
to Turbulent Flow 

To quantitatively describe and forecast the state of the boundary layer, we turn to the 
equations of fluid mechanics that describe the dynamics and thermodynamics of the gases 
in our atmosphere. Motions in the boundary layer are slow enough compared to the speed 
of light that the GalileanlNewtonian paradigm of classical physics applies. These 
equations, collectively known as the equations of motion, contain time and space 
derivatives that require initial and boundary conditions for their solution. 

Although the equations of motion together with other conservation equations can be 
applied directly to turbulent flows, rarely do we have sufficient initial and boundary 
condition information to resolve all turbulent scales down to the smallest eddy. We often 
don't even care to forecast all eddy motions. For simplicity, we instead pick some cut-off 
eddy size below which we include only the statistical effects of turbulence. In some 
mesoscale and synoptic models the cutoff is on the order of 10 to 100 krn, while for some 
boundary layer models known as large eddy simulation models the cutoff is on the 
order of 100 m. 

The complete set of equations as applied to the boundary layer are so complex that no 
analytical solution is known. As in other branches of meteorology, we are forced to find 
approximate solutions. We do this by either finding exact analytical solutions to 
simplified subsets of the equations, or by finding approximate numerical solutions to a 
more complete set of equations. Both approximations are frequently combined to allow 
boundary layer meteorologists to study particular phenomena. 

In this chapter we start with the basic governing equations and statistically average 
over the smaller eddy sizes. Along the way we demonstrate simplifications based on 
boundary layer scaling arguments. Numerical methods for solving the resulting set of 
equations are not covered. 
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3.1 Methodology 

Because the upcoming derivations are sometimes long and involved. it is easy "to lose 
sight of the forest for the trees". The following summary gives the steps that will be taken 
in the succeeding sections to develop prognostic equations for mean quantities such as 
temperature and wind: 

Step 1. Identify the basic governing equations that apply to the boundary layer. 
Step 2. Expand the total derivatives into the local and advective conoibutions. 
Step 3. Expand dependent variables within those equations into mean and 

turbulent (perturbation) parts. 
Step 4. Apply Reynolds averaging to get the equations for mean variables within 

a turbulent flow. 
Step 5. Add the continuity equation to put the result into flux form. 

Additional steps take us further towards understanding the nature of turbulence itself: 
Step 6. Subtract the equations of step 5 from the corresponding ones of step 3 to 

get equations for the turbulent departures from the mean. 
Step 7. Multiply the results of step 6 by other turbulent quantities and Reynolds 

average to yield prognostic equations for turbulence statistics such as 
kinematic flux or turbulence kinetic energy. 

Section 3.2 covers steps 1 and 2. Section 3.3 takes a side road to look at some 
simplifications and scaling arguments.. In section 3.4 we get back on track and utilize 
steps 3-5 to derive the desired prognostic equations. After a few more simplifications in 
section 3.5, a summary of the governing equations for mean variables in turbulent flow is 
presented. 

Steps 6 and 7 are addressed in Chapters 4 and 5. 

3.2 Basic Governing Equations 

Five equations form the foundation of boundary layer meteorology: the equation of 
state. and the conservation equations for mass, momentum. moisture. and heat. 
Additional equations for scalar quantities such as pollutant concentration may be added. It 
is assumed that the reader has already been exposed to these equations; hence, the 
derivations are not given here. 

3.2.1 Equation of State (Ideal Gas Law) 

The ideal gas law adequately describes the state of gases in the boundary layer: 

p = Pair 9{ Tv (3.2.1) 

where p is pressure. Pair is the density of moist air. Tv is the virtual absolute temperature. 

and 9{ is the gas constant for dry air (9{ = 287 J-K- 1 kg-I). Sometimes. the density of 

moist air is abbreviated as P for simplicity. 
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3.2.2 Conservation of Mass (Continuity Equation) , 
Two equivalent fonns of the continuity equation are 

::\" a(pu.) 
.lQL + __ J = 0 
at dxj 

(3.2.2a) 

and 

dp au. 
-+p--1.=o 
dt ax. 

(3.2.2b) 

J 

where the defmition of the total derivative is used to convert between these fonns. 
If V and II... are typical velocity and length scales for the boundary layer, then it can 

be shown (Businger, 1982) that (dp/dt )/p «aujdXj if the following conditions are met: 

(I) V« 100 mls; (2) II...« 12 km; (3) II...« C.2/g; and (4) II...« C.tf, where C. is the 
speed of sound and f is frequency of any pressure waves that might occur. Since these 
conditions are generally met for all turbulent motions smaller than mesoscale, (3.2.2b) 
reduces to 

(3.2.2c) 

This is the incompressibility approximation. 

3.2.3 Conservation of Momentum (Newton's Second Law) 

As presented at the end of section 2.8.2, one fonn for the momentum equation is 

au. au. 1 ap _1+ 
- 5j3 g - 2 Ejjk OJ Uk - P aX j at J x. 

J 

II III IV V 

Tenn I represents storage of momentum (inertia). 
Tenn II describes advection. 
Tenn III allows gravity to act vertically. 

1 at .. 
+ _-2L (3.2.3a) 

p aXj 

VI 

Tenn IV describes the influence of the earth's rotation (Coriolis effects). 
Tenn V describes pressure-gradient forces. 
Tenn VI represents the influence of viscous stress. 
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In tenn IV, the components of the angular velocity vector of the earth's rotation OJ are 

[0, ro cos(CP), ro sin(cp)) where cp is latitude and ro = 21t radians/24h = (7.27xlO-5 s-l) is 

the angular velocity of the earth. Often tenn IV is written as + fc eij3 Uj' where the 

CorioUs parameter is defined as fc = 2 ro sin cp (1.45xlO-4 s-l) sin cp. For a 

latitude of about 44° (e.g., southern Wisconsin), fc = 10-4 s-l. 
To a close approximation, air in the atmosphere behaves like a Newtonian fluid. 

Thus, the expression for viscous stress from section 2.9.3 allows us to write term VI as: 

(I) a {[aU i au .] (2) [aUk] } Term VI = -; aXj Il aXj + a\J - "3 Il aXk Ojj 

where the bulk viscosity coefficient IlB was assumed to be near zero. Upon applying the 

derivative to each tenn, assuming that the viscosity Il is not a function of position, and 
rearranging, this expression can be written as: 

{ 2 [J Il a u. a au. 
Term VI = (-) -2-1 + ax-:- a/ 

pax. 1 J 
J 

By assuming incompressibility, this reduces to 

Term VI 

where the kinematic viscosity, v, has been substituted for Il/p. 
Substituting this back into (3.2.3a) gives the form for the momentum equation that is 

most often used as a starting point for turbulence derivations: 

(3 .2.3b) 

II III IV V VI 

where each term represents the same process as before. 



GOVERNING EQUATIONS FOR TURBULENT FLOW 79 

3.2.4 Conservation of Moisture 

Let qT be the total specific humidity of air; namely, the mass of water (all phases) per 
unit mass of moist air. The conservation of water substance can be written, assuming 
incompressibility, as 

oqT U OqT i S 
+ v-.i + 'IT (3.2.4a) at j ax. q a 2 

Pair J Xj 

II VI VII 

where Vq is the molecular diffusivity for water vapor in the air. SqT is a net moisture 

source term (sources - sinks) for the remaining processes not already included in the 
equation. Its units are: mass of total water per unit volume per unit time. 

By splitting the total humidity into vapor (q) and non-vapor (qJ parts using qT = q + 
qL and SqT = Sq + S'lL' (3.2.4a) can be rewritten as a pair of coupled equations 

oq oq 02 S E v-.i q 

at + U- + - + -
j ax. qoi Pair Pair J 

J 

(3.2.4b) 

and 

oqL oqL S E qL 

at + U- + 
j ax. 

Pair Pair J 

(3.2.4c) 

II VI VII VIII 

where E represents the mass of water vapor per unit volume per unit time being created by 
a phase change from liquid or solid. The convergence of falling liquid or solid water 
(e.g., precipitation) that is not advecting with the wind is included as part of term VII. It 
has been assumed in (3.2.4c) that molecular diffusion has a negligible effect on liquid and 
solid precipitation or cloud particles. 

Terms I, II, and VI are analogous to the corresponding terms in the momentum 
equation. Term VII is a net body source term, and term VIII represents the conversion of 
solid or liquid into vapor. 

3.2.5 Conservation of Heat (First Law of Thermodynamics) 

The First Law of Thermodynamics describes the conservation of enthalpy, which 
includes contributions from both sensible and latent heat transport. In other words, the 
water vapor in air not only transports sensible heat associated with its temperature, but it 
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has the potential to release or absorb additional latent heat during any phase changes that 
might occur. To simplify the equations describing enthalpy conservation, 
micrometeorologists often utilize the phase change information, E, contained in the 
moisture conservation equations. Thus, an equation for a can be written 

1 aQ. 
( OJ 

pCp 
(3.2.5) 

II VI VII VIII 

where va is the thermal diffusivity, and Lp is the latent heat associated with the phase 

change of E. The values for latent heat at OOC are Lv = 2.50 x 106 J/kg (gas:liquid), Lr = 
3.34 x lOS J/kg (liquid:solid), and Ls = 2.83 x 106 J/kg of water (gas:solid). 

Q"j is the component of net radiation in the jib direction. The specific heat for 
moist air at constant pressure, is approximately related to the specific heat for dry 
air, = 1004.67 J kg-} K-I, by = (l + 0.84 q). Given typical magnitudes 
of q in the boundary layer, it is important not to neglect the moisture contribution to 

Terms I, II, and VI are the storage, advection, and molecular diffusion terms, as 
before. Term vn is the "body source" term associated with radiation divergence. Term 
vrn is also a "body source" term associated with latent heat released during phase 
changes. These body source terms affect the whole volume, not just the boundaries. 

3.2.6 Conservation of a Scalar Quantity 

Let C be the concentration (mass per volume) of a scalar such as a tracer in the 
atmosphere. The conservation of tracer mass requires that 

ac + U ac v a2c + Sc "\.. . .... c (3.2.6) 
01 J ox. ai 

J J 

I II VI VII 

where Vc is the molecular diffusivity of constituent C. Sc is the body source term for 
the remaining processes not already in the equation, such as chemical reactions. The 
physical interpretation of each term is analogous to that of (3.2.4c). 

3.3 Simplifications, Approximations, and Scaling Arguments 

Under certain conditions the magnitudes of some of the terms in the governing 
equations become smaller than the other terms and can be neglected. For these situations 
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the equations become simpler - a fact that has allowed advances to be made in 
atmospheric dynamics that would otherwise have been more difficult or impossible. 

One simplification is called the shallow motion approximation (Mahrt, 1986). 
This approximation is valid if all of the following conditions are true: 

1) the vertical depth scale of density variations in the boundary layer is 
much shallower than the scale depth of the lower atmosphere. (This 

latter scale depth = p (dpldZ)-1 == 8 km.); 
2) advection and divergence of mass at a fixed point approximately balance, 

leaving only slow or zero variations of density with time. 
3) the perturbation magnitudes of density, temperature, and pressure are 

much less than their respective mel111 values; and 
A more stringent simplification, called the shallow convection approximation, 

requires all of the conditions above plus: 
4) the mean lapse rate (dT/dZ) can be negative, zero, or even slightly 

positive. For the statically stable positive case, (dTldZ) « gffl, where 

gffl = 0.0345 KIm; and 
5) the magnitude of the vertical perturbation pressure gradient term must be 

of the same order or less than the magnitude of the buoyancy term in the 
equation of motion. 

This latter condition says that vertical motion is limited by buoyancy, which is origin of 
the term "shallow convection". 

We have already employed conditions (1) and (2) to yield the incompressible form of 
the continuity equation. The other conditions will be applied below to yield further 
simplifications. 

3.3.1 Equation of State 

Start with the equation of state (3.2.1) and split the variables into mean and turbulent 

parts: p=p+p', Tv=Tv + Tv', P = P + p'.Theresultcanberearrangedtobe 

or 

P + p' 

9t 9t 

P + p' 
9t 9t 

Upon Reynolds averaging, we are left with 

(3.3.1a) 

+ p'Tv' 
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The last term is usually much smaller in magnitude than the others, allowing us to neglect 
it. As a result, the equation of state holds in the mean: 

(3.3.1b) 

This is a reasonable approximation because the equation of state was originally 
formulated from measurements made with crude, slow-response sensors that were 
essentially measuring mean quantities. As we shall see in section 3.4, however, we can't 
make similar assumptions for the other governing equations. 

Subtracting (3.3.lb) from (3.3.la) leaves 

p' 

Finally, dividing by (3.3.lb) gives 

T ' 
+_v 

P Tv 

Using condition (3) above and the data below, one can show that the last term is smaller 
than the others, leaving the linearized perturbation ideal gas law: 

p' 

I> 
p' 
p 

T' 
v + -

Tv 
(3.3.lc) 

Static pressure fluctuations are associated with variations in the mass of air from 
column to column in the atmosphere. For the larger eddies and thermals in the boundary 
layer, these fluctuations may be as large as 0.01 kPa (0.1 mb), while for smaller eddies 
the effect is smaller. Dynamic pressure fluctuations associated with wind speeds of up to 
about 10 mls also cause fluctuations of about 0.01 kPa. Thus, for most boundary layer 

situations, p'/I> = 0.01 kPa/ 100kPa = 10-4, which is smaller than 

T ' / T = I K / 300 K = 3.33 x 10-3. For these cases we can make the shallow 
v v 

convection approximation [conditions (4) & (5)] to neglect the pressure term, yielding: 

p' T' v 

p T 
v 

(3.3.1d) 
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Using Poisson's relationship with the same scaling as above yields: 

9 ' y = 
P 9y 

(3.3.1e) 

Physically, (3.3.1e) states that air that is warmer than average is less dense than 
average. Although not a surprising conclusion, these equations allow us to substitute 
temperature fluctuations, easily measurable quantities, in place of density fluctuations, 
which are not so easily measured. 

3.3.2 Flux Form of Advection Terms 

All of the conservation equations of section 3.2 include an advection term of the form 

Advection Term = Uj d1;ldXj 

where denotes any variable, such as a wind component or humidity. If we multiply the 
continuity equation (3.2.2c) by get dUjdXj = O. Since this term is equal to 
zero, adding it to the advection term will cause no change (other than the mathematical 
form). Performing this addition gives 

By using the product rule of calculus, we can combine these two terms to give 

(3.3.2) 

This is called the flUX form of the advection term, because as was demonstrated in 
section 2.6 the product of is nothing more than a kinematic flux. 

3.3.3 Conservation of Momentum 

Vertical Component. By setting i = 3 in (3.2.3b), we can focus on just the 
vertical component of momentum to study the role of gravity, density, and pressure on 
turbulent motions. Utilizing U3 = Wand the definition of the total derivative, dU/dt = 
dU/dt + Uj dU/dXj, gives 

dW 
dt 

_g _ .!..(dP) + 
P dZ 

iw 
v--

dx2 
J 
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In the following development, we will treat viscosity as a constant. Multiply thp 

above equation by p and let p = p + p', W = W + w' and p = P + p': 

(- ') d(W+w') a(p+p') i(w+w') 
p + p dt = -(p + p') g - ---az- + J..l 2 

aXj 

Dividing by P and rearranging gives: 

1 [ ap -] -p- az+pg 

If we assume that the mean state is in hydrostatic equilibrium (iJP/iJz = -j) g ), 

then the term in square brackets is zero. Furthermore, if we remember from section 3.3.1 

that p'/p is on the order of 3.33 x 10,3 , then we see that the factor on the left hand side 

of the equation is approximated by ( 1 + p'/p) == 1. We can't neglect, however, the first 

term on the right hand side of the equal sign, because the product [p'/p g] is as large as 
the other terms in the equation. The process of neglecting density variations in the inenia 
(storage) term, but retaining it in the buoyancy (gravity) term is called the Boussinesq 
approximation . These two approximations leave 

d(W+w') 
dt 

2-p' I iJp' iJ (W+w') 
=--g---+v 

p P iJz 
J 

A prerequisite for the Boussinesq approximation is that the shallow convection conditions 
be satisfied. 

By comparing the original equations to the scaled equations above, one finds 
differences in the terms involving p and g. Thus, a simple way to apply the Boussinesq 
approximation without performing the complete derivation is stated here: 

Practical Application of the Boussinesq Approximation: 
Given any of the original governing equations, replace every occurrence 

of p with p, and replace every occurrence of g with [ g - (Sv'/S)g 1 
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Although subsidence, W, is important in mass conservation and in the advection of 
material (moisture, pollutants, etc) from aloft, we see that it is less important in the 
momentum equation because it is always paired in a linear manner with w'. In fair-
weather boundary layers, subsidence can vary from zero to 0.1 mis, which is considered a 
relatively large value. This is small compared to the vertical velocity fluctuations, which 
frequently vary over the range 0 to 5 mls. Thus, for only the momentum equation for 
fair-weather conditions can we usually neglect subsidence: 

W =0 

This leaves the vertical component of the momentum equation as 

dw' 
dt 

lop' 
-- + p oz 

Using (3.3.1) to replace the density variations with temperature variations gives 

lop' 
- --- + p oz 

(3.3.3a) 

(3.3.3b) 

The physical interpretation of the first two terms in (3.3.3b) is that warmer than 
average air is accelerated upward (Le., hot air rises). The last two terms describe the 
influences of pressure gradients and viscous stress on the motion. This equation therefore 
plays an important role in the evolution of convective thermals. 

Horizontal Component. Although the BL winds are rarely geostrophic, we can 
use the definition of the geostrophic wind as a substitute variable for the horizontal 
pressure gradient terms: 

f U c g and 

Thus, the horizontal components of (3.2.3b) become 

1 dp 
+--

P ax (3.3.3c) 
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dV a2v 
Cit -f(V-V)+v- (3.3.3d) 

c g 
J 

dV 
+f (V -V) 

iv 
(3.3.3e) dt + v--c g 

ai 
J 

II III 

Tenn I is the inertia or storage tenn. Tenn II is sometimes called the geostrophic 
departure tenn, because it is zero when the actual winds are geostrophic. As we stated 
before, however, the winds are rarely geosttophic in the BL. Tenn III describes viscous 
shear stress. 

Combined Momentum Equation. Combining the results from the previous two 
subs.ections yields 

av; + V av; = -£"3 f (V .-V.) + g -at j aXj IJ C &l J I 9v p ClZ 

where we have applied the shallow convection, incompressibility, hydrostatic and 
Boussinesq approximations, and where Vgj = (Vg, Vg, 0). 

3.3.4 Horizontal Homogeneity 

Expanding the total derivative of any mean yields 

(3.3.4) 

II III N 

From examples like Figs 1.12 and 2.9 we saw that averaged variables such as potential 
temperature or turbulence kinetic energy exhibit large venical variations over the 1 to 2 km 
of boundary layer depth. Those same variables, however, usually exhibit a much smaller 
horizontal variation over the same I to 2 kIn scale. Counteracting this disparity of 
gradients is a disparity of velocities. Namely, V and V are often on the order of mls while 
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W is on the order of mm/s or cm/s. The resulting tenns I through IV in the above 
equation are thus nearly equal in magnitude for many cases. 

The bottom line is that we usually can not neglect horizontal advection (terms n & 
111). and we can not neglect subsidence (term IV) as it affects the movement of conserved 
variables. 

Sometimes micrometeorologists wish to focus their attention on turbulence effects at 
the expense of neglecting mean advection. By assuming horizontal homogeneity. 

-
we can set ol;lox = 0 and olf<)y = O. and neglecting subsidence gives W = 
O. Although these assumptions are frequently made by theorists to simplify their 
derivations. they are rarely valid in the real atmosphere. When they are made. they cause 

the advection terms of only mean variables (like ) to disappear; the turbulent flux terms 
do not disappear. and in fact are very important. 

3.3.5 Reorientating and Rotating the Coordinate System 

Although we usually use a Cartesian coordinate system aligned such that the (x. y. z) 
axes point (east. north. up). sometimes it is convenient to rotate the Cartesian coordinate 
system about the vertical (z) axes to cause x and y to point in other directions. Some 
examples include aligning the x-axis with: 

the mean wind direction. 
the geostrophic wind direction 
the direction of surface stress. or 
perpendicular to shorelines or mountains. 

The only reason for doing this is to simplify some of the tenns in the governing 
equations. For example. by choosing the x-axis aligned with the mean wind. we find 
U=M and V=O. In such a system. the x-axis is called the along-wind direction and 
the y-direction is called the crosswind direction . 

3.4 Equations for Mean Variables in a Turbulent Flow 

3.4.1 Equation of State 

As was already stated in section 3.3.1. the equation of state is assumed to hold in the 
mean. and is rewritten here for the sake of organization: 

= P Tv (3.4.1) 

3.4.2 Continuity Equation 

Stan with the continuity equation (3.2.2c) and expand the velocities into mean and 
turbulent parts to give: 
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or 

Next average over time 

au. au.' 
-1..+_J_=o aXj aXj 

Upon applying Reynold's averaging rules, the last term becomes zero. leaving 

au. 
_J = 0 aXj 

(3.4.2a) 

(3.4.2b) 

Thus. the continuity equation holds in the mean. Subtracting this from (3.4.2a) gives the 
continuity equation for turbulent fluctuations: 

au.' 
_J = 0 
ax. 

J 

(3.4.2c) 

This equation will allow us to put turbulent advection terms into flux form. in the same 
manner as was demonstrated for (3.3.2). 

3.4.3 Conservation of Momentum 

Starting with the conservation of momentum expressed by (3.2.3b), make the 
Boussinesq approximation: 

2 
1 ap va U i 

---+--pax. .... 2 
J ox. 

J 

Next. expand the dependent variables into mean and turbulent parts (except for the 

9v '/ 9v term, for which the expansion has previously been made): 
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a(U; + uj ') + + u/)a(U; + uj ') 

at aXj 

1 a(p+p') 2(U j + uj ') - =- -- + va -"'----'--p ax. 2 , aX. 
J 

Upon performing the indicated multiplications, and separating tenns, we find 

au au.' u.au. u.au'. uJ.'au,.+uJ.'au,.'= 
_j + __ , + _J __ ' + _J __ ' + 
at at aXj aXj aXj aXj 

Next, average the whole equation: 

au. au.' U. au. u. au'. uJ.' aUj 'ii'7dii7 
_'+_'_+_J __ 
at at aXj aXj --ax;- aXj 

-- (9 ') _ ,1 ai> Tdp' 
- 0"3 g + 0,'3 eV

v 
g + f e"3U, + f e"3u. - =-:;- - =-:;- + 

C 'J J C IJ J P aXi P oXi 

By applying Reynolds averaging rules the second, fourth, fifth, eighth, tenth, twelfth and 
fourteenth tenns become zero. We are left with: 

Finally, multiply the continuity equation for turbulent motions (3.4.2c) by Ui" average 
it, and add it to (3.4.3b) to put the turbulent advection tenn into flux fonn: 
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By moving this flux term to the right hand side of the equation, we see something very 
remarkable; namely, the following forecast equation for mean wind is very similar to the 
basic conservation equation we started with (3 .2.3b), except for the addition of the 
turbulence term at the end. 

aUj _oUj 

Vi J vX j 

II III IV v VI 

Term I represents storage of mean momentum (inertia). 

o(u.'u.') 
I J 

x 

Term II describes advection of mean momentum by the mean wind. 
Term ill allows gravity to act in the vertical direction only. 
Term IV describes the influence of the earth's rotation (Coriolis effects). 
Term V describes the mean pressure-gradient forces. 
Term VI represents the influence of viscous stress on the mean motions. 

(3.4.3c) 

Term X represents the influence of Reynolds' stress on the mean motions (see 
section 2.9.2). It can also be described as the divergence of turbulent 
momentum flux. 

Term X can also be written as (1 / p) otjj Reynolds/oXj where tjj Reynolds = - p u j' U j'. 

The implication of this last term is that turbulence must be considered in making 
forecasts in the turbulent boundary layer, even if we are trying to forecast only 
mean quantities. Term X can often be as large in magnitude, or larger, than many 
other terms in the equation. Sometimes term X is labled as "P" by large-scale dynamists 
to denote friction. 

3.4.4 Conservation of Moisture 

Por total specific humidity, start with (3.2.4a) and split the dependent variables into 
mean and turbulent parts: 
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2- 2 
voq vqoq' 
-q-+ + 

2 2 OXj OXj 

(3.4.4a) 

where the net remaining source term, SqT' is assumed to be a mean forcing. Next, 

average the equation, apply Reynolds' averaging rules, and use the turbulent continuity 
equation to put the turbulent advection term into flux form: 

2-<klr u. d(U.'qT') 
_ +-L...:!.. = vl q + SqT _ J (3.4.4b) at dXj 2 - dXj OXj Pair 

I II VI VII X 

Term I represents the storage of mean total moisture. 
Term II describes the advection of mean total moisture by the mean wind. 
Term VI represents the mean molecular diffusion of water vapor. 
Term vn is the mean net body source term for additional moisture processes. 
Term X represents the divergence of turbulent total moisture flux. 

As before, this equation is similar to the basic conservation equation (3.2.4a), except 
for the addition of the turbulence term at the end. Similar equations can be written for the 
vapor and non-vapor parts of total specific humidity. 

3.4.5 Conservation of Heat 

Start with the basic heat conservation equation (3.2.5) and expand the dependent 
variables into mean and turbulent parts 

de oS' U. oS U. oS' u.' oS u.' dS' 
_+ _ + +......L:...:... + -L- +-L-
at ot ox. ox. ox. ox. 

J J J J 

• 
LE 1 

- -.:.!.. 
dQ.' 
-=t. __ v_ 

-P COX. 
p J 

-P COX. 
p J pCp 

(3.4.5a) 

Next, Reynolds average and put the turbulent advection term into flux form to give: 
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de U. de v d2e _ + _J_ = _9__ _ 

at dXj 
(3.4.Sb) 

J 

II VI VII VIII 

Tenn I represents the mean storage of heat. 
Tenn II describes the advection of heat by the mean wind. 
Term VI represents the mean molecular conduction of heat. 

x 

Term VIlis the mean net body source associated with radiation divergence. 
Tenn vm is the body source tenn associated with latent heat release. 
Tenn X represents the divergence of turbulent heat flux. 

3.4.6 Conservation of a Scalar Quantity 

Start with the basic conservation equation (3.2.6) of tracer C and expand into mean 
and turbulent parts: 

de dC' U.de U.dc' u.' de u.'dc' _ + _ + _J_ + _J_ + _J __ + _J __ = 
dt dt dXj dXj dXj dXj 

ie ic' Vc Vc 
--+ -- + Sc 

dx2 
J J 

(3.4.6a) 

where the net remaining source term, Sc. is assumed to be a mean forcing. Next, 
Reynolds average and use the turbulent continuity equation to put the turbulent advection 
tenn into flux form: 

- - 2-
de U. dC vi C _+-L-= __ + 
dt dx. d 2 

J Xj 

d(U.'C') S _ J 

c 

II VI VII X 

Term I represents the mean storage of tracer C. 
Term II describes the advection of the tracer by the mean wind. 
Term VI represents the mean molecular diffusion of the tracer. 
Term VII is the mean net body source term for additional tracer processes. 
Term X represents the divergence of turbulent tracer flux . 

(3.4.6b) 
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3.5 Summary of Equations, with Simplifications 

To simplify usage of the equations, we have collected them in this section and 
organized them in a way that similarities and differences can be more easily noted. Before 
we list these equations, however, we can make one additional simplification based on the 
scale of viscous effects vs. turbulent effects on the mean fields. 

3.5.1 The Reynolds Number 

The Reynolds number, Re, is defined as 

Re == V L / v = p V L / 11 (3 .5.1) 

where "land L are velocity and length scales in the boundary layer. Given vair == 
1.5 x 10-5 m2s-1 and the typical scaling values V = 5 mls and L = 100 m in the 
surface layer, we find that Re = 3 x 107. In the atmospheric mixed layer, the Reynolds 
number is even larger. The Reynolds number can be interpreted as the ratio of inertial to 
viscous forcings. 

3.5.2 Neglect of Viscosity for Mean Motions 

In each of the conservation equations except mass conservation, there are molecular 
diffusion/viscosity terms. Observations in the atmosphere indicate that the molecular 
diffusion terms are several order of magnitudes smaller than the other terms and can be 
neglected. 

For example, after making the hydrostatic assumption, the momentum conservation 
equation for mean motions in turbulent flow (3.4.3c) can be rewritten as 

= [f � .. u.]_[.;.aPJ_[.;.aPJ_[aui' uj '] +_1 [VL a2Ui] 
at J aXj C IJ3 , J P ax p ay aXj Re ai 

, J 

(3 .5.2) 

Each of the terms in square brackets is roughly the same order of magnitude. The last 
term, however, is multiplied by (lIRe) -- a very small number (on the order of 10-7). 

Hence, the last term can be neglected compared to the rest, except in the lowest few 
centimeters above the surface. 

3.5.3 Summary of Equations for Mean Variables in Turbulent Flow 

Neglecting molecular diffusion and viscosity, and making the hydrostatic and 
Boussinesq approximations to the governing equations leaves: 
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(3.5.3a) 

(3.5.3b) 

au -au _ _ a(u.'u') 
- + U. - = ·f (V • V) • at J aXj C II Xj 

(3.5.3c) 

av -aV _ _ a(u.'v') 
- + U. - = +f (U • U) • .....:..L...:.. at J ax. C II ax. 

J J 

(3.5.3d) 

(3.5.3e) 

(3.5.30 

iiC -ac a(u.'c') 
a;-+u'a = +sc .....:..L...:.. 

J Xj aXj 

(3.5.3g) 

I II VII X 

The similarity between the last five equations reflects that the same forcings are present 
in each conservation equation: 

Term I represents storage. 
Term II represents advection. 
Term VII represent sundry body forcings. 
Term X describes the turbulent flux divergence. 

The covariances appearing in. term X reinforce the earlier assertion that statistics play an 
important role in the study of turbulent flow. 

In the two momentum equations above. the mean geostrophic wind 
components were defmed using the mean horizontal pressure gradients: 
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and 
- 1 dP 
V =+----

g f P dX 
c 

(3.5.3h) 

Sometimes the left hand side of equations c thru g are simplified using 

dO dO Uj dO 
-=-+--
dt at dXj 

(3.5 .3i) 

where the total derivative d( )/dt is inferred to include only mean advective effects, and 
not the turbulent effects. 

3.5.4 Examples 

Many applications will have to wait until more realistic PBL initial and boundary 
conditions have been covered. For now, just a few artificial sample exercises showing 
the use of equations (3.5.3) will be presented. . 

Problem 1. Suppose that the turbulent heat flux decreases linearly with height 

according to w '9' = a - b z, where a = 0.3 (K ms- 1) and b = 3x 10-4 (K s-l) . If the 

initial potential temperature profile is an arbitrary shape (i.e., pick a shape), then what will 
be the shape of fmal proflle one hour later? Neglect subsidence, radiation, latent heating, 
and assume horizontal homogeneity. 

Solution. Neglecting subsidence, radiation, and latent heating leaves (3.5.30 as 

de Ude Va9 d(u'9') d(v'9') d(w'9') 
- + -- + -- = ---- - --- - --'-,....--at dX dY dX (Jy dZ 

By assuming horizontal homogeneity, the x and y derivatives drop out, giving 

Plugging in the expression for w '9' gives de!dt = +b . This answer is not a function 

of z; hence, air at each height in the sounding warms at the same rate. Integrating over 
time from t = to to t gives 

alT = allO + b(t - to) 

The warming in one hour is b (t -to) = [3xlO-4 (KIs)H 3600 (s)] = 1.08 K. 


