forecasting.

Many other meteorological questions concern sta-
bility. These questions have often been answered by
searching for exponentially growing, normal-mode
solutions to some simply linearized model. Even when
no such solutions are found, however, other types of
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growing solutions may still exist (Farrell 1988). Also,
the linearized models previously used could not con-
sider time-varying basic states, about which the lin-
earization is performed. A more general method of
stability analysis requires the use of an adjoint of the
model (Farrell and Ioannou 1996a,b; Molteni and
Palmer 1993). This generalized method includes the
normal-mode method as a special case.

There are naturally limitations to the applicability
of adjoint methods. Although one often does not find
these discussed in the literature, they are related to lim-
its of predictability and the chaotic nature of weather.
The temporal range of applicability of adjoint-deter-
mined results remains very great, even more than
many would expect, given that adjoints are based on
a linearization of model equations (Errico et al. 1993b;
R. Errico and K. Raeder 1997, manuscript submitted
to Quart. J. Roy. Meteor. Soc., hereafter ER).

The principal application of adjoint models is sen-
sitivity analysis, and all its other applications may be
considered as derived from it. This fundamental ap-
plication will be described in sections 2–3, without
recourse to mathematics beyond first-year calculus and
first-semester linear algebra. Although adjoint mod-
els are often presented using mathematics unfamiliar
to the great majority of meteorologists, the basic con-
cepts are in fact very simple and likely familiar in other
contexts. The few additional important details one
obtains from consideration of higher-level mathematics
can be easily learned once the basics are understood.

An example of an adjoint sensitivity calculation is
described in section 4. Some applications of sensitiv-
ity analysis, including the contexts of stability analy-
sis and optimization, are discussed in section 5.
Limitations of the adjoint methods are described in
section 6. Finally, the future development and appli-
cation of adjoint models is discussed in section 7. They
will likely become as common a tool as models them-
selves as the greater community of research and ap-
plication meteorologists become aware of their power.

2. Sensitivity analysis

Adjoint operators can be derived for sets of equa-
tions that we do not normally call models, but since
the examples to be used here apply to numerical
weather forecast models, this presentation will invoke
the term “model” with the understanding that this can
be most sets of equations for most purposes [equations
with terms whose first derivatives can be indetermi-

nate may require some special attention, e.g., Xu
(1996)]. Furthermore, to keep the presentation simple,
we will only consider numerical models that take a
collection of numbers as input and produce another
collection of numbers as output. Such a collection can
be values of interior fields, boundary conditions, and
model parameters defined in some discrete way, such
as on a map grid or as spectral coefficients. This col-
lection of input values can be simply denoted by a
vector a; for example, the kth component of a, which
we denote as a

k
, may be the temperature at some par-

ticular model grid point and pressure level at the
model’s initial time. Similarly, the output at any time (or
set of times) may be denoted by the single vector b.

Often, interest in model solutions is focused on
quantification of some output (forecast) aspects.
Examples include mean-squared forecast errors, the
central pressure predicted for a cyclone, the strength
of a front measured in some way, or the total amount
of rainfall predicted over some region and time. These
measures of forecast aspects may be simply denoted
as J

n
 = J

n
(b), where distinct n denote distinct measures.

Although most applications of adjoint models that
appear in the literature consider only J

n
 that are qua-

dratic functions of the components of b, the J
n
 need

not be so restricted.
It is helpful to describe sensitivity analysis using

adjoints by contrasting it with what has been called
sensitivity analysis in most past literature in meteo-
rology. In that literature a “control” solution (denoted
here by subscript c) is determined by specifying a

c
,

running the model to determine b
c
, and then comput-

ing a set of J
nc
. A second solution is then determined

by starting from some slightly altered a
p
 to produce

b
p
 and J

np
. The perturbation ∆a = a

p
 − a

c
 must be suf-

ficiently small (measured in some sense) that the case
and model are not entirely altered so that any compari-
sons are meaningless. The results ∆J

n
 = J

np 
− J

nc
 are

then used to describe the sensitivity of the model so-
lution to perturbations of the kind introduced. From a
single pair of control and perturbed forecasts, ∆J

n
 can

be computed for all J
n
.

The problem with this previous type of sensitivity
analysis is that, in fact, all that has been determined is
the impact of one specific input perturbation ∆a on the
J

n
. It is likely that another perturbation, having many

of the characteristics and properties of the first pertur-
bation (such as general location and root-mean-
squared size), may yield very different ∆J

n
 with

correspondingly different interpretations of the sensi-
tivity. This is especially true for short-term forecasts
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where a few unstable modes of the solution may not
have sufficient time to dominate the behavior of per-
turbations. In order to more generally answer the ques-
tion of sensitivity using this method, an ensemble of
perturbations must be examined (e.g., Mullen and
Baumhefner 1994). Only then can it be claimed that,
for example, “This J

n
 is more sensitive to wind per-

turbations here rather than there,” in place of just “This
J

n
 is affected by this specific perturbation in this par-

ticular way.”
A very different approach to sensitivity analysis,

with its own set of limitations, makes use of an adjoint
of the model whose solution is being examined. As
with the former method, it begins by considering a
control solution a

c
. Next, it considers one selected

J (from the set of J
n
) and a corresponding vector of

∂J/∂b evaluated at b = b
c
, that is, the gradient of J with

respect to possible perturbations of each component
of the model output about the control solution. All that
is required to determine this gradient is knowledge of
the definition of J and that J be first-order differen-
tiable with respect to the output components (e.g.,
specifications of each forecast field at each grid point)
when J is evaluated for the control solution. This gra-
dient can be interpreted as the sensitivity of J with
respect to arbitrary (but small) perturbations of b in
the sense that

′ = ∑J
J

b
b

k
k

k

∂
∂

∆ (1)

is a first-order (Taylor series) approximation to ∆J
(primes will be used to denote linear estimates of per-
turbation quantities). For a ∆b

k
 of a given magnitude, a

large value of ∂J/∂b
k
 suggests that the perturbation will

have a large effect on altering J, but a small value sug-
gests the same perturbation will have a small effect.

An example J is the area-mean-squared surface
temperature forecast error

J
T T x y

x yT

i j i j i j i j

i j i j

=
−[ ]( ) ( )Σ ∆ ∆

Σ ∆ ∆
, , ,

,

f v 2

, (2)

where the superscripts (f) and (v), respectively, denote
forecast and verification values and the grid spacings
in the x and y directions at the point i, j, respectively,
are ∆x

i
 and ∆y

j
. The corresponding gradient of J

T
 with

respect to the forecast T evaluated about the control

forecast is

∂
∂

J

T

T T x y

x y
T

i j

c i j i j i j

i j i j,

, ,

,
f

f v

( )

( ) ( )

=
−[ ]

2
∆ ∆

Σ ∆ ∆ . (3)

Knowledge of ∂J/∂b reveals little we did not al-
ready know about the J, but what would reveal much
more is knowledge of ∂J/∂a. This new gradient can
also be interpreted as the sensitivity, but with respect
to the initial conditions, boundary conditions, param-
eters, etc. (all the values that control the forecast and
are included in the specification of a). In particular,

′ = ∑J
J

a
an

n

k
k

k

∂
∂

∆ (4)

is also a (different) first-order approximation to ∆J but
does not require a forecast to determine ∆a. If one is
interested in the impacts on J due to many different
perturbations, one need simply compute the inner
product (4) using the different ∆a

k
. The gradients of J

with respect to either the input or output must be re-
lated since b is determined by a. In fact, what is re-
quired is a means to efficiently determine ∂J/∂a from
∂J/∂b. The adjoint of the model is the tool used to do
this.

3. Tangent linear and adjoint models

Since most of us are more accustomed to thinking
in terms of integrating models forward in time rather
than determining sensitivities backward in time, the
adjoint of a model is most easily described by first
discussing its corresponding tangent linear model.
While it is not necessary to do so, the mathematics is
significantly simplified by considering numerical
models that are discretized in time (as almost all our
numerical models are). Such a model may be simply
described by

b = B(a), (5)

where B denotes the model operator.
If a′′′′′ denotes an input perturbation, then

∆b b
b

a
aj j

j

k
k

k

≈ ′ = ′∑ ∂
∂ (6)
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is a first-order Taylor series approximation to the re-
sulting perturbation of the output that is valid as long
as the |a′

k
| are all sufficiently small and the derivatives

in (6) exist. Only for simple models can the analytical
form of the derivatives in (6) actually be determined.
Fortunately, for many of the most important applica-
tions, only numerical results are necessary; that is,
numbers corresponding to the sums in (6) for each j
are all that are required. Even they would be too inef-
ficient to compute if all the derivatives of the output
with respect to input, as written in (6), actually had to
be explicitly numerically evaluated. Instead, it is of-
ten sufficient to determine only the net result of (6) by
considering the model as a sequence of operations; for
example,

B B B B BNa a( ) = ( )[ ]{ }( )( )K K2 1 0 , (7)

where the subscripts refer to individual time steps, it-
erations, and physical or algorithmic components of
the model. The chain rule of elementary calculus can
be applied to (7) to yield a sequential formulation for
(6):

′ = ′( )b bj j
N ,

′ = ′ ≥ ≥( )
( )

−( )
−( )∑b

b

b
b N nj

n j
n

k
n k

n

k

∂
∂ 1

1 1, ,for (8)

′ = ′( )
( )

∑b
b

a
aj

j

k
k

k

0
0∂

∂ ,

where, for example, b
j
(n) refers to the j th component

of the output after step n. It is therefore possible to
determine (6) using a sequence of simple and elemen-
tary calculations.

In specific numerical applications, the derivatives
in (6) or (8) are to be evaluated at a = a

c
 and the re-

sulting sequence b(n), so it is sufficient that they exist
for only those particular values of the components of
a and b(n) rather than for all possible values (i.e., the
model operator must only be differentiable along the
control trajectory). For spatially and temporally dis-
crete models, this is often the case, even when the func-
tions used in the model have discontinuities, as when
modeling convection. The matrix that describes the set
of derivatives appearing in (6) is called the Jacobian

of the model, determined with respect to model input.
It is also called the linearized model operator (Kayo
et al. 1997) or propagator, but here the term Jacobian
will be used.

Equation (6) is linear in the perturbation quantities
and is therefore a linearized version of the model. In
meteorology’s early days, such linearizations were
performed about very idealized (control) solutions
since the goal then was to eliminate enough terms and
simplify all the others to obtain analytical solutions.
As long as we are interested in numerical rather than
analytical solutions, however, (6) need not be restricted
to such idealized control solutions. In fact, (6) will
likely become more accurate as we consider the a

c
 that

actually interest us because then relevant perturbations
can truly become small relative to the control forecast
values (e.g., contrast perturbed values of advective
terms when a linearization is performed about a zon-
ally uniform wind versus a real analyzed wind when
the perturbations are intended to represent a possible
difference between the true atmospheric state and the
control state). The linearization can be performed
about realistic model solutions that vary in all space
directions as well as in time; that is, the reference so-
lution need not be stationary. Such a model is called a
tangent linear model, because the linearization is per-
formed with respect to tangents of the model trajec-
tory described in a model phase space.

For J = J(b) = J[B(a)], application of the chain rule
of elementary calculus yields a linear relationship for
gradients analogous to (6):

∂
∂

∂
∂

∂
∂

J

a

b

a

J

bj

k

j kk

= ∑ . (9)

There are three important differences between (6)
and (9): (6) relates perturbations but (9) relates (sen-
sitivity) gradients; (6) takes perturbations of the input
to determine those for the output, but in (9) the roles
of input and output are reversed; and the order of the
subscripts j, k in (9) is reversed from those in (6). The
reversal of subscripts in (9) indicates that the Jacobian
matrix in (6) has been replaced by its transpose (i.e.,
the interchanging of rows and columns), or in more
general mathematical terms by its adjoint. Equation (9)
is therefore called the adjoint model corresponding to
(6) [or, less precisely, (5)].

Note that the adjoint operates backward in the
sense that it determines a gradient with respect to in-
put from a gradient with respect to output. In a tem-
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porally continuous model this would appear as an in-
tegration backward in time. Neither the model nor its
tangent linear version is being integrated backward in
(9), however, since it is the adjoint of the model equa-
tions that appears there. If there are no numerical in-
stabilities associated with irreversible processes in the
tangent linear model acting forward in time, there will
be none in the adjoint acting backward in time.

The proper formulation of a tangent linear model
requires simply that the Jacobian is properly computed
and used so that (6) properly describes the behavior
of perturbations as the perturbation size decreases to-
ward zero. The usefulness of its results, however, de-
pends on (6) being a good approximation to results
obtained from differences between perturbed and con-
trolled nonlinear solutions, since it is almost always
the behavior of perturbations in the nonlinear model
that actually interest us. The accuracy of this approxi-
mation will depend on the size of the input perturba-
tion. Usually we are interested in perturbations that
have the size of uncertainties in the input values, not
infinitesimal values. The more nonlinear the model
formulation and the closer solution trajectories come
to critical points that determine conditionals in the
model formulation, the smaller the acceptable size of
perturbations will generally be. Experience with tan-
gent linear versions of numerical weather prediction
models suggests that they have much utility for per-
turbations the size of initial condition uncertainty on
meso-α and larger scales, at least when the physics is
dominated by dry dynamics. It is difficult to specify
an accuracy that generally applies, since results greatly
depend on details of the synoptic situation, perturba-
tion size and structure, forecast duration, and forecast
aspects of interest, as well as the intended application
(Errico et al. 1993b; ER; Lacarra and Talagrand 1988).

The accuracy of an application of the adjoint model
result to a finite-size perturbation is identical to that
for the corresponding application of the tangent lin-
ear model in the specific sense that a J′ computed from
(1) by evolving a perturbation forward in time using
the tangent linear model will be identical to that com-
puted from (4) by evolving the gradient backward in
time using the adjoint model. The gradient computed
by the adjoint will be exact, however, only when the
Jacobian is formulated and used properly without ap-
proximation. In most current adjoint models, approxi-
mations are made to the Jacobians (e.g., by neglecting
some diabatic terms in the model) so that computed
gradients are also only approximations. Their suitabil-
ity will depend on the application.

4. Examples of adjoint fields

As an example of the output of an adjoint model,
sensitivity fields like those shown in Errico et al.
(1993b) are presented here. The model used is version
2 of the Mesoscale Adjoint Modeling System (denoted
as MAMS2) developed at the National Center for At-
mospheric Research (NCAR; ER). It is based on an
earlier version described by Errico et al. (1994), al-
though the changes are numerous and significant.

MAMS2 is a limited-area, primitive equation
model prescribed in flux form on an Arakawa B grid
(Arakawa and Lamb 1977) with Lambert conformal
mapping. Its lateral boundary conditions are formu-
lated using a Davies and Turner (1977) relaxation
scheme applied within five grid points of the edge
using a relaxation coefficient that exponentially de-
creases inward from the grid’s edge. The time scheme
is split-explicit following Madala (1981) with an
Asselin (1972) time filter. It includes an adiabatic ver-
tical mode initialization scheme (Bourke and
McGregor 1983) of the external and first internal
modes.

The model’s vertical coordinate is σ = (p − p
t
)/(p

− p
s
), where p is pressure, p

t
 is the model top at 1 kPa

here, and p
s
 is surface pressure. In all the experiments

here, the wind components (eastward u, northward υ),
temperature (T), and mixing ratio (q) are defined on
10 equally spaced levels in values of σ. The vertical
finite differencing follows the energy-conserving for-
mulation of the NCAR Community Climate Model
(CCM version 2; Hack et al. 1993).

The model physics includes a stability-independent
bulk formulation of the planetary boundary layer fol-
lowing Anthes et al. (1987) and a stability-dependent
vertical diffusion following CCM version 3 (Kiehl
et al. 1996) treated using an implicit temporal scheme.
Horizontal diffusion is a fourth-order scheme with a
time-independent coefficient k

h
 = 1.73 × 1015 m4 s−1

applied to the wind, temperature, and water vapor
(mixing ratio) except next to the boundaries where
diffusion is second order. There is also a convective
adjustment scheme that acts on temperature only, with
no accompanying mixing of moisture. The prognos-
tic equation for ground temperature includes radiative
effects modeled identically to that in Anthes et al.
(1987). Moist convection is modeled using the relaxed
Arakawa–Schubert scheme developed by Moorthi and
Suarez (1992). Nonconvective precipitation is simply
an enthalpy-conserving adjustment back to 100% rela-
tive humidity.
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The tangent linear and adjoint versions of MAMS2
are exact, meaning that all terms are linearized prop-
erly, except for two approximations. One concerns the
frequency with which the linearization is performed
along the control trajectory and has been shown to
have negligible impact on accuracy for most impor-
tant applications (Errico et al. 1993b; ER). The other
is that for the moist and dry convective physics, the
required Jacobians are computed by a perturbation
method to approximate ∂b

j
(n)/∂b

k
(n−1) by ∆b

j
(n)/∆b

k
(n−1) for

a small ∆b
k
(n−1). This approximation has also been

shown to be sufficiently accurate for many applica-
tions and has several useful benefits in addition to
enhanced computational efficiency (ER).

The synoptic case to be shown is one of explosive
cyclogenesis covering the 24-h period starting
0000 UTC 14 February 1982. The model grid covers
the domain shown in Fig. 1 with a horizontal grid spac-
ing of approximately 120 km. The initial and bound-
ary conditions are obtained from European Centre for
Medium-Range Weather Forecasts analyses interpo-
lated to the MAMS2 grid. The analyzed 50-kPa height
at the initial time, the analyzed sea level pressure at
both the initial and verification (final) time, and the
24-h accumulated forecast precipitation are presented
in Figs. 1a–d. The forecast cyclone (not shown) has
central pressure of 96.9 kPa and is positioned approxi-
mately 270 km to the southwest of the verifying one.

For a J of frequent interest, we have chosen the
vertical component of relative vorticity at the final time
averaged within the area shown in Fig. 1c and extend-
ing through the bottom half of the atmosphere. The
gradient of this J with respect to the final-time υ field
on the σ = 0.65 surface is shown in Fig. 2a. Note that
because the vorticity is being spatially averaged, J
actually depends on the circulation (i.e., tangential
wind, according to Stokes’s theorem) along the perim-
eter of the box.

The gradient of J with respect to the initial condi-
tions is determined by applying the adjoint of MAMS2
to the gradient of J with respect to the output (i.e.,
patterns identical to that in Fig. 2a for ∂J/∂υ at the low-
est five model levels and analogous, but 90° rotated,
patterns for ∂J/∂u). The resulting gradients for J with
respect to the input υ, T, and q on the σ = 0.65 surface
are shown in Figs. 2b–d. This is the model level where
the maximum values of components of the gradient
with respect to each field are found. For proper inter-
pretation, the presented gradient values are best
weighted by the inverse of the mass in the correspond-
ing grid box (otherwise large gradient values are fa-

vored in large grid boxes), but on this grid, all grid
boxes have almost equal mass (departing only because
the surface pressure varies) and no weighting has been
applied. The physical dimensions of the units for the
gradients are those of J (vorticity here) divided by
those of the corresponding fields. The gradients shown
are therefore distinct from the corresponding fields
themselves. The time t = 0 on the sensitivity plots in-
dicates the verification (end forecast) time and t
= −24 h indicates the initial time for the forecast, il-
lustrating that the adjoint operates backward in time.
The gradient for this single J with respect to all fields
and points was obtained with a single application of
the adjoint.

The computed gradients have a simple direct in-
terpretation as fields of “sensitivity.” For example, the
field of ∂J/∂υ for the input (i.e., t = −24 h) indicates
that a perturbation of υ of 1 m s−1 at σ = 0.65 at the
single point where the sensitivity has maximum value
over the Atlantic in Fig. 2b will change the forecast J
by 0.9 × 10−8 s−1 (obtained by multiplying the value of
the perturbation by the corresponding value of the gra-
dient). If, instead, a perturbation of T of 1 K is intro-
duced at the point marked where it is a minimum in
Fig. 2c, J will change by −8.7 × 10−8 s−1. If both per-
turbations (or others) are introduced simultaneously,
the net change is simply given by the sum of the sepa-
rate changes (a consequence of the linearization). Since
J is linear, if the perturbations are introduced in the tan-
gent linear model, this estimate of ∆J would be exact.
If J depended nonlinearly on the model output or if the
initial perturbation were introduced in the nonlinear
model, the change in J determined by the sensitivity
calculation would only be an estimate of the change
obtained (but under many conditions, a highly accu-
rate one).

The sensitivity fields do not alone indicate where
initial condition errors are nor what is necessarily “im-
portant” in producing the forecast. They do strongly
suggest where to look for initial condition errors that
may have a big effect (in this case in the vicinity of
the geopotential trough at midlevels). They also indi-
cate what to expect from any (small) initial condition
changes that may be applied.

When the mechanisms affecting the synoptic de-
velopment are relatively simple, the adjoint fields have
relatively simple interpretations (e.g., see Langland
et al. 1995 or Rabier et al. 1992). Here, the processes
of baroclinic instability and moist diabatic heating are
acting simultaneously, and the adjoint fields are more
difficult to interpret synoptically. They are best inter-
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preted by considering what a perturbation that has the
same structure as the sensitivity field would cause.
Such perturbations may be considered as “optimal” in
the sense described in section 5.

Some adjoint results are likely anticipated. The
sensitivity of J with respect to possible perturbations
of the σ = 0.65 T field near Cape Hatteras, for ex-
ample, may have been anticipated by considering the
influence of possible changes of the sharpness of the
initial 50-kPa geopotential trough on the forecast cy-
clone. Other implications of the adjoint results, how-
ever, may yield very new insights. Comparison of the
magnitudes of the sensitivity fields in Figs. 2b–d, for
example, indicates that a 1-K perturbation of T where
the sensitivity has maximum magnitude has approxi-
mately the same effect as a 0.0006 kg kg−1 perturba-
tion of q where its sensitivity is a maximum but 9

times the effect of a 1 m s−1 perturbation of υ where its
sensitivity is a maximum. In this specific sense, there-
fore, J is much more sensitive to T and q than to υ.
Furthermore, the maximum sensitivity is located near
65 kPa, not at the tropopause or surface as one may
guess by considering simple cyclone development
arguments in terms of potential vorticity anomalies.

Note that none of these results would be as easily
obtained by simply examining perturbed runs of the
nonlinear model. Either too many runs would have to
be made to obtain the same complete picture, or there
is a strong chance that the impacts of simultaneously
introduced perturbations would cancel (given that
there are regions of both positive and negative sensi-
tivity) yielding an incorrect impression of the possible
impacts that can be obtained with other perturbations.
If our interest is in knowing the impact on many J

i

FIG. 1. The fields of (a) 50-kPa geopotential height at the initial time; fields of sea level pressure at the initial (b) and final (c) times;
and (d) forecast precipitation accumulated during the 24-h forecast. Contour intervals are 60 m, 0.4 kPa, 0.4 kPa, and 0.5 cm, respectively.
The square shown in (c) is the area over which the mean forecast vorticity is to be computed for the forecast aspect investigated.
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given a few perturbations, the nonlinear method would
be appropriate, but a shift of a perturbation pattern by
a few grid points may sometimes grossly change the
results.

The adjoint can only produce the gradient for one
J

n
 per application. Fortunately, often we are interested

in only a few distinct J
n
. Also, because it is based on a

linearization, the sensitivity it suggests is only approxi-
mate. Interpretations must be made carefully and the
accuracy of the corresponding tangent linear model
should be examined for the cases and applications in-
vestigated. The computational cost of the adjoint of
MAMS2 is about the same as an execution of the tan-
gent linear or nonlinear models over the same time
period.

As an indication of the accuracy of the adjoint re-
sult discussed here, the nonlinear model has been run
with a perturbation of the initial condition within the
2000 km × 2000 km area within the dashed lines
shown in Fig. 2d. Only q in the bottom three model σ
levels (approximately below 70 kPa) has been per-
turbed. At the locations and σ levels where ∂J/∂q is
positive valued, the perturbation is 0.001 kg kg−1;
where it is negative, the perturbation is −0.001 kg kg−1.
If the perturbation is such as to make q < 0 at some
location, the perturbation at that location is reduced in
magnitude to make q = 0.

The control value of J is 8.39 × 10−5 s−1. The per-
turbation yields a ∆J = 1.04 × 10−5 s−1. If instead, the
initial perturbations of q are multiplied by their corre-

FIG. 2. The sensitivity of J (mean vorticity within the lower troposphere and area shown in Fig. 1c) with respect to (a) the field of υ at
the final (forecast verification) time, and (b) υ, (c) T, and (d) q at the initial (analysis) time, all defined on the σ = 0.65 surface. Contour
intervals are 1 × 10−8 s−1(m s−1)−1, 2 × 10−9 s−1(m s−1)−1, 2 × 10−8 s−1 K−1, and 2 × 10−5 s−1(kg kg−1)−1, respectively, negative contours are
dashed, and 0-valued contours have been omitted for clarity. The square shown in solid lines is the area over which J is defined at the
verification time. The dashed square indicates where q is perturbed at the initial time to test the accuracy of the adjoint results.



2585Bulletin of the American Meteorological Society

sponding sensitivities and added according to (4), then
the estimated change in J is 1.21 × 10−5 s−1. This is only
a 17% error compared with the actual value obtained
with the nonlinear model.

The effects on J due to other perturbations can be
easily estimated using (4) without executing the non-
linear model again. For example, changing the signs
of the previous perturbations should yield approxi-
mately the same magnitude change as earlier but with
opposite sign. If the perturbation were the value
0.001 kg kg−1 (i.e., constant value) at the same points
as earlier, the change of J is 7 times smaller, indicat-
ing that much cancelation occurs when summing over
regions of positive and negative sensitivity. These two
adjoint estimates were also checked with the nonlin-
ear model, yielding errors less than 2% of the nonlin-
ear changes.

These results are remarkably accurate, given the
significant size of the perturbation and the fact that the
primary way moisture perturbations affect the wind
field is through highly nonlinear diabatic processes.
Perturbations with different structures or magnitudes
could yield very different accuracies, but our experi-
ence thus far suggests that these sensitivity fields have
significant utility.

Note that the adjoint-determined result only applies
to J being the mean vorticity in the verification box.
These determined sensitivity fields do not, for ex-
ample, indicate how the central pressure changes due
to the same perturbations, although the two J and their
sensitivities may be related (e.g., through geostrophy).
Neither does it directly indicate “why” the estimated
change occurs. Nevertheless, the sensitivity fields pro-
vide much useful information; for example, in the
present example, it would likely have required a large
ensemble of perturbed forecasts to obtain a significant
change of J by avoiding cancellation between areas of
oppositely signed sensitivity.

5. Adjoint applications

Sensitivity analysis has many applications. It may
be used to examine model behavior, describing how
input and output are related. It may be used to investi-
gate model forecast errors, to highlight initial or
boundary fields and locations that are more likely to
be responsible for an error. Another use, yet to be ex-
ploited, is as a synoptic tool to determine what initial
synoptic features are most strongly related to subsequent
synoptic features (see, e.g., Langland et al. 1995).

Adjoints are indispensable for efficiently solving
several types of optimization problems, which in-
cludes their most common applications to date. The
simplest of these is to consider a linear (or linearized)
J and ask what is the smallest perturbation of the model
input that can produce a desired change ∆J when the
perturbation size is measured by some quadratic norm
(i.e., sum of squares of perturbation components). Such
information can be useful if we want to know if a dis-
crepancy between forecast and analyzed values of J
can be corrected by a reasonable modification to the
forecast’s initial conditions.

As an example of this simple optimization prob-
lem, consider the simple norm that measures the sum
of the squares of the perturbed input values:

I w ak k
k

= ( )∑1

2
2∆ , (10)

where w is a weight that depends on the field type and
maybe location. If the perturbation size is sufficiently
small that the tangent linear approximation is accept-
able, then both the perturbations of the model output
and ∆J are approximately linear functions of the per-
turbed input. The latter approximation is simply de-
noted by (4), and we can ask what minimizes (10)
given the constraint (4). The result (e.g., determined
using a Lagrange multiplier λ) is obtained by finding
the ∆a

k
 that minimize
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where ∆J is the prescribed desired change. The mini-
mum of K occurs for the ∆a

k
 that satisfy ∂K/∂a

k
 = 0.

The result is
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which is just the gradient values multiplied by the in-
dicated weights, with
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so that the constraint (4) is satisfied.
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Note that in this linearized example, one single
application of the adjoint is sufficient to determine
the optimal solution (i.e., no iteration is required).
Furthermore, if the w depend only on field type and
not location, then the structures of the adjoint-deter-
mined sensitivity fields are identical to those of the
optimal perturbation field. In this specific sense, the
sensitivity fields may therefore be considered as “op-
timal” structures. Similar results are obtained when the
optimization problem is to determine the maximum
∆J given a prescribed perturbation size I.

If J is not linear (nor linearized) or if the perturba-
tion size is initially large or becomes large during the
forecast such that the perturbation output is no longer
approximately a linear function of the input, then it-
eration is required because ∂J/∂a

k
 is then an implicit

function of a + ∆a. Applications of this type are nicely
discussed, for example, by Rabier et al. (1996) and
Oortwijn and Barkmeijer (1995).

If J is a quadratic function of the perturbation it-
self, such as when we ask what will give us the larg-
est size perturbation output [e.g., measured as by (10)
except at some output time] given a constrained ini-
tial perturbation size I = constant, then the optimal
solution is determined by an eigenvalue problem.
Although there is usually a single, largest-growth so-
lution, one can search for slower-growth solutions that
are uncorrelated with the first (when measured using
the same norm). These solutions have been called “op-
timal solutions” but now are usually called “singular
vectors” for reasons best described in Ehrendorfer and
Errico (1995).

The singular vectors may be interpreted as solu-
tions to a generalized stability problem (Farrell and
Ioannou 1996a,b). They can yield growing solutions
(i.e., ones for which the norms, such as perturbation
energy, grow with time) when no growing normal-
mode solutions are found. This can occur when nor-
mal modes are nonorthogonal with respect to the
norm; for example, when the sum of the values of the
norm for individual normal modes is not equal to the
norm of the sum of the modes. This is usually the case,
except for simple, specifically designed problems.
Unlike for normal-mode determination, the basic state
whose stability is being examined need not be station-
ary (or quasi-stationary) in time for singular vectors
to be determined. The singular vector analysis includes
the normal-mode analysis as a special case, so it pro-
vides more general information.

The greatest attention to adjoints has been for their
use to efficiently solve the computationally demand-

ing problem of four-dimensional variational data as-
similation (4DVAR), which is schematically de-
scribed in Fig. 3. Here, the goal is to produce the
analysis that “best” fits observations, prior estimates
of the fields to be analyzed (e.g., a “background” es-
timate produced by an earlier forecast valid at the
analysis time), and our understanding of the physics
that relates observations of different types and times
to the fields to be analyzed. The latter implies use of
a model that may be used as either a strong (Lewis
and Derber 1985; Talagrand and Courtier 1987) or
weak (Derber 1989; M. Zupanski 1993) constraint.
The measure of how well the analysis fits all this in-
formation should include weights consistent with the
statistics of errors associated with each piece of infor-
mation (Tarantola 1987; Daley 1991). The fit may also
include measures designed to constrain noise, such as
due to inertia–gravity waves (e.g., Courtier and
Talagrand 1990).

Figure 3 indicates the following. Point B is a back-
ground estimate of the atmospheric state at time t

1
 pro-

duced by an earlier forecast, with indicated error bars.
Point O

1
 is an observation of the atmospheric state at

approximately the same time, with indicated error
bars. Point A is a likely value for the analysis, given
by the intersection of the information available at t

1
.

It produces a forecast, F, for time t
2
. This disagrees

with the observation O
2
 valid at that time. An adjoint

model is applied to a measure of the differences F − O
2

and B − O
1
 (for all fields and observations) to make a

new analysis A* also consistent with the information
at t

1
. It produces a significantly different forecast F*

due to the modeled atmospheric instabilities that is also
consistent with O

2
. The expected result is that, even

at times t > t
2
, the forecast started at A* remains bet-

ter than the one started at A and also better than one
started at an A

2
 produced by an intermittent data as-

similation scheme. There are more optimal ways of
using data over the period t

1
 ≤ t ≤ t

2
 or t ≤ t

2
, and A*

will only be statistically better than A if all the infor-
mation has been used properly, with proper account-
ing for all the corresponding error statistics.

The 4DVAR fitting function defines a J as a func-
tion of the analysis, with parameters determined by
the input information and their error statistics. The ad-
joint is used to determine the local gradient of J with
respect to the analysis fields, which is then applied to
some algorithm to find the analysis that yields the best
fit (i.e., minimum J). Although such an optimization
problem was posed in meteorology by Sasaki (1969),
it has awaited the advent of adjoint models to become
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computationally practical. When designed properly,
with good estimates of the error statistics, good grav-
ity wave control, and a good model, 4DVAR should
be better able to assimilate data by better connecting
information in time than previous methods have done.

As with previous methods, such as optimal inter-
polation (Daley 1991), 4DVAR uses past observa-
tions, as they have affected the background estimates,
in addition to present ones. Unlike previous methods,
however, it also uses future observations, in the sense
that if we wait 6–24 h beyond the time for which the
analysis is to be valid (plus the time required to ob-
tain the data), the later observations can be used in
conjunction with a forecast model to help constrain the
analysis. For example, knowing the time evolution of
moisture patterns we can infer winds, and seeing de-
velopments in unstable regions we can better specify
precursor patterns. Since even single observations used
in this way can impact many fields over a significant
area, the analysis produced may even be better than
one produced using the old methods at the later time
[see Thépaut et al. (1993) and Thépaut et al. (1996)
for some examples and further references].

Note that without careful attention to all the many
aspects of the data assimilation problem, use of an
adjoint model does not by itself imply that better
analyses will be produced. In particular, using the
model as a strong constraint in 4DVAR will result in
adjustments of the analysis to compensate for any sig-
nificant model errors so the resulting forecast can still
come close to the observations. Also, the results will
be sensitive to precisely how the fitting function is
defined, and therefore any poor assumptions about the
statistics of forecast and observational errors will
likely degrade the accuracy of the analysis (e.g., see
Fillion and Errico 1997).

The 4DVAR problem is computationally demand-
ing, even with an adjoint to make minimizing J more
efficient. Unlike many other proposed methods, how-
ever, it may be feasible in an operational environment
[e.g., compare the computational demands for 4DVAR
described by Courtier et al. (1994) with those for the
method described by Bennett et al. (1996)].

Adjoint models can also be used for efficient de-
termination of model parameters, for example, for
those appearing in the model’s parameterization
schemes. This is similar to the problem of data assimi-
lation, except that instead or in addition to tuning
model initial conditions, the best fit of forecasts with
respect to the model parameters is determined. There
are some significant differences between the two prob-

lems, however, when the specification of parameters
should be robust (i.e., apply well to all cases, not just
those for which the fitting has been performed), physi-
cally reasonable (requiring the consideration of con-
straints in the form of inequalities), and simultaneously
satisfy several criteria of acceptability.

The newest application of adjoints is for assisting
the “targeting” of observations. The motivation here
is to use sensitivity fields of some kind to determine
where it is most important to produce an accurate ini-
tial condition for a forecast. Where the sensitivity is
large, any significant error in the initial conditions
there will have a significant impact on the forecast J
and therefore on the accuracy of its prediction. Similar
errors where the sensitivity is low will have little af-
fect on the forecast J. It is therefore critical to keep the
initial errors small in the sensitive regions. This can
be done by, for example, deploying aircraft to make
observations in those places. The locations will depend
on how the “importance” is measured (i.e., on the J

n

used). They will also depend on the accuracy of the
nonlinear model used to generate the forecast as well
as the accuracy of its adjoint used to determine the sen-
sitivity (see, e.g., Palmer et al. 1997; Langland et al.
1996).

Where the sensitivity is greatest is not necessarily
the location that should be targeted. The expected size
of the analysis error at the location must also be con-
sidered. If the analysis there is expected to be very
accurate, it is not necessary to make more observations
there, regardless of the sensitivity. Also, having more
observations where they are important does not imply
the subsequent analysis and forecast will be better.
Especially if they are in an area of strong sensitivity,
even small observational errors or marginally

FIG. 3. Schematic of four-dimensional variational data
assimilation.
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misspecified error correlation functions can produce
unacceptable forecast errors. Targeting will likely pro-
duce better forecasts only if the data assimilation sys-
tem used is sufficiently good and its estimation of error
statistics sufficiently accurate.

6. Adjoint limitations

The greatest limitation to the application of ad-
joints is that the results are useful only when the lin-
earized approximation is valid. The tangent linear or
adjoint results may be correct in that they accurately
describe the first-order Taylor series approximation to
the behavior of perturbations in our application; that
is, the behavior as the perturbation size becomes in-
finitesimally small. Those results may be useless, how-
ever, if our real interest is in the behavior of some
finite-sized perturbation, as it almost always is. In
particular, if J or the model is nonlinear, there will
likely be a perturbation size for which the lineariza-
tion becomes inadequate in the sense that both (1)
using a tangent linear model and (4) using an adjoint
suggest the wrong response to the perturbation in the
nonlinear model.

The perturbation size may become large because
it is prescribed so initially, or it may become large
because the perturbation size grows with time, for
example, as when a dynamic instability exists. For the
latter reason, there is generally a time at which the
behavior of almost any perturbation enters the non-
linear regime in most nonlinear atmospheric models
[i.e., the effects of chaos occur as described by Lorenz
(1969); see also Tribbia and Baumhefner (1988)].
Adjoint applications are therefore usually limited to
certain short time spans. How short will depend on the
size of initial perturbations considered, the types of
physics to be considered (e.g., dry dynamics versus
moist convection) and the structure of the perturba-
tion (does the perturbation grow or decay during the
period considered and what physics primarily acts
upon it). It is therefore difficult to specify a general
time limit for adjoint applications, but experience with
numerical weather prediction models and initial per-
turbations that resemble expected initial-condition er-
rors suggests that if only dry physics is considered, a
linearization may remain valid for up to 3 days for
synoptic-scale features. When the moist physics as-
sociated with precipitation is significant, this time-
scale may be greatly reduced (e.g., see Park and
Droegemeier 1995), although good results have been

obtained at synoptic scales for periods as long as 1 day
(ER).

Some physical parameterization schemes used in
models are formulated with conditionals: depending
on the state of the solution at any considered time, the
functions that determine the result of the physics can
be different. One example is the often-used simple
nonconvective precipitation scheme that produces a
nonzero effect only when a modeled air parcel is su-
persaturated. Such formulations can be formally
nondifferentiable, although in a temporally and spa-
tially discrete formulation, almost all model solutions
will fall on one side or the other of such conditions at
each time and thus are differentiable along the discrete
model trajectory as required for existence of the
model’s Jacobians. Rather than impairing the formu-
lation of the tangent linear and adjoint model versions,
the effect of the conditionals is therefore to reduce the
usefulness of the linear approximations made. A per-
turbation in the nonlinear model may change the sense
of a conditional, causing effects that the linearization
does not describe. This can be amended by consider-
ing all the possible trajectories but would be highly im-
practical when the number of degrees of freedom is
very high, as in models used for weather prediction.
Alternatively, the conditionals can be removed by re-
placing them with some smooth functions. Ideally this
should be done without compromising the modeling
of the concerned physics. It can even be argued that
any conditionals are unrealistic since they likely do not
account for smoothing effects due to the uncertainty
associated with the statistical nature of the parameter-
ization scheme. These questions have been investi-
gated in part (Xu 1996; ER; Verlinde and Cotton 1993;
Zou et al. 1993; D. Zupanski 1993) and their investi-
gation will undoubtedly continue.

Sometimes the forecast aspects that interest us are
associated with nondifferentiable J. For example, in a
gridpoint model we may be interested in determining
the point at which a local pressure minimum is ob-
tained for defining the location of a cyclone’s center.
The algorithm to determine this point involves com-
paring pairs of numbers and choosing the minimum.
Such an algorithm is nondifferentiable. It may be that,
for this example, an alternative algorithm that deter-
mines an equivalent result but that is differentiable
may be developed, but there are likely aspects of in-
terest for which such alternatives are impossible. Also,
the accuracy of the first-order Taylor series approxi-
mation will vary with the forecast measures used
as well as with the cases to which they are applied.
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Therefore, great care should be taken when choosing
a forecast aspect to be measured as well as when in-
terpreting the result.

Many adjoint applications have been misinter-
preted in the past. An adjoint result (i.e., pattern of
sensitivity) does not necessarily indicate what loca-
tions or fields are most important. Since it does indi-
cate where sensitivity is greatest, however, it provides
an invaluable piece of information required to deter-
mine what is most important. Neither do optimally
derived perturbations necessarily show where errors
in forecast initial conditions are, although again, they
should offer invaluable insight. Lastly, using an ad-
joint in a data assimilation scheme does not neces-
sarily mean more accurate analyses are obtained.
That accuracy depends on details of many aspects of
the assimilation scheme. In this application, the ad-
joint is simply a very useful tool, but not a guarantor
of success.

7. The future of adjoints

Derivation of tangent linear equations and adjoint
equations for models as complicated as those used for
numerical weather prediction is usually straightfor-
ward, although tedious. If the software for the non-
linear model is designed well, the software for the
corresponding tangent linear and adjoint models is
most easily produced by a line by line analysis of the
nonlinear model software [e.g., directly from its FOR-
TRAN code, treating each subroutine or line as one
of the functions B

n
 appearing in (8)]. Simple rules ex-

ist for this purpose (e.g., see Talagrand 1991; Giering
and Kaminski 1996). In fact, computer software ex-
ists that can produce C or FORTRAN adjoint models
from similarly coded nonlinear models (e.g., Giering
and Kaminski 1997; Rostaing et al. 1993; Bischoff
1994), although, under some conditions, these auto-
matic adjoint generators may produce adjoint codes
that are incorrect or computationally too inefficient.

Testing of the tangent linear and adjoint software
is also straightforward and rigorous if all that is re-
quired is that it be properly derived from the parent,
nonlinear model. The development and testing can be
quite tedious, however, especially since the testing
methods can be quite sensitive to even what may be
considered very minor errors; that is, software errors
usually become apparent unlike when nonlinear fore-
casting models are developed and the “truth” is known
imprecisely. Errors originally in the nonlinear model

may simply be transcribed to the tangent linear and
adjoint versions, but since the development and test-
ing usually requires detailed reexamination of the non-
linear model, errors in the nonlinear model are often
found too. Some undesirable aspects of the nonlinear
model solution that were considered tolerable in its
former applications (such as very small amplitude
numerical noise) may become intolerable as more is
demanded of the model solutions; for example, when
the small difference between two (control and per-
turbed) nonlinear model solutions is examined, the
signal to noise ratio may be dramatically reduced, ren-
dering the noise intolerable. One often unforeseen re-
sult of developing an adjoint version should therefore
be reexamination and subsequent improvement of the
nonlinear model itself.

Developments in the field of adjoint applications
in meteorology have been fast paced. There has some-
times not been time for robust and detailed analysis,
for example, involving many synoptic cases and types
of diagnostics. Sometimes important aspects of the
problem are neglected, such as gravity wave control
in 4DVAR studies. Some statements or results are
misleading or erroneous. In particular, extreme care
must be taken when attempting to generalize any re-
ported results. In the earliest papers on adjoint appli-
cations, the mathematical presentation was often
formidable and unnecessary in the discrete model
framework almost always employed. For all these rea-
sons, readers may find some existing papers confus-
ing, incomplete, or unreadable. A fairly complete and
partially annotated bibliography of most papers on
adjoint applications and data assimilation published
prior to 1993 appears in Courtier et al. (1993). I espe-
cially recommend many of the papers coauthored by
either P. Courtier or F. Rabier for their readability and
accuracy. Many novices in the field have found Errico
and Vukićević (1992) useful, although their adjoint
had many approximations and much simpler presen-
tations can now be made. Several papers describing
both general and particular applications of adjoints in
data assimilation may be found in Ghil et al. (1997).

Often in meteorology we can only indirectly
answer the questions that interest us. In particular,
prior to the development of adjoint models, we had
to infer sensitivity from impact studies as described
in section 2. As adjoint models become more avail-
able and as their applications are better understood
by the community, they should make a very large im-
pact on how we do science and how we understand
the atmosphere.



2590 Vol. 78, No. 11, November 1997

Acknowledgments. The author thanks Kevin Raeder, Akira
Kasahara, Martin Ehrendorfer, David Baumhefner, Rolf
Langland, Richard Reed, Hans Verlinde, and two anonymous
reviewers for their reviews of the original manuscript, as
well as numerous associates for encouragement to complete
the manuscript begun four years ago. Also, Kevin Raeder as-
sisted in processing the MAMS output, as well as developing
MAMS2. This development was partially funded by Navy Con-
tract N00173-96-MP-00152 and NASA Contract W-18,077,
Mod. 6.

References

Anthes, R. A., E.-Y. Hsie, and Y.-H. Kuo, 1987: Description of
the Penn State/NCAR Mesoscale Model Version 4 (MM4).
NCAR Tech. Note NCAR/TN-282+STR, 66 pp. [Available
from the National Center for Atmospheric Research, P.O. Box
3000, Boulder, CO 80307.]

Arakawa, A., and V. R. Lamb, 1977: Computational design of the
basic dynamical processes of the UCLA general circulation
model. Methods in Computational Physics, Vol. 17, Julius
Chang, Ed., Academic Press, 174–264.

Asselin, R., 1972: Frequency filter for time integration. Mon. Wea.
Rev., 100, 487–490.

Bennett, A. F., B. S. Chua, and L. M. Leslie, 1996: Generalized
inversion of a global numerical weather prediction model.
Meteor. Atmos. Phys., 60, 165–178.

Bischof, C., 1994: Automatic differentiation, tangent linear mod-
els, and pseudo-adjoints. High-Performance Computing in
the Geosciences, Series C: Mathematical and Physical Sci-
ences, F.-X. Le Dimet, Ed., Kluwer, 59–80.

Bourke, W., and J. L. McGregor, 1983: A nonlinear vertical mode
initialization scheme for a limited area prediction model. Mon.
Wea. Rev., 111, 2285–2297.

Courtier, P., and O. Talagrand, 1990: Variational assimilation of
meteorological observations with the direct and adjoint shal-
low-water equations. Tellus, 42A, 531–549.

——, J. Derber, R. M. Errico, J.-F. Louis, and T. Vukic´ević, 1993:
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