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2.1.4 Flows over two-dimensional sinusoidal mountains (continued)

In the last class, we coveredmountain-forced flows, reviewed general properties of internal gravity waves, and
began considering the specific example of two-dimensional, steady-state, adiabatic, inviscid, non-rotating,
Boussinesq fluid flow over two-dimensional sinusoidal mountains.

As part of our analysis, we derived Scorer’s equation

∇2w
′
+ l2(z)w

′
= 0 , (24)

where l is the Scorer parameter, which is defined by:

l(z) =

√
N2

u2
− 1

u

∂2u

∂z2
. (25)

In the example of sinusoidal terrain, we also assumed that both the mean flow u(z) and stability N(z) are
both constant with height. In this scenario, l2 reduces to N2/u2. Also due to the sinusoidal terrain, we
assumed that solutions to Eq (24) are of the form:

w
′
= ŵ(z) exp(i[kx+mz]) , (28)

where k = 2π/Lx is the wavenumber of the terrain, Lx is the separation distance between ridges, m =√
(l2 − k2) =

√
(N2/u2 − k2), and ŵ(z) is the wave amplitude described by the modified Taylor-Goldstein

equation, defined as

∂2ŵ

∂z2
+m2ŵ = 0 . (31)

Finally, we combined the solution to Eq. (31) with Eq. (28), and arrived at the following solution to w′ :

w
′
= A exp (i[kx+mz]) +B exp (i[kx−mz]) , (38)

whereA andB are constant complex amplitudes. Now we will examine the two possible cases from Eq.(38):
whenm is real and whenm is imaginary.
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m is real
Recall thatm is defined by

√
(l2 − k2). Whenm is real, then

l > k → N

u
> k → N

u
>

2π

Lx
→ NLx > 2πu → (Lx/u)

(2π/N)
> 1.

The numerator (Lx/u) , represents the advection time of an air parcel passing over one wavelength of the
terrain, while the denominator (2π/N ) represents the period of buoyancy oscillation due to stratification.
This means that the time an air parcel takes to pass over the terrain is more than it takes for vertical oscillation
due to buoyancy force. In other words, buoyancy force plays a larger role than the horizontal advection.

Since m is real, we expect solutions to follow Eq. (38), where A and B must be determined. Recall that
the top boundary condition for this problem states that waves must transport energy away from their energy
source (avoid reflection). It can be shown that solution waves of the form exp (i[kx+mz]) have an energy
flux that is directed upward, while those of the form exp (i[kx−mz]) have a downward energy flux. In order
to satisfy our upper boundary condition, this implies B = 0, leaving a solution of the form

w
′
= A exp (i[kx+mz]) = A1 cos(kx+mz) +A2 sin(kx+mz) . (39)

To solve for A1 and A2, we invoke the lower boundary condition. Recall that from last class, the terrain
behaves according to

h(x) = hm sin kx , (29)

where hm is mountain height. Then, because the flow at the lower boundary must be parallel to the boundary,
the vertical velocity perturbation at the boundary is given by the rate at which the boundary height changes
following the motion:

w
′
(x, 0) =

Dh

Dt z=0
≈ u∂h

∂x
= ukhm cos(kx) (30)

.

Now we compare Eq. (30) and Eq. (39) at z = 0

w
′
(x, 0) = ukhm cos(kx) = A1 cos(kx) +A2 sin(kx) . (40)

This implies A1 = ukhm and A2 = 0. Thus, the solution is

w
′
= ukhm cos(kx+mz) . (41)

This describes a wave that propagates vertically without loss of amplitude.
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m is imaginary
Whenm is imaginary, then

l < k → N

u
< k → N

u
>

2π

Lx
→ NLx < 2πu → (Lx/u)

(2π/N)
< 1.

This means that the time an air parcel takes to pass over the terrain is less than it takes for vertical oscillation
due to buoyancy force. In other words, buoyancy force plays a smaller role than the horizontal advection.

Sincem is imaginary, we setm = iµ, where µ = |m| is a real number. If we substitute this expression into
Eq. (38), we arrive at our expected solution for the case wherem is imaginary:

w
′
= A exp (ikx) exp (−µz) +B exp (ikx) exp (µz) . (42)

We first apply our upper boundary condition to help determine the coefficients. In this case, the B term
represents a wave whose amplitude grows exponentially unbounded with height. This is unphysical since the
energy source is the mountain surface. This implies that B = 0, leaving a solution of the form

w
′
= A exp (ikx) exp (−µz) = A1 exp (−µz) cos(kx) +A2 exp (−µz) sin(kx) . (43)

Now we compare Eq. (30) and Eq. (43) at z = 0

w
′
(x, 0) = ukhm cos(kx) = A1 cos(kx) +A2 sin(kx) . (44)

This again implies that A1 = ukhm and A2 = 0. Thus, the solution is

w
′
= ukhm exp (−µz) cos(kx) . (45)

This describes a wave that decays exponentially with height.

Physical reasoning for the differences between the two cases

When m is real, it implies that l > k, or N > uk. Here, uk is known as the intrinsic frequency, which is
the frequency that a wave would have if observed in a reference frame moving with the mean wind. If we
rearrange our previous definition ofm to solve for u, we get

u = ±
√

N2

m2 + k2
.
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Using this expression, the inequality becomes

N > ± Nk√
m2 + k2

.

Whenm is real, the total wave number may be regarded as a vector, directed perpendicular to lines of constant
phase, and in the direction of phase increase. In this case, the wavenumber vector is tilted at an angleφ relative
to vertical, with a horizontal component of k and a vertical component ofm. Thus, it is trivial to show that
k/
√
m2 + k2 = cos(φ). Accordingly, the inequality becomes

N > N cosφ.

With buoyancy as the restoring force, the atmosphere can support oscillations with frequencies less than
or equal to N for angles with respect to the vertical varying between 90 deg (purely horizontal) and 0 deg

(purely vertical). To relate this to the mountain wave problem, we must realize that the flow over the terrain
is driving an oscillation at a frequency with a magnitude equal to uk. As long as this frequency is less than
N we can find a slanted path along which the oscillation can be supported. Once the frequency exceeds N ,
there is no real angle φ that satisfies the inequality. Thus, no such slanted path is possible and the waves
simply decay with height, which is the case wherem is imaginary.

Figure 1: Streamlines in steady flow over an infinite series of sinusoidal ridges (a) for the case where l > k

and (b) for the case where l < k. The dashed line in (a) shows the phase of maximum upward displacement,
which tilts westward with height. [From Markowski and Richardson]
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Wave types partitioned by Scorer parameter
We have found that when l > k, waves forced by sinusoidal terrain are tilted and vertically propagating,
while l < k results in evanescent waves. Now we consider the limits in both directions. As covered in the
last class, when l� k, advection dominates buoyancy and Eq. (24) reduces to

∇2w
′
= 0 , (26)

which represents irrotational or potential flow.

Conversely, when l� k, buoyancy dominates advection and the governing equation becomes

∇2w
′
+ l2w

′
= 0 . (46)

In other words, the vertical pressure gradient force and the buoyancy force are roughly in balance and the
vertical acceleration can be ignored. Thus, the mountain waves become hydrostatic. Here, the flow pattern
repeats itself in the vertical with a wavelength of Lz = 2π/l = 2πu/N , which is also referred to as the
hydrostatic vertical wavelength.

The boundary between the regimes of vertically propagating waves and evanescent waves can be found by
letting l = k , which leads to L = 2πu/N .

Figure 2: Relations among different mountain waves as determined by l/k, where l is the Scorer parameter
and k is the wave number.. [From Lin (2010)]
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2.1.5 Flows over two-dimensional isolated mountains

Earlier, we obtained mountain wave solution forced by a sinusoidal orography. However, an endless series
of ridges is not a common form of topography. More often, the topography consists of an isolated mountain
or a single mountain chain, approximated as a single two-dimensional ridge. In this section, we extend the
results of the previous section to such an isolated ridge. To do this, we perform a Fourier transform on the
real orography, therefore any orography can be considered summation of many sinusoidal modes or wave
components.

When the orography is low, the wave solutions are nearly linear, therefore the total solution is sum of all
forced waves.

Let ŵ be the amplitude of the wave component with wavenumber k, Eq. (31) we obtained earlier is expanded

∂2ŵ

∂z2
+ (l2 − k2)ŵ = 0 . (47)

The Fourier transform of the linear lower boundary condition is

ŵ(k, z = 0) = ikuĥ(k) , (48)

where ĥ(k) is the amplitude of Fourier component of orography with wavenumber k. For constant Scorer
parameter, the solution we obtained earlier for the wave amplitude can be written into two parts,

ŵ(k, z = 0) =

{
ŵ(k, 0) exp(i

√
l2 − k2z) if l2 > k2, and (49a)

ŵ(k, 0) exp(−
√
k2 − l2z) if l2 < k2. (49b)

Taking the inverse one-sided Fourier transform of Eq. (49) yields the solution in the physical space,

w
′
(x, z) =2<

[∫ l

0
ikuĥ(k) exp(i

√
l2 − k2z) exp(ikx)dk

+

∫ ∞
l

ikuĥ(k) exp(−
√
k2 − l2z) exp(ikx)dk

]
, (50)

which is basically the summation of all wave components. The first integration represents the upward prop-
agating wave, while the second integration represents the evanescent waves.

For simplicity, let us consider a bell-shaped mountain mountain profile. One commonly assumed profile is
the ‘Witch of Agnesi’ profile, given by

h(x) =
hma

2

x2 + a2
, (51)
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where hm is the mountain height and a is the half-width. The mountain peak is at x = 0. This profile has the
desirable properties of asymptotically approaching zero as x→∞ and having a width that is easily tuned by
varying a, the shape parameter. The horizontal wavelengths associated with the terrain will be determined
by the value of a, with longer wavelengths (i.e., wider mountains) for larger values of a. Thus, for the same
environmental conditions, we can anticipate that the larger (smaller) we make a, the more (less) likely the
solution will contain wavenumbers that satisfy N > uk, such that waves propagate vertically.

The one-sided Fourier transform of this mountain profile is in a simple form

ĥ(k) =
hma

2
exp (−ka) , for k > 0. (52)

This amplitude equation is plugged into Eq. (50) to solve for w′ . For this bell shaped mountain, the charac-
teristic wavenumber of forcing is k = 1/a. We now consider three possible cases.

l2 � k2

Again, we assumed that u andN are constant with height. In this case, the second integral on the right hand
side of Eq. (50) can be neglected, and the final solutions are

w′(x, z) ≈ 2<
[
u

∫ ∞
0

ik

(
hma

2

)
exp (−ka)exp (−kz)exp (ikx)dk

]
(53)

Therefore, similar to the sinusoidal mountain case, the flow pattern is symmetric with respect to the center of
the mountain ridge (x = 0). However, the amplitude decreases with height linearly, instead of exponentially.
The flow pattern is depicted in Fig. 3.

l2 � k2

In this case, the first integral on the right hand side of Eq. (50) can be neglected, and the final solutions are

w′(x, z) ≈ 2<
[
u

∫ ∞
0

ikĥ(k)exp (ilz)exp (ikx)dk

]
(54)

= 2Re

[
u

∫ ∞
0

ik

(
hma

2

)
exp (−ka)exp (ilz)exp (ikx)dk

]
. (55)

This type of flow is characterized as a hydrostatic mountain wave. The disturbance confines itself over the
mountain in horizontal, but repeats itself in vertical with a wavelength of 2πu/N .
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l2 ≈ k2

In this case, all terms in Eq. (50) are equally important. Both asymptotic methods and numerical methods
can be used to solve the problem. The solution is shown in Fig. 4

Figure 3: Streamlines in steady airflow over an isolated ridge when (a) ua− 1 � N and (b) ua− 1 � N .
[From Markowski and Richardson]

Figure 4: Flow over a two-dimensional ridge of intermediate width ( l2 ≈ k2 ) where the buoyancy force
is important, but not so dominant that the flow is hydrostatic. The zero phase lines are denoted by dotted
curves. The waves on the lee aloft are the dispersive tail of the nonhydrostatic waves (k < l but not k << l ).
The flow and orographic parameters are: U = 10ms−1,N = 0.01s−1, hm = 1km, and a = 1km. (Adapted
after Queney 1948)
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Figure 5: A schematic illustrating the relationship among the group velocity with respect to (w.r.t) to the
air (cga), group velocity w.r.t. to the mountain (cgm ), horizontal phase speed (cpxi ) and the basic wind.
The horizontal phase speed of the wave is exactly equal and opposite to the basic wind speed. The wave
energy propagates upward and upstream relative to the air, but is advected downstream by the basic wind.
The energy associated with the mountain waves propagates upward and downstream relative to the mountain.
(Adapted after Smith 1979)
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