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2.2 Blocking of the Wind by Terrain

Throughout Section 2.1 we considered various atmospheric phenomena that arise due to air flowing over
mountains. In this section we will investigate phenomena that result from the blocking of wind by terrain.

2.2.1 Over or Around?

Consider an air parcel approaching a mountain. Will it go over or around the mountain? What factors
determine the parcel’s path?

The air parcel’s path depends on several factors:

• the height of the parcel relative to the height of the mountain

• the slope and dimensions (height/width) of the mountain

• the static stability

• the strength of the upstream horizontal winds directed at the mountain

Some general scenarios when a parcel is most likely to go around rather than over a mountain include

• there is increased stratification

• the speed of an approaching parcel decreases

• the distance that must be climbed by a parcel increases

Perhaps the intuitive method to assess the potential for blocking is to compare the kinetic energy of an
approaching parcel to the work that must be done to overcome stratification and lift the parcel over the barrier.
This method, however, neglects pressure perturbations. We previously saw that pressure perturbations were
very important to flow over a mountain, especially when considering downslope wind events. To properly
account for the effects of pressure perturbations we will make use of a Bernoulli equation.

Consider a streamline in steady flow that passes over a barrier (Fig. 1). Far upstream (x = −∞), the stream-
line is located at some height z0. Near the barrier, the streamline is displaced upward some distance δ, such
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that its new height is z0 + δ. Here, we assume that parcel motions are dry adiabatic, meaning that θ = θ0
along a streamline.

Figure 1: A schematic illustration of streamlines (blue; coincident with isentropes for inviscid, dry adia-
batic motion), passing over a mountain, along which the Bernoulli equation applies. [From Markowski and
Richardson]

For a steady flow, the Bernoulli equation (see Chapter 2 in Markowski and Richardson) is given by

Π +
u2

2cpθ0
+

gz

cpθ0
= constant, (1)

where Π = (p/p0)
R/cp is non-dimensional pressure (the so-called Exner function) and cp is the specific heat

of air at constant pressure. Far upstream, this equation becomes

Π0 +
u20

2cpθ0
+
gz0
cpθ0

= constant, (2)

where Π0 and u0 are the respective upstream values for the non-dimensional pressure and barrier-normal
wind component where the streamline is at height z0.

We now define the non-dimensional pressure such that

Π
′

= Π(z)−Π(z),
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where Π(z) is the value at some height z and Π(z) is the far upstream value at the same level.

Using this definition, we can combine Eqs. (1) and (2) as

Π
′
+ Π +

u2

2cpθ0
+

gz

cpθ0
= Π0 +

u20
2cpθ0

+
gz0
cpθ0

. (3)

Assuming hydrostatic upstream conditions, you can show that −ρ−1∂p/∂z = −cpθ∂Π/∂z, which leads to

Π(z) = Π0 −
g

cp

∫ z

z0

θ(z)
−1
dz , (4)

where θ(z) is the upstream profile of potential temperature. Now we assume that the upstream stratification
is independent of height, such that

θ(z) = θ0 +
∂θ

∂z
(z − z0) = θ0

(
1 +

N2δ

g

)
, (5)

where δ = z − z0 and N2 = (g/θ0)∂θ/∂z is the upstream Brunt-Väisälä frequency. Here, we can assume
(1 +N2δ/g)−1 ≈ (1−N2g/δ). We plug the resulting expression into Eq. (4), which yields

Π(z) = Π0 −
gδ

cpθ0
+
N2δ2

2cpθ0
. (6)

Next, we substitute Eq. (6) into Eq. (3):

u2 = u20 − 2cpθ0Π
′ −N2δ2 . (7)

If Π
′

= 0, then
u2 = u20 −N2δ2 . (8)

For stably stratified conditions (N2 > 0), the air will slow down as it ascends the mountain (u ↓ when δ ↑).
Equation (8) shows that the flow will stagnate (u→ 0) when δ reaches a critical level, defined as

δmax =
u0
N

. (9)

In other words, air flowing along the surface is unable to pass over terrain taller than u0/N , regardless of
the terrain shape. The so-called dividing streamline is the streamline that separates flow passing around the
sides of the obstacle from flow passing over the obstacle.

Eqs. (8) and (9) form the basis for the popular forecasting criterion for blocking in terms of the mountain
Froude number, Frm = u0/(Nhm) = δmax/hm, where hm is the mountain height. Thus, at least part of the
flow will be blocked when Frm < 1 (hm > δmax).
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However, observations and simulations reveal that Frm is too simplistic to properly describe whether or not
terrain will block the flow. Reasons include:

• Eq. (8) predicts that the minimum wind speeds exist at the crest of the mountain. Observations, how-
ever, show that the minimum wind speeds often occur halfway up the windward side of the mountain.

• Observations and simulations both indicate that terrain slope and aspect ratio (crosswise divided by
streamwise) are critical factors affecting the tendency for blocking. For instance, blocking is more
likely as the slope and aspect ratio of the terrain increase.

The reason for these discrepancies is that pressure perturbations are very important (if not the dominant fac-
tor) in determining an air parcel’s acceleration as it approaches a barrier. Recall that we previously assumed
that Π

′
= 0. In order to more physically determine whether the flow will be blocked, we must construct an

expression for u that considers pressure perturbations.

If the barrier’s slope is not too steep, then dw/dt is small enough that the pressure perturbation can be
obtained by integrating the hydrostatic equation:

Π
′

= − g

cp

∫ ∞
z

θ
′

θ20
dz =

N2

cpθ0

∫ ∞
z

δdz , (10)

where θ′ = θ0 − θ(z) is the potential temperature perturbation, which is proportional to δ(x, y, z), and
Π

′
= Π

′
h is the non-dimensional hydrostatic pressure perturbation.

Clearly, Eq. (10) is problematic since the lower limit of integration changes as the height of the streamline
changes. We attempt to alleviate this issue by writing δ in terms of (x, y, z0), where z0(θ) is the upstream
height of each isentrope. Note that since z = z0 +δ, then dz = dz0 +dδ. This relationship is used to rewrite
Eq. (10) as

Π
′

=
N2

cpθ0

(∫ ∞
z0

δdz0 +

∫ 0

δ
δdδ

)
, (11)

where we have assumed that δ → 0 as z0 →∞.

We now define the integral of displacement Iδ as

Iδ =

∫ ∞
z0

δdz0 , (12)

then Eq. (11) can be written as

Π
′

=
N2

cpθ0

(
Iδ +

δ2

2

)
, (13)

and Eq. (7) becomes
u2 = u2o − 2N2Iδ . (14)
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Equation (14) is a more physically relevant diagnostic tool that relates wind speed to the vertical displacement
field. Not only is it useful for assessing low-level blocking, it can be applied to upper-level streamlines to
predict stagnation (which leads to wave breaking). The meaningful distinction between Eqs. (7) and (14) is
that the latter controls wind speed by the integral of vertical displacement above a point, while the former
only considers local displacement.

The greater the integrated upward displacements, the greater the negative buoyancy in the overlying column,
and the greater the resulting pressure perturbation. Stagnation occurs where

Iδ =
u20

2N2
. (15)

At a given height, the slowest flow occurs where there is a local maximum of Iδ. At such a maximum,

∂Iδ
∂z0

=
∂

∂z0

∫ ∞
z0

δdz0 = 0 , (16)

thus, δ = 0 where wind speed is a minimum.

In order to predict the critical mountain height for which approaching flowwill be blocked, one must estimate
Iδ. This is very difficult. Historically, this was accomplished through linear theory.

Figure 2: The non-dimensional mountain height where stagnation begins, as a function of the aspect ratio
of the mountain (crosswise dimension divided by streamwise dimension) for an air parcel moving along the
surface. [From Markowski and Richardson]
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There are a couple of immediate takeaways from this work by Smith (1990)

• The tendency for blocking increases as the aspect ratio increases for a given non-dimensional mountain
height.

• Stagnation begins at a non-dimensional height of∼ 1 for mountains with large aspect ratios. Therefore,
Frm is a reasonably good predictor for blocking for mountains with those particular geometries.

In practice, Frm is computed using upstream surface winds and the vertically-averagedN (over the depth of
the mountain) to improve its physical utility.

A second non-dimensional number used to assess blocking potential is the Burger number, given by

Bu =
Ro

Frm
=
Nhm
Lmf

, (17)

where Lm is the streamwise half-width of the mountain, f is the Coriolis parameter, and hm/Lm is the
slope of the mountain. Thus, the Burger number considers the effects of both the steepness of the terrain
and the effects of rotation. Recall that Eq. (10) assumes that the barrier is not steeply sloped and ignores the
Coriolis force. Blocking can occur when Bu > 1, even when Frm > 1. This scenario represents terrain that
is considered hydrodynamically steep. As the flow is forced up the steep terrain, a strong adverse pressure
gradient force is generated.

2.2.2 Cold-Air Damming

In the eastern United States, northerly surges of cold air down the east side of the Appalachian Mountains
are commonly observed in winter on the south side of a surface anticyclone, where winds having an easterly
geostrophic wind component are directed from offshore toward the mountains, and are blocked and deflected
southward by the mountains. This type of orographically trapped cold-air surge is locally referred to as
cold-air damming. Cold-air damming occurs in virtually every significant East Coast freezing and frozen
precipitation event. The phenomena has also been observed over the Front Range of the Rocky Mountains.

In most cold-air damming cases, the lower atmosphere satisfies

hm >
u

N
→ Frm < 1 , (18)

where u is the barrier-normal wind component andN is the vertically (over the depth of the barrier) averaged
Brunt-Väisälä frequency. If the flow is blocked over a significant depth, Frm is significantly less than one.

The obvious takeaway from Eq. (18) is that these trapped surges are favored in strongly stable environments.
Upwind clouds, especially those that precipitate into a dry boundary layer, further act to enhance the potential
for damming.
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Consider a low-level flow approaching a north-south mountain barrier from the east (see Fig. 3 for a concep-
tual model). Winds are deflected southward, resulting in a large southward ageostrophic wind component
east of the barrier. A ridge of high pressure builds southward as a hydrostatic consequence of the trapped
cold air. The width of this pressure ridge is approximated by the Rossby radius of deformation,

LR =
Nh

f
, (19)

where f is the Coriolis parameter, h is the scale height of the flow that is perturbed by the terrain, and N is
some representative value over h. When Frm < 1, an appropriate scale height is h = hI = u/N , where hI
is known as the inertial height scale. In this case, the previous equation becomes

LR =
u

f
= LRmFrm , (20)

where LRm = Nhm/f is the so-called mountain Rossby radius.

In the case of a layer of warm air subsiding over the cold air, separated by a strong inversion, the system
approaches a two-layer system. In this case,

LR =

√
g′H

f
, (21)

where g′
= g∆θ/θ is reduced gravity, H is the depth of the cold layer, θ is the mean potential temperature

of the cold layer, and ∆θ is the potential temperature gradient across the inversion.

Figure 3: Conceptual model of a mature cold-air damming event. LLWM stands for low-level wind maxi-
mum. (Adapted after Bell and Bosart 1988)
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In terms of deflection, again consider an air parcel approaching a north-south mountain barrier from the east
(Fig. 4). An example of this setup is an episode of cold-air damming east of the Appalachian Mountains
when an anticyclone is positioned to the north of the parcel.

• Far upstream the parcel experiences no net acceleration owing to a balance among the pressure gradi-
ent, Coriolis, and friction forces

• The parcel decelerates once it begins ascending

• This deceleration is associated with a weakening of the northward-directed Coriolis force, resulting in
a southward deflection by the large-scale pressure gradient force

• Once air has been diverted southward, the Coriolis force keeps the cold air trapped against the moun-
tains (Fig. 5)

• Farther upstream within the cold-air mass (where northerly winds are approximately steady and blow-
ing roughly along the elevation contours) the pressure gradient force is directed downslope and is in
approximate balance with the upslope-pointing Coriolis force and friction forces.

• If the atmosphere is stably stratified, the parcel decelerates as it nears and ascends the mountain range.

• If the pressure gradient force is the same near the mountain range as it is a large distance from the
mountains, then the upstream balance among the pressure gradient, Coriolis, and friction forces cannot
be maintained as higher terrain is encountered.

• The parcel experiences a net acceleration in the direction of the pressure gradient force.

• In many cold-air surge cases, the deflection of air by the terrain produces a barrier jet on the upslope
side of the barrier.

• Barrier jets can attain wind speeds of 15-30 ms−1 and are usually centered at an altitude roughly half
the height of the mountain crest.

Figure 4: Force diagrams for an air parcel approaching a northern hemisphere mountain range in a situation
with Frm < 1. [From Markowski and Richardson]
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The approximate scale of the velocity increase in the direction parallel to the coast or mountain range is

∆v ≈
N2h2I
fLRm

=
u2

fLRm
, (22)

where v is the barrier-parallel wind component. The strongest barrier jets are therefore observed when there
is a strong mountain-normal wind (u) and small mountain Rossby radius LRm, and thus small N and hm,
but not so small (nor u so large) that Frm > 1.

Figure 5: Schematic illustration of the damming of cold air against a mountain range in the northern hemi-
sphere. [From Markowski and Richardson]

2.2.3 Lee Vortices

Counter-rotating vortices are commonly observed in the lee of an isolated terrain obstacle when the flow
is strongly stratified and forced to pass around the obstacle. On some occasions a single pair of oppositely
signed vertical vorticity extrema is observed in the wake of the obstacle (Fig. 6). When the wake flow in
which the lee vortices are embedded becomes unstable, the vortices tend to shed downstream and form a von
Kármán vortex street (Fig. 7). A von Kármán vortex street is a repeating pattern of alternate and swirling
vortices along the center line of the wake flow, and is named after the fluid dynamicist, Theodore vonKármán.
This process is also known as vortex shedding.

Youmight assume that all wake vortices form as a result of the separation of a viscous boundary layer from an
obstacle. However, numerical simulations with no surface drag also contain wake vortices, despite frictional
stress being entirely absent at the lower boundary. These simulated vortices actually decrease in intensity
when surface friction is added. This variety of wake vortices, at least in numerical simulations, is confined
to a range of Frm between 0.1 and 0.5, which is fairly typical of cases in which wake vortices are observed
in the real atmosphere. In the case of wake vortices that form as a result of a purely inviscid mechanism,
baroclinic vorticity generation is key (read pages 351-355 in Markowski and Richardson for further details).
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For Frm outside of the range of 0.1-0.5, wake vortices are not observed to form as a result of purely inviscid
processes, at least not in numerical simulations. When wake vortices are observed outside of this range of
Frm, it is likely that the separation of the viscous boundary layer from the obstacle has played the dominant
role in their formation.

Figure 6: Example of a pair of counter-rotating vortices in the wake of an isolated mountain peak in a
numerical simulation. [From Markowski and Richardson]

Figure 7: A von Kármán vortex street that formed to the lee of the Guadalupe Island, off the coast of Mexico’s
Baja Peninsula, revealed by MISR images from June 11, 2000 detected by NASA satellite Terra. (credit:
Visible Earth, NASA)
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2.2.4 Gap Flows

When a low-level wind passes through a gap in a mountain barrier or a channel between twomountain ranges,
it can significantly strengthen due to the acceleration associated with the along-gap pressure gradient force.
The significant pressure gradient is often established by (a) the geostrophically balanced pressure gradient
associated with the synoptic-scale flow and/or (b) the low-level temperature differences in the air masses on
each side of the mountains.

Gap flows occurring in the atmosphere are also known as mountain-gap winds, jet-effect winds, or canyon
winds. Gap flows perhapsmost often occur in conjunctionwith cold-air surges, when significant cross-barrier
temperature differences and cross-barrier winds may both be present.

Gap flows are found in many different places in the world. Examples include the Columbia River Gorge and
the Strait of Juan de Fuca in the northwestern United States (Fig. 8), the Rhine Valley of the Alps, the Sierra
Nevada in Independence, California, and the lee side of the Rockies in Boulder, Colorado.

Figure 8: Surface analysis from 1700 UTC 9 Dec 1995 during a gap flow event in the Strait of Juan de Fuca.
The contour interval for sea level pressure is 2mb. [From Markowski and Richardson]

Based on Frm, three gap-flow regimes can be identified (see Fig. 9):

• linear regime (large Frm): insignificant enhancement of the gap flow;

• mountain wave regime (mid-range Frm): large increases in the mass flux and wind speed within the
exit region due to downward transport of mountain wave momentum above the lee slopes, and where
the highest wind occurs near the exit region of the gap

• upstream-blocking regime (small Frm): the largest increase in the along-gap mass flux occurs in the
entrance region due to lateral convergence
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Figure 9: Idealized numerical simulation of westerly winds encountering a ridge with a gap when the Frm

is equal to (a) 4.0, (b) 0.7, (c) 0.4, and (d) 0.2. Horizontal streamlines and normalized perturbation velocity
((u-U)/U, where u is the zonal wind speed and U is the zonal wind speed far upstream; shaded contours) at z
= 300 m are shown. The contour interval is 0.5; warm (cold) color shading corresponds to positive (negative)
values. Terrain contours are every 300 m. Notice how (a) and (b)-(d) represent flow-over and flow-around
regimes, respectively, as would be expected from the differences in Frm.[From Markowski and Richardson]

Gap flows are also influenced by frictional effects, which imply that:

• the flow is much slower

• the flow accelerates through the gap and upper part of the mountain slope

• the gap jet extends far downstream

• the slope flow separates, but not the gap flow

• the highest winds occur along the gap
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