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ABSTRACT

Adjoint models are powerful tools for many studies that require an estimate of sensitivity of model output (e.g., a
forecast) with respect to input. Actual fields of sensitivity are produced directly and efficiently, which can then be used
in a variety of applications, including data assimilation, parameter estimation, stability analysis, and synoptic studies.

The use of adjoint models as tools for sensitivity analysis is described here using some simple mathematics. An
example of sensitivity fields is presented along with a short description of adjoint applications. Limitations of the appli-
cations are discussed and some speculations about the future of adjoint models are offered.

1. Introduction ditions. Once the “how much” is estimated, the ques-
tion of “why” the change is as obtained can be more
During the last 10 years the use of adjoints in measily addressed by focusing on the significant aspects.
teorology has been rapidly increasing. Meteorologists When quantitative estimates of sensitivity are de-
working with adjoint models consider them exceptiorsired, a mathematical model of the phenomena or re-
ally powerful modeling tools that will enable manyationships is required. Models have been used since
outstanding problems to be solved efficiently artieir beginning to determine impacts of perturbations
many old problems to be reexamined more directignd thereby to estimate sensitivity. A more efficient,
Three workshops [the first two reviewed by Erricoevealing, and direct way, however, is to use the
et al. (1993a) and Prager et al. (1995), respectively] anddel’s adjoint (Errico and Vukéwit 1992; Rabier
a large portion of others have been devoted to the deal. 1992; Hall et al. 1982). The two methods, along
velopment and applications of adjoints. Still, many iwith their limitations, will be contrasted in the next
the meteorological community are unaware of thejection.
existence or how useful they may be for the problems Many meteorological questions also concern
they are investigating. optimality. The best example is in data assimilation,
Many questions investigated by research meteshere theoptimal analysis is the one that fits all the
rologists concern sensitivity (e.g., Langland et atbservations best, consistent with what is known about
1995). Answering these questions requires estimatiing error characteristics of all the data used and as-
how much selected measured aspects of some synapiimptions made (Daley 1991; Lorenc 1986). For these
features will change if perturbations are made to phyapplications, the adjoint is used as a tool for efficiently
cal or dynamical processes or precursor synoptic caletermining the optimal solutions (Lewis and Derber
1985; Tarantola 1987). Without this tool, the optimi-
_— zation problem could not be solved in a reasonable
*The National Center for Atmospheric Research is sponsoredtigne for application to real-time forecasting.
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growing solutions may still exist (Farrell 1988). Alsonate may require some special attention, e.g., Xu
the linearized models previously used could not cofi-:996)]. Furthermore, to keep the presentation simple,
sider time-varying basic states, about which the lime will only consider numerical models that take a
earization is performed. A more general method obllection of numbers as input and produce another
stability analysis requires the use of an adjoint of tisellection of numbers as output. Such a collection can
model (Farrell and loannou 1996a,b; Molteni anae values of interior fields, boundary conditions, and
Palmer 1993). This generalized method includes throdel parameters defined in some discrete way, such
normal-mode method as a special case. as on a map grid or as spectral coefficients. This col-
There are naturally limitations to the applicabilityection of input values can be simply denoted by a
of adjoint methods. Although one often does not fingectora; for example, th&th component o, which
these discussed in the literature, they are related to line denote ag, may be the temperature at some par-
its of predictability and the chaotic nature of weathdicular model grid point and pressure level at the
The temporal range of applicability of adjoint-detemodel’s initial time. Similarly, the output at any time (or
mined results remains very great, even more thset of times) may be denoted by the single vdxtor
many would expect, given that adjoints are based on Often, interest in model solutions is focused on
a linearization of model equations (Errico et al. 1993fguantification of some output (forecast) aspects.
R. Errico and K. Raeder 1997, manuscript submittékamples include mean-squared forecast errors, the
to Quart. J. Roy. Meteor. Sobereafter ER). central pressure predicted for a cyclone, the strength
The principal application of adjoint models is seref a front measured in some way, or the total amount
sitivity analysis, and all its other applications may b#f rainfall predicted over some region and time. These
considered as derived from it. This fundamental ameasures of forecast aspects may be simply denoted
plication will be described in sections 2-3, withowtsJ =J (b), where distinch denote distinct measures.
recourse to mathematics beyond first-year calculus akithough most applications of adjoint models that
first-semester linear algebra. Although adjoint moajppear in the literature consider odlythat are qua-
els are often presented using mathematics unfamilimatic functions of the componentsimftheJ need
to the great majority of meteorologists, the basic comet be so restricted.
cepts are in fact very simple and likely familiar in other It is helpful to describe sensitivity analysis using
contexts. The few additional important details oredjoints by contrasting it with what has been called
obtains from consideration of higher-level mathematisensitivity analysis in most past literature in meteo-
can be easily learned once the basics are understaobhgy. In that literature a “control” solution (denoted
An example of an adjoint sensitivity calculation isere by subscript c) is determined by specifyang
described in section 4. Some applications of sensitrenning the model to determiibg, and then comput-
ity analysis, including the contexts of stability analying a set of] . A second solution is then determined
sis and optimization, are discussed in section &y starting from some slightly alterevg to produce
Limitations of the adjoint methods are described In andJ_. The perturbatioda =a —a_must be suf-
section 6. Finally, the future development and appfieiently small (measured in some sense) that the case
cation of adjoint models is discussed in section 7. Thagd model are not entirely altered so that any compari-
will likely become as common a tool as models thersens are meaningless. The resalis=J -J_are
selves as the greater community of research and #yen used to describe the sensitivity of the model so-
plication meteorologists become aware of their powéution to perturbations of the kind introduced. From a
single pair of control and perturbed foreca&ts,can
be computed for all .
2. Sensitivity analysis The problem with this previous type of sensitivity
analysis is that, in fact, all that has been determined is
Adjoint operators can be derived for sets of equiireimpactof one specific input perturbatidva on the
tions that we do not normally call models, but sinck. It is likely that another perturbation, having many
the examples to be used here apply to numericdkthe characteristics and properties of the first pertur-
weather forecast models, this presentation will invoketion (such as general location and root-mean-
the term “model” with the understanding that this casguared size), may yield very differedd with
be most sets of equations for most purposes [equaticogespondingly different interpretations of the sensi-
with terms whose first derivatives can be indeterntivity. This is especially true for short-term forecasts
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where a few unstable modes of the solution may rotecast is
have sufficient time to dominate the behavior of per-
turbations. In order to more generally answer the ques- 0 V)
tion of sensitivity using this method, an ensemble of 4, [Tc i~ T ]AXiij
perturbations must be examined (e.g., Mullen and aT® ~ > A Ay, : 3)
Baumhefner 1994). Only then can it be claimed that, b b
for example, “This]_is more sensitive to wind per-
turbations here rather than there,” in place of just “This Knowledge ofdJ/db reveals little we did not al-
J_is affected by this specific perturbation in this paready know about th& but what would reveal much
ticular way.” more is knowledge ofJ/da. This new gradient can

A very different approach to sensitivity analysisalso be interpreted as the sensitivity, but with respect
with its own set of limitations, makes use of an adjoitt the initial conditions, boundary conditions, param-
of the model whose solution is being examined. Aters, etc. (all the values that control the forecast and
with the former method, it begins by considering @re included in the specification &f In particular,
control solutiona.. Next, it considers one selected
J (from the set o) ) and a corresponding vector of
dJ/db evaluated ab =b, that is, the gradient dfwith J,= Z
respect to possible perturbations of each component
of the model output about the control solution. All that
is required to determine this gradient is knowledge isfalso a (different) first-order approximatioritdbut
the definition ofJ and that) be first-order differen- does not require a forecast to deterndiaelf one is
tiable with respect to the output components (e.inferested in the impacts dndue to many different
specifications of each forecast field at each grid poipgrturbations, one need simply compute the inner
whenJis evaluated for the control solution. This grgeroduct (4) using the differeAl, . The gradients af
dient can be interpreted as the sensitivityl @fith  with respect to either the input or output must be re-
respect to arbitrary (but small) perturbationddh lated sinceb is determined bw. In fact, what is re-
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the sense that quired is a means to efficiently determi#da from
dJ/db. The adjoint of the model is the tool used to do
) this.

3. Tangent linear and adjoint models
is a first-order (Taylor series) approximationAd
(primes will be used to denote linear estimates of per- Since most of us are more accustomed to thinking
turbation quantities). Forssb, of a given magnitude, ain terms of integrating models forward in time rather
large value obJ/db, suggests that the perturbation wilthan determining sensitivities backward in time, the
have a large effect on alteridgout a small value sug-adjoint of a model is most easily described by first
gests the same perturbation will have a small effeafiscussing its corresponding tangent linear model.
An example] is the area-mean-squared surfad&hile it is not necessary to do so, the mathematics is
temperature forecast error significantly simplified by considering numerical
models that are discretized in time (as almost all our
5 numerical models are). Such a model may be simply
| Zi’j['ﬁff) —'ﬁfjv)] Ax, Dy, described by
L=

: (2)

b =B(a), (5)

where the superscripts (f) and (v), respectively, denetbereB denotes the model operator.

forecast and verification values and the grid spacings If &' denotes an input perturbation, then

in thex andy directions at the poirt j, respectively,

areAx andij. The corresponding gradienthfwith ' d;, |

respect to the forecas$tevaluated about the control Ab; =bj = Zaak (6)
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is a first-order Taylor series approximation to the ref the model, determined with respect to model input.
sulting perturbation of the output that is valid as lorgis also called the linearized model operator (Kayo
as thga' | are all sufficiently small and the derivativegt al. 1997) or propagator, but here the term Jacobian
in (6) exist. Only for simple models can the analyticalill be used.
form of the derivatives in (6) actually be determined. Equation (6) is linear in the perturbation quantities
Fortunately, for many of the most important applicand is therefore a linearized version of the model. In
tions, only numerical results are necessary; that iseteorology’s early days, such linearizations were
numbers corresponding to the sums in (6) for gacpherformed about very idealized (control) solutions
are all that are required. Even they would be too insince the goal then was to eliminate enough terms and
ficient to compute if all the derivatives of the outpwimplify all the others to obtain analytical solutions.
with respect to input, as written in (6), actually had #s long as we are interested in numerical rather than
be explicitly numerically evaluated. Instead, it is ofanalytical solutions, however, (6) need not be restricted
ten sufficient to determine only the net result of (6) g such idealized control solutions. In fact, (6) will
considering the model as a sequence of operationsikely become more accurate as we considea ttieat
example, actually interest us because then relevant perturbations
can truly become small relative to the control forecast
_ values (e.g., contrast perturbed values of advective
B(a) =By ((<BZ{ Bl[BO(a)]}>)) (7) terms when a linearization is performed about a zon-
ally uniform wind versus a real analyzed wind when
where the subscripts refer to individual time steps, the perturbations are intended to represent a possible
erations, and physical or algorithmic components difference between the true atmospheric state and the
the model. The chain rule of elementary calculus caantrol state). The linearization can be performed
be applied to (7) to yield a sequential formulation f@bout realistic model solutions that vary in all space
(6): directions as well as in time; that is, the reference so-
lution need not be stationary. Such a model is called a
b =pN tangent linear model, because the linearization is per-
. formed with respect to tangents of the model trajec-
tory described in a model phase space.
M ForJ=J(b) = J[B(a)], application of the chain rule
bi( = ZWbﬁ(”‘”, forN=n21  (8) of elementary calculus yields a linear relationship for
K gradients analogous to (6):

(0
0=y P o AN _ MDA o)
: 2 Oa, 9 da; by -

where, for exampldoj(“) refers to thgth component There are three important differences between (6)
of the output after step. It is therefore possible toand (9): (6) relates perturbations but (9) relates (sen-
determine (6) using a sequence of simple and elemsitivity) gradients; (6) takes perturbations of the input
tary calculations. to determine those for the output, but in (9) the roles
In specific numerical applications, the derivativesf input and output are reversed; and the order of the
in (6) or (8) are to be evaluatedaat a_and the re- subscriptg, kin (9) is reversed from those in (6). The
sulting sequenck®™, so it is sufficient that they existreversal of subscripts in (9) indicates that the Jacobian
for only those particular values of the components wfatrix in (6) has been replaced by its transpose (i.e.,
a andb® rather than for all possible values (i.e., théhe interchanging of rows and columns), or in more
model operator must only be differentiable along tlgeneral mathematical terms by its adjoint. Equation (9)
control trajectory). For spatially and temporally diss therefore called the adjoint model corresponding to
crete models, this is often the case, even when the fui@)-[or, less precisely, (5)].
tions used in the model have discontinuities, as when Note that the adjoint operates backward in the
modeling convection. The matrix that describes the seinse that it determines a gradient with respect to in-
of derivatives appearing in (6) is called the Jacobiant from a gradient with respect to output. In a tem-
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porally continuous model this would appear as an i Examples of adjoint fields
tegration backward in time. Neither the model nor its
tangent linear version is being integrated backward in As an example of the output of an adjoint model,
(9), however, since it is ttejoint of the model equa- sensitivity fields like those shown in Errico et al.
tions that appears there. If there are no numerical (#993b) are presented here. The model used is version
stabilities associated with irreversible processes in thef the Mesoscale Adjoint Modeling System (denoted
tangent linear model acting forward in time, there wils MAMS2) developed at the National Center for At-
be none in the adjoint acting backward in time.  mospheric Research (NCAR; ER). It is based on an
The proper formulation of a tangent linear modelarlier version described by Errico et al. (1994), al-
requires simply that the Jacobian is properly computgebugh the changes are numerous and significant.
and used so that (6) properly describes the behaviorMAMS?2 is a limited-area, primitive equation
of perturbations as the perturbation size decreasestmdel prescribed in flux form on an Arakawa B grid
ward zero. The usefulness of its results, however, darakawa and Lamb 1977) with Lambert conformal
pends on (6) being a good approximation to resufteapping. Its lateral boundary conditions are formu-
obtained from differences between perturbed and céated using a Davies and Turner (1977) relaxation
trolled nonlinear solutions, since it is almost alwayscheme applied within five grid points of the edge
the behavior of perturbations in the nonlinear modasing a relaxation coefficient that exponentially de-
that actually interest us. The accuracy of this approgireases inward from the grid’s edge. The time scheme
mation will depend on the size of the input perturbés split-explicit following Madala (1981) with an
tion. Usually we are interested in perturbations thasselin (1972) time filter. It includes an adiabatic ver-
have the size of uncertainties in the input values, natal mode initialization scheme (Bourke and
infinitesimal values. The more nonlinear the mod&cGregor 1983) of the external and first internal
formulation and the closer solution trajectories conmodes.
to critical points that determine conditionals in the The model’s vertical coordinate &= (p — p)/(p
model formulation, the smaller the acceptable size-6f), wherep is pressurep, is the model top at 1 kPa
perturbations will generally be. Experience with tarere, ang, is surface pressure. In all the experiments
gent linear versions of numerical weather predictidrere, the wind components (eastwardorthwardv),
models suggests that they have much utility for pgaemperatureT), and mixing ratioq) are defined on
turbations the size of initial condition uncertainty ohO equally spaced levels in valuesmfThe vertical
mesoa and larger scales, at least when the physicdiiste differencing follows the energy-conserving for-
dominated by dry dynamics. It is difficult to specifynulation of the NCAR Community Climate Model
an accuracy that generally applies, since results gred@®CM version 2; Hack et al. 1993).
depend on details of the synoptic situation, perturba- The model physics includes a stability-independent
tion size and structure, forecast duration, and forechatk formulation of the planetary boundary layer fol-
aspects of interest, as well as the intended applicatiowing Anthes et al. (1987) and a stability-dependent
(Errico et al. 1993b; ER; Lacarra and Talagrand 1988grtical diffusion following CCM version 3 (Kiehl
The accuracy of an application of the adjoint modet al. 1996) treated using an implicit temporal scheme.
result to a finite-size perturbation is identical to th&torizontal diffusion is a fourth-order scheme with a
for the corresponding application of the tangent litime-independent coefficielf, = 1.73x 10* m' s*
ear model in the specific sense thdit@mputed from applied to the wind, temperature, and water vapor
(1) by evolving a perturbation forward in time usingmixing ratio) except next to the boundaries where
the tangent linear model will be identical to that congliffusion is second order. There is also a convective
puted from (4) by evolving the gradient backward iadjustment scheme that acts on temperature only, with
time using the adjoint model. The gradient computed accompanying mixing of moisture. The prognos-
by the adjoint will be exact, however, only when thiic equation for ground temperature includes radiative
Jacobian is formulated and used properly without agffects modeled identically to that in Anthes et al.
proximation. In most current adjoint models, approx{1987). Moist convection is modeled using the relaxed
mations are made to the Jacobians (e.g., by neglecémgkawa—Schubert scheme developed by Moorthi and
some diabatic terms in the model) so that comput8darez (1992). Nonconvective precipitation is simply
gradients are also only approximations. Their suitabéln enthalpy-conserving adjustment back to 100% rela-
ity will depend on the application. tive humidity.
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The tangent linear and adjoint versions of MAMS®2ored in large grid boxes), but on this grid, all grid
are exact, meaning that all terms are linearized prdymxes have almost equal mass (departing only because
erly, except for two approximations. One concerns ttige surface pressure varies) and no weighting has been
frequency with which the linearization is performedpplied. The physical dimensions of the units for the
along the control trajectory and has been showndmdients are those df(vorticity here) divided by
have negligible impact on accuracy for most impothose of the corresponding fields. The gradients shown
tant applications (Errico et al. 1993b; ER). The othare therefore distinct from the corresponding fields
is that for the moist and dry convective physics, tlteemselves. The timte= 0 on the sensitivity plots in-
required Jacobians are computed by a perturbatiticates the verification (end forecast) time and
method to approximaid,®/db, " by Ab®/Ab ™ for = -24 h indicates the initial time for the forecast, il-
a smallAb, ™. This approximation has also beeltustrating that the adjoint operates backward in time.
shown to be sufficiently accurate for many applicdhe gradient for this singlewith respect to all fields
tions and has several useful benefits in addition aad points was obtained with a single application of
enhanced computational efficiency (ER). the adjoint.

The synoptic case to be shown is one of explosive The computed gradients have a simple direct in-
cyclogenesis covering the 24-h period startirtgrpretation as fields of “sensitivity.” For example, the
0000 UTC 14 February 1982. The model grid covefigld of dJ/du for the input (i.e.t =—-24 h) indicates
the domain shown in Fig. 1 with a horizontal grid spathat a perturbation af of 1 m s at o = 0.65 at the
ing of approximately 120 km. The initial and boundsingle point where the sensitivity has maximum value
ary conditions are obtained from European Centre forer the Atlantic in Fig. 2b will change the forecast
Medium-Range Weather Forecasts analyses interpg-0.9x 10® s (obtained by multiplying the value of
lated to the MAMS2 grid. The analyzed 50-kPa heigtite perturbation by the corresponding value of the gra-
at the initial time, the analyzed sea level pressuredi¢nt). If, instead, a perturbation ©of 1 K is intro-
both the initial and verification (final) time, and theluced at the point marked where it is a minimum in
24-h accumulated forecast precipitation are presentgd. 2c¢,J will change by-8.7 x 108 s. If both per-
in Figs. 1a—d. The forecast cyclone (not shown) hgbations (or others) are introduced simultaneously,
central pressure of 96.9 kPa and is positioned apprdkie net change is simply given by the sum of the sepa-
mately 270 km to the southwest of the verifying oneate changes (a consequence of the linearization). Since

For aJ of frequent interest, we have chosen thEs linear, if the perturbations are introduced in the tan-
vertical component of relative vorticity at the final timgent linear model, this estimate/nf would be exact.
averaged within the area shown in Fig. 1¢ and exteriidd depended nonlinearly on the model output or if the
ing through the bottom half of the atmosphere. Thtial perturbation were introduced in the nonlinear
gradient of this) with respect to the final-timefield model, the change ihdetermined by the sensitivity
on theo = 0.65 surface is shown in Fig. 2a. Note thaglculation would only be an estimate of the change
because the vorticity is being spatially averagedpbtained (but under many conditions, a highly accu-
actually depends on the circulation (i.e., tangentigte one).
wind, according to Stokes’s theorem) along the perim- The sensitivity fields do not alone indicate where
eter of the box. initial condition errors are nor what is necessarily “im-

The gradient od with respect to the initial condi- portant” in producing the forecast. They do strongly
tions is determined by applying the adjoint of MAMS28uggest where to look for initial condition errors that
to the gradient of with respect to the output (i.e.,may have a big effect (in this case in the vicinity of
patterns identical to that in Fig. 2a 8% du at the low- the geopotential trough at midlevels). They also indi-
est five model levels and analogous, but 90° rotategte what to expect from any (small) initial condition
patterns fowJd/ou). The resulting gradients fdwith changes that may be applied.
respect to the input, T, andg on theo = 0.65 surface  When the mechanisms affecting the synoptic de-
are shown in Figs. 2b—d. This is the model level wherelopment are relatively simple, the adjoint fields have
the maximum values of components of the gradiemtiatively simple interpretations (e.g., see Langland
with respect to each field are found. For proper inteat al. 1995 or Rabier et al. 1992). Here, the processes
pretation, the presented gradient values are betbaroclinic instability and moist diabatic heating are
weighted by the inverse of the mass in the corresporadting simultaneously, and the adjoint fields are more
ing grid box (otherwise large gradient values are fdifficult to interpret synoptically. They are best inter-
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z nonlinear [control] for t— 0.00 P=500. hPa slp nonlinear |control] for L= 0.00 ¢—1.000

24.00 0=1.000 R forecast for t= 24.00 o-0.050
Hsy

H?Q ‘ i’ HW

Fic. 1. The fields of (a) 50-kPa geopotential height at the initial time; fields of sea level pressure at the initial (d)(ehtrfies;
and (d) forecast precipitation accumulated during the 24-h forecast. Contour intervals are 60 m, 0.4 kPa, 0.4 kPa,rasg&civaty,.
The square shown in (c) is the area over which the mean forecast vorticity is to be computed for the forecast aspeetlinvestigat

preted by considering what a perturbation that has tiraes the effect of a 1 ni'erturbation ob where its
samestructureas the sensitivity field would causesensitivity is a maximum. In this specific sense, there-
Such perturbations may be considered as “optimal*fiore, J is much more sensitive fbandq than tou.
the sense described in section 5. Furthermore, the maximum sensitivity is located near
Some adjoint results are likely anticipated. Thgs kPa, not at the tropopause or surface as one may
sensitivity ofJ with respect to possible perturbationguess by considering simple cyclone development
of the o = 0.65T field near Cape Hatteras, for exarguments in terms of potential vorticity anomalies.
ample, may have been anticipated by considering theNote that none of these results would be as easily
influence of possible changes of the sharpness of tisained by simply examining perturbed runs of the
initial 50-kPa geopotential trough on the forecast cponlinear model. Either too many runs would have to
clone. Other implications of the adjoint results, howse made to obtain the same complete picture, or there
ever, may yield very new insights. Comparison of the a strong chance that the impacts of simultaneously
magnitudes of the sensitivity fields in Figs. 2b—d, fontroduced perturbations would cancel (given that
example, indicates that a 1-K perturbatioff @fhere there are regions of both positive and negative sensi-
the sensitivity has maximum magnitude has approxivity) yielding an incorrect impression of the possible
mately the same effect as a 0.0006 kg berturba- impacts that can be obtained with other perturbations.
tion of g where its sensitivity is a maximum but 9f our interest is in knowing the impact on mahy
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8ly/0v for t= 0.00 0=0.650 813/ 8v for t=-24.00 0¢=0.650

8J,/8T for t=-24.00 0=0.650 81y/8q for t=-24.00 ¢=0.650

C ‘ d

Fic. 2. The sensitivity of (mean vorticity within the lower troposphere and area shown in Fig. 1c) with respect to (a) theufieid of
the final (forecast verification) time, and ()(c) T, and (d)g at the initial (analysis) time, all defined on the 0.65 surface. Contour
intervals are X 108 s(m s%)7?, 2x 10° sY(m s?%)7?, 2x 108 st K™, and 2x 10° s*(kg kg?)™?, respectively, negative contours are
dashed, and 0-valued contours have been omitted for clarity. The square shown in solid lines is the area dvedefined at the
verification time. The dashed square indicates whéseperturbed at the initial time to test the accuracy of the adjoint results.

given a few perturbations, the nonlinear method would As an indication of the accuracy of the adjoint re-
be appropriate, but a shift of a perturbation pattern bylt discussed here, the nonlinear model has been run
a few grid points may sometimes grossly change twih a perturbation of the initial condition within the
results. 2000 kmx 2000 km area within the dashed lines
The adjoint can only produce the gradient for orgown in Fig. 2d. Onlg in the bottom three model
J_per application. Fortunately, often we are interestéal/els (approximately below 70 kPa) has been per-
in only a few distinc . Also, because it is based on turbed. At the locations anallevels wheredd/dq is
linearization, the sensitivity it suggests is only approxpositive valued, the perturbation is 0.001 kg'kg
mate. Interpretations must be made carefully and thvbere it is negative, the perturbatior@6s001 kg kg'.
accuracy of the corresponding tangent linear modethe perturbation is such as to make 0 at some
should be examined for the cases and applicationslotation, the perturbation at that location is reduced in
vestigated. The computational cost of the adjoint ofagnitude to makg = 0.
MAMS?2 is about the same as an execution of the tan- The control value of is 8.39x 10° s. The per-
gent linear or nonlinear models over the same tirhgbation yields &J = 1.04x 10° s2. If instead, the
period. initial perturbations ofj are multiplied by their corre-
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sponding sensitivities and added according to (4), then Adjoints are indispensable for efficiently solving
the estimated changedns 1.21x 10°s™. Thisisonly several types of optimization problems, which in-
a 17% error compared with the actual value obtaineldides their most common applications to date. The
with the nonlinear model. simplest of these is to consider a linear (or linearized)
The effects od due to other perturbations can bé and ask what is the smallest perturbation of the model
easily estimated using (4) without executing the noimput that can produce a desired chaAgevhen the
linear model again. For example, changing the sigmerturbation size is measured by some quadratic norm
of the previous perturbations should yield approxie., sum of squares of perturbation components). Such
mately the same magnitude change as earlier but witformation can be useful if we want to know if a dis-
opposite sign. If the perturbation were the valugepancy between forecast and analyzed valuds of
0.001 kg kg (i.e., constant value) at the same point&an be corrected by a reasonable modification to the
as earlier, the change &fs 7 times smaller, indicat- forecast’s initial conditions.
ing that much cancelation occurs when summing over As an example of this simple optimization prob-
regions of positive and negative sensitivity. These tiem, consider the simple norm that measures the sum
adjoint estimates were also checked with the nonliof the squares of the perturbed input values:
ear model, yielding errors less than 2% of the nonlin-
ear changes. 1 )
These results are remarkably accurate, given the I :_ZWK(Aak) ’ (10)
significant size of the perturbation and the fact that the 2
primary way moisture perturbations affect the wind
field is through highly nonlinear diabatic processesherew is a weight that depends on the field type and
Perturbations with different structures or magnitudesaybe location. If the perturbation size is sufficiently
could yield very different accuracies, but our expersmall that the tangent linear approximation is accept-
ence thus far suggests that these sensitivity fields habée, then both the perturbations of the model output
significant utility. andAJ are approximately linear functions of the per-
Note that the adjoint-determined result only appli¢grbed input. The latter approximation is simply de-
to J being the mean vorticity in the verification boxnoted by (4), and we can ask what minimizes (10)
These determined sensitivity fields do not, for exjiven the constraint (4). The result (e.g., determined
ample, indicate how the central pressure changes dgang a Lagrange multiplie¥) is obtained by finding
to the same perturbations, although thedaad their theAa, that minimize
sensitivities may be related (e.qg., through geostrophy).
Neither does it directly indicate “why” the estimated 1 , O 3 0
change occurs. Nevertheless, the sensitivity fields pro- K == Z w(Da, )" +A %AJ - Z ——Na, g (11)
vide much useful information; for example, in the 2 Ja,
present example, it would likely have required a large
ensemble of perturbed forecasts to obtain a significavitereAJ is the prescribed desired change. The mini-
change ofl by avoiding cancellation between areas afium ofK occurs for theda, that satisfydK/da, = 0.
oppositely signed sensitivity. The result is

a

5. Adjoint applications Aa, (optimal) = — o
k

(12)
Sensitivity analysis has many applications. It may
be used to examine model behavior, describing hevhich is just the gradient values multiplied by the in-
input and output are related. It may be used to inveslicated weights, with
gate model forecast errors, to highlight initial or
boundary fields and locations that are more likely to 1 03 DZD
be res ible f . Anoth ttob -
responsible for an error. Another use, yet to be ex A=A) (13)
ploited, is as a synoptic tool to determine what initial g Wy %E H
synoptic features are most strongly related to subsequent
synoptic features (see, e.g., Langland et al. 1995).so that the constraint (4) is satisfied.
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Note that in this linearized example, one singlag problem of four-dimensional variational data as-
application of the adjoint is sufficient to determinsimilation (4DVAR), which is schematically de-
the optimal solution (i.e., no iteration is requiredgcribed in Fig. 3. Here, the goal is to produce the
Furthermore, if thev depend only on field type andanalysis that “best” fits observations, prior estimates
not location, then thstructuresof the adjoint-deter- of the fields to be analyzed (e.g., a “background” es-
mined sensitivity fields are identical to those of thiémate produced by an earlier forecast valid at the
optimal perturbation field. In this specific sense, thanalysis time), and our understanding of the physics
sensitivity fields may therefore be considered as “ofhrat relates observations of different types and times
timal” structures. Similar results are obtained when the the fields to be analyzed. The latter implies use of
optimization problem is to determine the maximuma model that may be used as either a strong (Lewis
AJ given a prescribed perturbation size and Derber 1985; Talagrand and Courtier 1987) or

If Jis not linear (nor linearized) or if the perturbaweak (Derber 1989; M. Zupanski 1993) constraint.
tion size is initially large or becomes large during thEhe measure of how well the analysis fits all this in-
forecast such that the perturbation output is no londermation should include weights consistent with the
approximately a linear function of the input, then istatistics of errors associated with each piece of infor-
eration is required becaudd/da,_is then an implicit mation (Tarantola 1987; Daley 1991). The fit may also
function ofa + Aa. Applications of this type are nicelyinclude measures designed to constrain noise, such as
discussed, for example, by Rabier et al. (1996) adde to inertia—gravity waves (e.g., Courtier and
Oortwijn and Barkmeijer (1995). Talagrand 1990).

If Jis a quadratic function of the perturbation it- Figure 3 indicates the following. Point B is a back-
self, such as when we ask what will give us the larground estimate of the atmospheric state att;me-
est size perturbation output [e.g., measured as by (d0¥ed by an earlier forecast, with indicated error bars.
except at some output time] given a constrained ifoint Q is an observation of the atmospheric state at
tial perturbation sizé = constant, then the optimalapproximately the same time, with indicated error
solution is determined by an eigenvalue problerhars. Point A is a likely value for the analysis, given
Although there is usually a single, largest-growth sby the intersection of the information available, at
lution, one can search for slower-growth solutions thiatproduces a forecast, F, for timhe This disagrees
are uncorrelated with the first (when measured usingth the observation (valid at that time. An adjoint
the same norm). These solutions have been called “opdel is applied to a measure of the differenceF
timal solutions” but now are usually called “singulaand B— O, (for all fields and observations) to make a
vectors” for reasons best described in Ehrendorfer aralv analysis A* also consistent with the information
Errico (1995). att.. It produces a significantly different forecast F*

The singular vectors may be interpreted as sollue to the modeled atmospheric instabilities that is also
tions to a generalized stability problem (Farrell anzbnsistent with Q The expected result is that, even
loannou 1996a,b). They can yield growing solutiora timest >t,, the forecast started at A* remains bet-
(i.e., ones for which the norms, such as perturbatitar than the one started at A and also better than one
energy, grow with time) when no growing normaistarted at ai, produced by an intermittent data as-
mode solutions are found. This can occur when naimilation scheme. There are more optimal ways of
mal modes are nonorthogonal with respect to thsing data over the peridgst<t,ort<t, and A*
norm; for example, when the sum of the values of thdll only be statistically better than A if all the infor-
norm for individual normal modes is not equal to thmation has been used properly, with proper account-
norm of the sum of the modes. This is usually the caswg for all the corresponding error statistics.
except for simple, specifically designed problems. The 4DVAR fitting function defines &as a func-
Unlike for normal-mode determination, the basic stafien of the analysis, with parameters determined by
whose stability is being examined need not be statidhe input information and their error statistics. The ad-
ary (or quasi-stationary) in time for singular vectofsint is used to determine the local gradiend wfith
to be determined. The singular vector analysis includespect to the analysis fields, which is then applied to
the normal-mode analysis as a special case, so it game algorithm to find the analysis that yields the best
vides more general information. fit (i.e., minimumJ). Although such an optimization

The greatest attention to adjoints has been for theioblem was posed in meteorology by Sasaki (1969),
use to efficiently solve the computationally demandt-has awaited the advent of adjoint models to become
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computationally practical. When designed properly,
with good estimates of the error statistics, good grav-
ity wave control, and a good model, 4DVAR should
be better able to assimilate data by better connecting
information in time than previous methods have done.
As with previous methods, such as optimal inte%-
polation (Daley 1991), 4DVAR uses past observa-
tions, as they have affected the background estimages,
in addition to present ones. Unlike previous methods,
however, it also uses future observations, in the sens¢
that if we wait 6-24 h beyond the time for which the n .
analysis is to be valid (plus the time required to ob- ! TIME :
tain the data), the later observations can be used iffric. 3. Schematic of four-dimensional variational data
conjunction with a forecast model to help constrain tlaesimilation.
analysis. For example, knowing the time evolution of
moisture patterns we can infer winds, and seeing de-
velopments in unstable regions we can better spedéyns, however, when the specification of parameters
precursor patterns. Since even single observations ustealuld be robust (i.e., apply well to all cases, not just
in this way can impact many fields over a significahose for which the fitting has been performed), physi-
area, the analysis produced may even be better thatly reasonable (requiring the consideration of con-
one produced using the old methods at the later tisteaints in the form of inequalities), and simultaneously
[see Thépaut et al. (1993) and Thépaut et al. (199@}isfy several criteria of acceptability.
for some examples and further references]. The newest application of adjoints is for assisting
Note that without careful attention to all the manthe “targeting” of observations. The motivation here
aspects of the data assimilation problem, use of iarto use sensitivity fields of some kind to determine
adjoint model does not by itself imply that bettewhere it is most important to produce an accurate ini-
analyses will be produced. In particular, using thi@l condition for a forecast. Where the sensitivity is
model as a strong constraint in 4DVAR will result itarge, any significant error in the initial conditions
adjustments of the analysis to compensate for any glgere will have a significant impact on the forechst
nificant model errors so the resulting forecast can stlhd therefore on the accuracy of its prediction. Similar
come close to the observations. Also, the results welirors where the sensitivity is low will have little af-
be sensitive to precisely how the fitting function iect on the forecast It is therefore critical to keep the
defined, and therefore any poor assumptions aboutithéal errors small in the sensitive regions. This can
statistics of forecast and observational errors wbe done by, for example, deploying aircraft to make
likely degrade the accuracy of the analysis (e.g., s#servations in those places. The locations will depend
Fillion and Errico 1997). on how the “importance” is measured (i.e., onihe
The 4DVAR problem is computationally demandused). They will also depend on the accuracy of the
ing, even with an adjoint to make minimizidgnore nonlinear model used to generate the forecast as well
efficient. Unlike many other proposed methods, howas the accuracy of its adjoint used to determine the sen-
ever, it may be feasible in an operational environmesitivity (see, e.g., Palmer et al. 1997; Langland et al.
[e.g., compare the computational demands for 4DVAED96).
described by Courtier et al. (1994) with those for the Where the sensitivity is greatest is not necessarily
method described by Bennett et al. (1996)]. the location that should be targeted. The expected size
Adjoint models can also be used for efficient d®f the analysis error at the location must also be con-
termination of model parameters, for example, faidered. If the analysis there is expected to be very
those appearing in the model’s parameterizati@accurate, it is not necessary to make more observations
schemes. This is similar to the problem of data assirttiere, regardless of the sensitivity. Also, having more
lation, except that instead or in addition to tuningbservations where they are important does not imply
model initial conditions, the best fit of forecasts witthe subsequent analysis and forecast will be better.
respect to the model parameters is determined. ThEspecially if they are in an area of strong sensitivity,
are some significant differences between the two prabsen small observational errors or marginally
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misspecified error correlation functions can produadtained at synoptic scales for periods as long as 1 day
unacceptable forecast errors. Targeting will likely préeR).
duce better forecasts only if the data assimilation sys- Some physical parameterization schemes used in
tem used is sufficiently good and its estimation of errorodels are formulated with conditionals: depending
statistics sufficiently accurate. on the state of the solution at any considered time, the
functions that determine the result of the physics can
be different. One example is the often-used simple
6. Adjoint limitations nonconvective precipitation scheme that produces a
nonzero effect only when a modeled air parcel is su-
The greatest limitation to the application of adpersaturated. Such formulations can be formally
joints is that the results are useful only when the linendifferentiable, although in a temporally and spa-
earized approximation is valid. The tangent linear tally discrete formulation, almost all model solutions
adjoint results may be correct in that they accuratedsil fall on one side or the other of such conditions at
describe the first-order Taylor series approximation éach time and thus are differentiable along the discrete
the behavior of perturbations in our application; thatodel trajectory as required for existence of the
is, the behavior as the perturbation size becomesiimedel’s Jacobians. Rather than impairing the formu-
finitesimally small. Those results may be useless, holation of the tangent linear and adjoint model versions,
ever, if our real interest is in the behavior of sontbe effect of the conditionals is therefore to reduce the
finite-sized perturbation, as it almost always is. lmsefulness of the linear approximations made. A per-
particular, ifJ or the model is nonlinear, there willturbation in the nonlinear model may change the sense
likely be a perturbation size for which the linearizasf a conditional, causing effects that the linearization
tion becomes inadequate in the sense that both ¢bgs not describe. This can be amended by consider-
using a tangent linear model and (4) using an adjoing all the possible trajectories but would be highly im-
suggest the wrong response to the perturbation in gractical when the number of degrees of freedom is
nonlinear model. very high, as in models used for weather prediction.
The perturbation size may become large becausigernatively, the conditionals can be removed by re-
it is prescribed so initially, or it may become largplacing them with some smooth functions. Ideally this
because the perturbation size grows with time, fshould be done without compromising the modeling
example, as when a dynamic instability exists. For tbéthe concerned physics. It can even be argued that
latter reason, there is generally a time at which thay conditionals are unrealistic since they likely do not
behavior of almost any perturbation enters the nagecount for smoothing effects due to the uncertainty
linear regime in most nonlinear atmospheric modedssociated with the statistical nature of the parameter-
[i.e., the effects of chaos occur as described by Loremation scheme. These questions have been investi-
(1969); see also Tribbia and Baumhefner (1988yated in part (Xu 1996; ER; Verlinde and Cotton 1993;
Adjoint applications are therefore usually limited tdou et al. 1993; D. Zupanski 1993) and their investi-
certain short time spans. How short will depend on tgation will undoubtedly continue.
size of initial perturbations considered, the types of Sometimes the forecast aspects that interest us are
physics to be considered (e.g., dry dynamics verassociated with nondifferentiakleFor example, in a
moist convection) and the structure of the perturbgridpoint model we may be interested in determining
tion (does the perturbation grow or decay during tiiee point at which a local pressure minimum is ob-
period considered and what physics primarily actsined for defining the location of a cyclone’s center.
upon it). It is therefore difficult to specify a generalhe algorithm to determine this point involves com-
time limit for adjoint applications, but experience witlparing pairs of numbers and choosing the minimum.
numerical weather prediction models and initial peBuch an algorithm is nondifferentiable. It may be that,
turbations that resemble expected initial-condition dpr this example, an alternative algorithm that deter-
rors suggests that if only dry physics is consideredigranes an equivalent result but that is differentiable
linearization may remain valid for up to 3 days famay be developed, but there are likely aspects of in-
synoptic-scale features. When the moist physics &arest for which such alternatives are impossible. Also,
sociated with precipitation is significant, this timethe accuracy of the first-order Taylor series approxi-
scale may be greatly reduced (e.g., see Park anation will vary with the forecast measures used
Droegemeier 1995), although good results have beenwell as with the cases to which they are applied.
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Therefore, great care should be taken when choosimgy simply be transcribed to the tangent linear and
a forecast aspect to be measured as well as wheraifjoint versions, but since the development and test-
terpreting the result. ing usually requires detailed reexamination of the non-
Many adjoint applications have been misintetinear model, errors in the nonlinear model are often
preted in the past. An adjoint result (i.e., pattern fdund too. Some undesirable aspects of the nonlinear
sensitivity) does not necessarily indicate what locarodel solution that were considered tolerable in its
tions or fields are most important. Since it does indermer applications (such as very small amplitude
cate where sensitivity is greatest, however, it providesmerical noise) may become intolerable as more is
an invaluable piece of information required to detetemanded of the model solutions; for example, when
mine what is most important. Neither do optimallthe small difference between two (control and per-
derived perturbations necessarily show where errdusbed) nonlinear model solutions is examined, the
in forecast initial conditions are, although again, thesjgnal to noise ratio may be dramatically reduced, ren-
should offer invaluable insight. Lastly, using an adlering the noise intolerable. One often unforeseen re-
joint in a data assimilation scheme does not necssit of developing an adjoint version should therefore
sarily mean more accurate analyses are obtainbdreexamination and subsequent improvement of the
That accuracy depends on details of many aspectsioflinear model itself.
the assimilation scheme. In this application, the ad- Developments in the field of adjoint applications
joint is simply a very useful tool, but not a guarantan meteorology have been fast paced. There has some-
of success. times not been time for robust and detailed analysis,
for example, involving many synoptic cases and types
of diagnostics. Sometimes important aspects of the
7. The future of adjoints problem are neglected, such as gravity wave control
in 4ADVAR studies. Some statements or results are
Derivation of tangent linear equations and adjointisleading or erroneous. In particular, extreme care
equations for models as complicated as those usedfwst be taken when attempting to generalize any re-
numerical weather prediction is usually straightfoported results. In the earliest papers on adjoint appli-
ward, although tedious. If the software for the nowrations, the mathematical presentation was often
linear model is designed well, the software for tHermidable and unnecessary in the discrete model
corresponding tangent linear and adjoint modelsfiamework almost always employed. For all these rea-
most easily produced by a line by line analysis of tisens, readers may find some existing papers confus-
nonlinear model software [e.g., directly from its FORRg, incomplete, or unreadable. A fairly complete and
TRAN code, treating each subroutine or line as opartially annotated bibliography of most papers on
of the functiond3_appearing in (8)]. Simple rules ex-adjoint applications and data assimilation published
ist for this purpose (e.g., see Talagrand 1991; Gieripgor to 1993 appears in Courtier et al. (1993). | espe-
and Kaminski 1996). In fact, computer software exially recommend many of the papers coauthored by
ists that can produce C or FORTRAN adjoint modedsther P. Courtier or F. Rabier for their readability and
from similarly coded nonlinear models (e.g., Gieringccuracy. Many novices in the field have found Errico
and Kaminski 1997; Rostaing et al. 1993; Bischo#ind Vukievic (1992) useful, although their adjoint
1994), although, under some conditions, these aub@d many approximations and much simpler presen-
matic adjoint generators may produce adjoint codigions can now be made. Several papers describing
that are incorrect or computationally too inefficientboth general and particular applications of adjoints in
Testing of the tangent linear and adjoint softwadata assimilation may be found in Ghil et al. (1997).
is also straightforward and rigorous if all that is re- Often in meteorology we can only indirectly
quired is that it be properly derived from the pareranswer the questions that interest us. In particular,
nonlinear model. The development and testing cangiéor to the development of adjoint models, we had
quite tedious, however, especially since the testit@infer sensitivity from impact studies as described
methods can be quite sensitive to even what mayibesection 2. As adjoint models become more avail-
considered very minor errors; that is, software erraable and as their applications are better understood
usually become apparent unlike when nonlinear forgy the community, they should make a very large im-
casting models are developed and the “truth” is knoysact on how we do science and how we understand
imprecisely. Errors originally in the nonlinear modehe atmosphere.
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