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500 11 Precipitating Clouds in Extratropical Cyclones

trajectory over the water. One result is ‘the formation of an arctic front at the
leading edge of the air that originated recently over the ice. :
In this situation, there are several factors that can affect the dynamlcal evolu-

tion of the polar low. In particular: (i) A feature like the arctic front is always
susceptible to cyclogenetic stimulation by the passage of an upper-level trough (as -

in Fig. 11.5). (ii) As we saw in Chapter 10, the tropical cyclone draws its energy
almost wholly from the ocean surface as boundary-layer mixing is stimulated by
strong winds over the warmer water. In the polar low, there is also a considerable
disequilibrium at the sea surface, in this case because of the large temperature

contrast between air and ocean. Thus, hurricane-like dynamics are feasible. (i) -
The polar low forms in an environment where the vertical thermal stratification -
exhibits considerable buoyant instability (Sec. 2.9.1). As a result, some of the

energy of the storm may be drawn from convective available potential energy
(CAPE, Sec. 8.4) stored in the vertical temperature gradient. Any or ali of these
energy sources may be tapped in a given case of polar-low development. Given

the rnult1phc:1ty of viable energy sources, it is understandable that a variety of -
observed polar-low structures exist. The cases exhibiting hurricane-like cloud -
structure may be those that depend to a significant extent on (ii). However, th1s. _

topic remains one of active research.

Chapter 12 Orographic Clouds

**...towering up the darkening mountain’s side. .
It mantles round the mid-way height, . .”*»0

In previous chapters, we have seen a variety of dynamical features that govern the
air motions in clouds. These include turbulence and entrainment in layer clouds,
buoyancy, pressure perturbation, entrainment, and vorticity in cumulus and cu-
mulonimbus, mesoscale circulations in complexes of thunderstorms, and second-
ary circulations associated with the winds and thermal patterns of hurricanes,
baroclinic waves, and fronts. There remains one important source of air motions
in clouds that we have not yet discussed: the flow of air over hills and mountains.
In this chapter, we consider this subject by examining the dynamics of cloud-
producing air motions induced by wind blowing over terrain.

It is evident that when a fluid on the earth is flowing over an uneven, solid lower
boundary, the vertical velocity of the fluid at the interface will be upward or
downward, depending on the horizontal direction of the fluid flow relative to the
slope of the bottom topography. Since the fluid is a continuous medium, the
vertical motion at the bottom will be felt through some depth extending above the
lower boundary. Clouds can form if the air forced over the terrain is sufficiently
moist. Moreover, since restoring forces exist in the fluid, the vertical motion
produced there by the lower boundary can excite waves. Thus, the vertical mo-
tion produced in a fluid by flow over terrain can include alternating regions of
upward and downward motion, which may extend above, downstream, or up-
stream of the hill. Clouds can form in the upward-motion areas of the waves.
Nonprecipitating clouds that form in moist layers in direct response to the wave
motions induced by flow over topography are referred to as wave clouds. These
clouds often take the form of lenticular clouds (Figs. 1.18—1.22) and rotor clouds
(Figs. 1.23 and 1.24), which are visually spectacular tracers of the atmospheric
wave motions in mountainous regions. Precipitating clouds can also be formed or
modified by the flow over orography. Stable nimbostratus clouds can be formed or
enhanced by upslope motions and dried out by downslope motions, while the
formation of cumulonimbus clouds may be triggered in several ways by flow over
terrain.

In this chapter, we will first consider clouds that form where air in the boundary
layer is forced to flow upslope (Sec. 12.1). Then we will consider the more com-

30 Goethe's reference to a cloud enveloping the top of a mountain,
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502 12 Orographic Clouds

plex subject of clouds that form in association with waves excited by flow over
varying topography. In Sec. 12.2, we will examine waves and clouds that form in

response to flow over two-dimensional mountain ridges. In Sec. 12:3, we will .
extend the discussion to three dimensions by considering cloud formation pro-
duced by flow over isolated mountain peaks. Finally, in Sec. 12.4, we will exam'—” _

ine the effect of flow over topography on precipitating clouds.

12.1 Shallow Clouds in Upslope Flow

A simple boundary condition applies in all of our considerations of flow over
topography. Since the earth’s surface is fixed, the component of air motion normal
to the surface must vanish at the ground. The vertical wind component at the
surface w, is then B

w, = (vy), VA (12.1)

o

where (vg), is the horizontal wind at the surface and / is the height of the terrain.
It follows that wherever a shallow layer of air is flowing horizontally toward rising
terrain, cloud will form near the surface. Air can be directed up a slope for a host
of reasons, ranging from purely local effects over a small hill to widespread
synoptic-scale flow over gently sloping terrain (such as when low-level easterly
flow prevails over the central United States and low clouds cover the entire Great
Plains, which slope gradually upward toward the Rocky Mountains), The clouds
that form in upslope flow are often in the form of fog or stratus confined to low
levels (Fig. 12.1). However, they may be deep enough to produce drizzle or other
light precipitation.

12.2 Wave Clouds Produced by Long Ridges®?!

In certain wind and thermodynamic stratifications, the boundary condition (12.1)
is felt through a deep layer. As the surface air is forced to move up and down over
the topography, restoring forces in the atmosphere come into play and a variety of
wave motions can occur. Associated with the waves are substantial vertical mo-
tions, which can lead to clouds if the lavers of air affected are sufficiently moist,
To gain an appreciation of the dynamics of these clouds, we will examine the
physics of the various waves excited by wind blowing over irregular terrain, To

simplify matters, we restrict the discussion of this section to air flowing over

uniform, infinitely long ridges. This case is physically distinct from the flow over
three-dimensional hills or mountain peaks. In the case of a ridge, air has no
opportunity to flow around the barrier; it must either flow over the ridge or be
blocked. In contrast, for an isolated peak in the terrain, air may flow around the

31 Much of the material in this section is based on review articles by Durran (§986b, 1990) and on
Chapter 9 of Holton (1992).

Figure 12.1 Upslope fog. Cas-
cade Mountains, Washington. (Photo
by Steven Businger.)

HEIGHT ——=

Humidity

Figure 12.2 Layered structure of wave clouds. (a) Streamlines show airflow. On the left is an
imagined profile of relative humidity, each layer with its own condensation level. The corresponding
wave-clo_ud shapes downwind are outlined and shaded. Arched base occurs if the layer of air lifted is
dry enough. (b) Photograph of a lenticular cloud downwind of Mt. Rainier, Washington. (Diagram
adapted from Scorer, 1972; photo by Arthur L. Rangno.)
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obstacle, and thus more possibilities for flow patterns arise. The three-dimen-
sional case will be considered in Sec. 12.3, where we will treat it as an extension of
the two-dimensional case.

To simplify the mathematics in both this section and Sec. 12.3, we will consider
the air to be unsaturated. The thermodynamic eguation thus reduces to the con-
servation of potential temperature (2.11). Since our primary objective here is to

describe the dynamics of clouds, it may appear contradictory to ignore the effects

of condensation; however, mathematical strategies exist for taking the condensa-
tion into account quantitatively. For example, one can switch to conservation of
equivalent potential temperature (2.18) once condensation begins. For our pur-
poses, however, the resulting modifications of the mathematics are unnecessarily
complex, since it turns out that the air motions in mountain waves are not qualita-
tively altered by the eccurrence of condensation in the flow. The patterns of ¢loud
formation in the flow over topography can be readily inferred from the vertical air
motion calculated ignoring condensation. Wherever a layer of air is subjected to
upward motion as a result of the topographically induced wave motions ‘and is
sufficiently moist, a cloud will form. This process is illustrated in Fig. 12.2, which

indicates how wave perturbations of the flow in the x—z plane can lead to lenticular

cloud forms in layers of elevated relative humidity. Note how discontinuities in
the humidity layering can lead to an arched cloud base and to stacks of lenticular
clouds. ‘

12.2.1 Flow over Sinusoidal Terrain

We first examine the dry-adiabatic flow over a series of sinusoidally shaped two-
dimensional ridges of infinite length parallel to the y-axis. Although this is a rather
idealized case, it is nonetheless useful. It illustrates the essential physics of the
problem, and it is easily extended to the case of a ridge of arbitrary shape, since
the latter can be considered a superposition of sinusoidal profiles of different
wavelengths.

We have seen in previous chapters that vertical motions in clouds are often
revealed through a consideration of the generation and redistribution of horizontal
vorticity. This approach is again useful in considering air motions generated by
flow over terrain. For two-dimensional Boussinesq flow in the x—z plane, vorticity
about the y-axis (¢) is generated by horizontal gradients of buoyancy, according to
(2.61). As the paths of fluid parcels are tipped upward and downward by the

surface topography, horizontal gradients of vertical velocity are created in the '

fluid. According to (2.11), the alternating regions of upward and downward mo-
tion, in turn, introduce alternating regions of adiabatic cooling and warming. The
alternating cool and warm regions thus generated constitute horizontal gradients
of buoyancy, which then generate horizontal vorticity £ according to (2.61). I the
flow over the terrain adjusts to steady state, (2.61) reduces to

ué, +wé, = -B, (12.2)
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The variables in this equation may be written, as discussed in Sec. 2.6, in terms of
perturbations (indicated by a prime) from a mean state (indicated by an overbar).
If the perturbations of the flow are of small amplitude, they are described by
linearizing (as discussed in Sec. 2.6.2) about a state of mean motion [é(z),w = 0],
where i(z) is the mean-state flow in the x-direction (i.¢., normal to the ridges in the
topography). First linearizing the right-hand side of (12.2) we obtain '

-
ug, +we, = =B, (12.3)

where we have substituted for B; from the steady-state version of (2.106). From
(12.3), it is evident that the steady-state velocity field must be arranged so that the
advection of vorticity just balances the buoyancy generation constituted by the
adiabatic cooling and warming associated with the perturbations of vertical mo-
tion. Since the fluid is moving horizontally as well as vertically, the temperature
perturbations produced by vertical motion w are spread over a horizontal distance
by the horizontal velocity component i, thus determining a horizontal gradient of
B, the effect of which must be balanced by the advection.

When the advection terms on the left-hand side of (12.3) are linearized, after
making use of the definition £ = u, — w, and invoking the mass continuity equation
{2.35), we obtain

w, +w, +8w=0 (12.4)

whelje €% is the Scorer parameter, defined as
5 ~ ,
p=s e (12.5)
H i

Equation (12.4) is simply the steady-state form of (2.107), whaose solutions are
internal gravity waves. The patterns of vorticity generated by the flow over topog-
raphy thus take the form of gravity waves. The general solution of (12.4) when ¢2
is a constant is

W= Re[ﬁzl ) s e"“‘x"’”}} (12.6)

where w; and W, are constants and
m? =2 —k? 12.7)

Thus, the vertical structure of the waves depends on the relative magnitude of the
Scorer parameter and the horizontal wave number. i & > €, then the solution
(12.6) decays or amplifies exponentially with height. If £ < £, then the wave varies
sinusoidally in z with wave number .

The values of the basic-state wind profile ii(z) and static stability B, are consid-
ered to be those measured upstream of the mountain ridge. If these values are
given, then so is €2 [according to (12.5)]. The field of w is obtained by solving
(12.4) under the constraint of appropriate boundary conditions at the earth’s sur-
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face and as z — . The horizontal velocity field follows readily from w{x,z) by
mass continuity since the two-dimensional form of the Boussinesq continuity
equation (2.55) is simply

U +w, =0 (12.8)

and the upstream horizontal velocity @(z) is given.

The lower-boundary condition imposed in solving (12.4) is simply the hnearlzed
form of (12.1). If the sinusoidal surface topography is represented mathematically
by ’

h = h,coskx (129)
where h, is a constant and & is an arbitrary wave number, then (12.1) implies that
w, = —it_hk sin kx (12,10

0

This lower-boundary condition is called free slip. The appropriate upper-bound-
ary condition depends on whether the wave solution varies exponentially with
height (k > £} or sinusoidally (k < €}, In ¢ither case, the fundamental factor is that
the mountains at the lower boundary are the energy source for the disturbance. If
k > £, solutions that amplify exponentially as z increases are regarded as physi-
cally unreasonable and set to zero. If £ < €, any waves that transport energy
downward are set to zero, while those that transport energy upward are retained;
this assumption is called the radiation boundary condition. It can be shown that
the waves retained by the radiation boundary condition are those whose phase
lines tilt upstream as z increases.’?
Application of these lower- and upper-boundary conditions*?? leads to

~ith ke sinkx, k> (12.11)

Wi z) = {—Ehak sin(ke +mz), k<4

where (2 = —m?, and f is thus a positive number, emphasizing that in the case of
k > ¢ the waves decay exponentially with height. These waves are referred to as
evanescent (i.e., fading away). In the case of £ < £ (i.¢., for wider mountains), the
waves propagate vertically without loss of amplitude. These two types of wave
structure are illustrated in Fig. 12.3 for a case of constant 7 and B,. It is clear from
these examp]es how the flow stays in phase with the mountains but dies out with
height in the narrow-ridge case (k > €, Fig. 12.3a), while in the wide-ridge case
(k< £, Fig. 12.3b), the waves retain their amplitude with height but have ridge and
trough lines sloping upstream.

12.2.2 Flow over a Ridge of Arbitrary Shape

Although the infinite series of sinusoidal ridges considered in the previous subsec-

tion are useful to illustrate the two basic types of wave structure that can arise

322 See Durran (1986b).
3 Ibid.
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Figure 12.3 Streamlines in the steady airflow over an infinite series of sinusoidal ridges when (a)
the wave number of the topography exceeds the Scorer parameter (narrow ridges) or (b) the wave
number of the topography is less than the Scorer parameter (wide ridges). Shading indicates bottom
gopography (From Durran, 1986b. Reprinted with permission from the American Meteorological

ociety.)

HEIGHT —=

from airflow across the terrain, they are very special in that they excite only &, the
horizontal wave number of the terrain itself. When the topography has any other
shape, a spectrum of waves is activated. To see this, consider a single mountain
rldge of arbitrary shape A(x). This shape can be represented by a Fourier series

)= Re[ne™*] (12.12)
s=1

That is, the terrain profile is the superposition of sinusoidal profiles like (12.9).
The solution of (12.4) for each such profile (of wave number %,) is of the form
(12.6). The solution for the arbitrary profile A(x) is the sum of all of these solutions
for individual wave numbers. After application of the free slip and radiation
boundary conditions, the total solution takes the form

W= Re[z’ 7, kshsei(ksﬁmsz)} (12.13)
5=l

The individual Fourier modes contributing to this expression each behave as the
total solution for periodic sinusoidal topography. The individual modes will thus
be vertically propagating or vertically decaying, depending on whether m; is real
or imaginary (i.e., on whether k, > ¢ or &, << £). If the ridge is narrow, wave
numbers k; > ¢ dominate the solution and the resulting disturbance is primarily
evanescent. If the ridge is wide, wave numbers &, < € dominate, and the distur-
bance propagates verticaily.
A bell-shaped ridge of the form
h af{

h ERSNRECRNE T S
(x) = pra (12.14)
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illustrates the behavior of the solutions summed in (12.13). Since % = A, at x = 0

and fi = h,/2 at x = *ay, ay' is a scale characteristic of the dominant wave

numbers forced by the mountain. The solution for a narrow mountain {a5' >> £) is
illustrated in Fig, 12.4a, The disturbance, dominated by exponentially decaying

solutions, is symmetric with respect to the crest of the ridge and decays strongly -

with height. An example of a wide-mountain solution (ag' << £) is shown in Fig.
12.4¢. If it is assumed that this case is equivalent to taking k& << ¢, then the
solution is hydrostatic and the dominant térms in (12.13} are of the form

TR Y WA - (12.15)

(£

Thus, the dependence of vertical wavelength on horizontal wavelength disap-

pears, and the mountain profile is reproduced at every altitude that is an integral
multiple of 27/€. It can be shown that the horizental component of the group
velocity (Sec. 2.7.2) of a stationary two-dimensional hydrostatic wave is zero.
Hence, the energy propagation (which is in the direction of the group velocity) is
purely vertical. Thus, for the mountain ridge that is wide enough to excite hydro-
static waves (but not large enough for Coriolis force to be important), the distur-
bance occurs directly over the ridge, and at any given height there is only one
wave crest in the flow, B

The intermediate case in which ag' = £ is illustrated in Fig. 12.4b. In this case, .

the solution (12.13) is dominated by vertically propagating nonhydrostatic waves
(k < € but not << £). The phase lines of these waves still slope upstream, and
energy is transported upward. However, unlike hydrostatic waves, the nonhy-
drostatic waves also have a horizontal component of group velocity {and hence
energy propagation) in the downstream direction. As a result, additional wave.
crests appear aloft downstream of the mountain ridge.

12.2.3 Clouds Associated with Vertically
Propagating Waves

We can now see how certain types of wave clouds are produced. If a stratum

within the air flowing over the ridge undergoes strong upward displacement as
part of a vertically propagating wave (either hydrostatic or nonhydrostatic),

clouds will appear. For illustration, possible locations of clouds associated with
vertically propagating waves are shaded in Fig. 12.4b and ¢. Lower-level clouds:
form upstream of and over the ridge. Upper-level clouds (usually cirrus or cirro-:

stratus) may be found downstream of the ridge. These theoretical cases indicate
that the horizontal scale of clouds associated with vertically propagating waves is
~10-50 km. An example of clouds associated with vertically propagating wave

motion like that in Fig. 12.4c can be seen in Fig. 12.5. The lower-level cloud over:

the Continental Divide in the background and the upper-level cirriform cloud in
the foreground are associated with the vertically propagating waves’ upward air
motion, which is found upstream of the crest of the ridge at low levels and
downstream of the crest at upper levels.
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Figure 12.4 Streamlines in the steady airflow over an isolated bell-shaped ridge. (a) Narrow ridge.
b) VYidth of ridge comparable to the Scorer parameter. (c) Wide ridge. Lighter shading indicates
possibie locations of clouds. Darker shading indicates bottom topography. (From Durran, 1986b
Reprinted with permission from the American Meteorological Society.): )

Figure 12.5 Looking upwind at clouds associated with vertically propagating waves. In the center
background, a lower-level wave cloud is evident directly over the Continental Divide, which is the
main orographic barrier. The mountains in the foreground, which appear larger in the photo, are
actually smaller foothills. The cirriform cloud deck at higher levels is produced by the upward air
motion associated with the vertically propagating wave induced by the Divide. These clouds are like
those indicated schematically in Fig. 12.4c. Boulder, Colorado. {Photo by Dale R. Durran.)

12.2.4 Clouds Associated with Lee Waves

So far we have considered only situations in which £2 is constant with respect to
height. When ¢? decreases suddenly with increasing height, a different type of
mountain wave occurs. This type of disturbance is usually called a lee wave, but it
is also known as a resonance wave, trapped wave, or trapped lee wave. According
to (12.5), a decrease of €2 can be brought on by a decrease of B, an increase of i,
or a change of the curvature of the wind profile 7,,. The occurrence of lee waves
can be illustrated by considering a two-level stratification of €2, in which €} and €%,
represent the Scorer parameters for the lower and upper layers, respectively.
Then two equations of the form (12.4) can be applied, one with each value of ¢2.
Solutions to the upper-layer equation decay exponentiaily with height, while solu-



510 12 Orographic Clouds

tions to the lower-layer equation are sinusoidal in z (i.e., propagate vertically),

The solutions are required to match smoothly at the interface, which is taken tobe

z = 0. When the radiation boundary condition is applied, the solution of the upper-
layer equation takes the form :

w, = Ae M f(x) (12.16)

where f(x) represents the variability in x, and

o, =k -8 (12.17)

The solution in the lower layer is of the form

Wy, = (ﬁ sin. m,z +C cos mlz)f(x) (12.18)
where B and C are constants and E
my =6 -k (12.19)

Both (12.16) and (12.18) are special cases of the general solution (12.6). In order
for the solutions (12.16) and (12.18) to match smoothly at the interface, we must
have both w, = w; and w,, = wy, at z = (. These conditions applied to (12.16) and
(12.18} imply that

A=¢ and -pA=mb (12.20)
It follows from (12.18) and (12.20) that
wy = A[—& sin myz + cos m.,z]f(x) (12.21) .
y : :

If we consider a location far enough to the lee of the ridge, where the ground is
level, then w; = 0 at the ground. If we assign to ground level the height z = —z, <
0, then for w, to be zero, (12.21) implies that

_H
ny

cot{myz,) = (12.22)
By graphing each side of this equation as a function of 4%, one finds that the graphs
cross at one or more points only if the condition

2
2
4z

g —1% > (12.23)

is satisfied. That is, a horizontal wavelength exists that satisfies the equation only
if the depth of the lower layer exceeds a certain threshold before waves can be

trapped in it. Furthermore, from the definitions (12.17) and (12.19), it is evident -

that the right-hand side of (12.22) exists only if
£ > k> 4y (12.24)
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Thus, the condition (12.23) can be satisfied only for a wave number in this range,
which is consistent with the fact that waves propagate vertically in the lower layer
and decay exponentially in the upper layer.

Figure 12.6 shows the flow over the two-dimensional beli-shaped ridge de-
scribed by (12.14) for a case in which the stratification of the undisturbed flow
supports trapped waves. The interface level is at 500 mb (about 5 km altitude).
Note that although the profiles of temperature and wind are continuous in z, the
value of €2 is discontinuous, having different constant vaiues above and below the
interface. From Fig. 12.6a, it is evident that the trapped waves are indeed confined
to the lower layer. It is also apparent that they have no tilt. The latter result is
surprising since solutions in the lower layer are of the form of vertically propagat-
ing waves, whose phase lines tilt. The explanation lies in the fact that vertically
propagaling waves cannot continue to propagate upward when they reach the
upper layer. Instead they are reflected as downward-propagating waves, which
are reflected back up when they reach the ground. As the waves of various wave
numbers undergo this multiple reflection process downstream, a superposition
of upward- and downward-propagating waves is established. Since the upward-
and downward-propagating waves have opposite tilt, their superposition results
in no tilt at all. The trapped waves in the figure can be described as having the
form '

w(x,z) = Bsinfzcoskx (12.25)
280 m™
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Figure 12.6 (a) Streamlines of steady flow over an isolated two-dimensional bell-shaped ridge for a
case in which the stratification of the undisturbed flow supports trapped waves. Lighter shading
indicates possible locations of clouds. Darker shading indicates bottom tepography. (b) The vertical
distribution of temperature and wind speed (solid lines) in the undisturbed flow. This temperature and
wind layering implies a discontinuous two-layer structare for the Scorer parameter (dashed line on
right panel). (From Durran, 1986b. Reprinted with permission from the American Meteorological
Society.)
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where ﬁ and & are constants. From trigonometric identities, it can be seen that this
expression is the sum of equal-amplitude upstream- and downstream-tilting waves

A

w(x,z) = gsin(d'z +kx}+ gsin(&z — kx) (12.26)

Figure 12.6a indicates that the horizontal scale of the trapped lee waves is
~10 km. For typical values of stability and wind, wavelengths are in the range of
5-25 km. Thus, in general, lee waves are of shorter wavelength than the pure
vertically propagating waves. Possible locations of ¢louds are shaded in Fig:
12.6a. The clouds associated with the lee waves are ~3-5 km in horizontal scale.

They can often be distinguished from the clouds associated with vertically propa:

gating waves by their repetition downstream of the ridge and by their smaller
horizontal scale. In Fig. 12.7, a satellite photograph illustrates an example of
numerous lee waves occurring in a regime of strong northwesterly winds aloft
over the mountainous western United States.

It is not uncommon for lee wave clouds and clouds associated with a vertically
propagating wave to be present in the same situation. Figure 12.6a shows this
possibility schematically, where, in addition to the lee-wave clouds downstream
of the mountain ridge, a cap cloud is indicated over the crest of the mountain ridge
at low levels and a downstream cirrus cloud is indicated aloft. These latter two
cloud types are gualitatively similar to those in Fig. 12.4. The weak vertically
propagating wave structure appears in addition to the lee waves because the
mountain ridge produces some forcing at wave numbers & < £y, thus generating
waves that can propagate through the upper layer. The larger horizontal scale of
the clouds associated with the vertically propagating wave in the upper layer
accounts for the greater width of the upper-level cloud compared to the lee-wave

clouds below. An actual example of clouds similar to those indicated in Fig. 12.6a -

is shown in Fig. 12.8. The cap cloud over the crest of the main ridge is seen in the
background. Ahead of it are two rows of lee-wave clouds at lower levels, and the
wider sheet of cirriform cloud in the foreground aloft is generated by the vertically
propagating wave motion. '

12.2.5 Nonlinear Effects: Large-Amplitude Waves,
Blocking, the Hydraulic Jump, and Rotor Clouds

The preceding analysis relies on linearized equations to describe the dynamics of
wave-induced clouds. Under certain atmospheric conditions, nonlinear processes
and large-amplitude waves become important in the flow over a mountain ridge.
These processes can be studied with nonhydrostatic numerical models—the same
type used to study convective clouds (Sec. 7.5.3). Figure 12.9 is an example of the
‘type of model airflow that can develop when large-amplitude waves are present.
Shading indicates locations where clouds could appear if layers of air were moist
enough. Four types of clouds are indicated, three of which are the same features
that appear in the linear case (cf. Fig. 12.6a). The low-level cloud over the crest
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Figure 12.7 Visible satellite imagery showing wave clouds over the southwestern United States,
1715 GMT, 2 May 1984.

Figure 12.8 Looking upwind at wave clouds. In the background, lower right, a cap cloud is seen
over the Contihental Divide, which is the main orographic barrier. The mountains in the foreground,
which appear larger in the photo, are actually smaller foothills, In the middle and foreground are two
rows of lee-wave clonds induced by the Divide. The cirriform cloud deck at higher levels is produced
by the upward air motion associated with a vertically propagating wave. Boulder, Colorado. (Photo by
Dale R. Durran.)

and the upper-level cloud just downwind of the ridge are associated with the
vertically propagating wave. In this case, the low-level cloud is usually referred to
as the Fohn wall (Figs. 1.23-1.25). The large-amplitude wave structure is charac-
terized by strong downslope winds (or Féhn), and the cloud over the ridge extends
Just over the crest such that it appears as a wall to an observer on the lee side of
the ridge. Lee-wave clouds are again associated with trapped waves downsiream
of the ridge. These are shown in the shading pattern as the two small clouds
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Figure 12,9 Numerical-model results illustrating two-dimensional adiabatic flow that can develop
when large-amplitude waves are present. The atmosphere was specified to consist of a less stable layer
aloft and a more stable layer below to trap waves in the lower layer. Contours of potential temperature

(equivalent to streamlines) are labeled in K. Shading indicates locations where clouds could appear if -

layers of air were moist enough. (Adapted from Durran, 1986a. Reproduced with permission from the:
American Meteorological Society.) :
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Figure 12.10 Numerical-model results illustrating two-dimensional adiabatic flow that can.’

develop when large-amplitude waves are present. In this case the mean state has a critical laye.r ai};
wave breaking occurs. Contours of potential temperature (equivalent to streamlines) are labeled in K
Shading indicates location where a cloud could appear, if the layer of air were motst enough. (From

Durran and Klemp, 1987 as reprinted in Durran, 1990. Reprinted with permission from the American -

Meteorological Society.)
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farthest downwind, The new feature that appears as a result of nonlinear effects,
is the rotor cloud. It appears at the sudden vertical jump at the downstream
endpoint of the very strong downslope winds, which form immediately to the lee
of the ridge and accelerate down the mountain.

Figure 12.10 shows another example of strong downslope winds and possibile
rotor cloud formation associated with a strong Jjump in the flow downstream of the
ridge. The strong downslope winds, strong upward jump of the air motion, and
rotor cloud in these examples are manifestations of large-amplitude wave motion
that can occur in three kinds of situations:3%

I. Wave breaking. This case occurs when downstream of the ridge, the @
surfaces overturn, producing a layer of low stability and nearly stagnant flow. This
structure, sometimes referred to as a ‘‘local critical layer,””™ is seen at 3.6 km
altitude downstream of the mountain in Fig. 12.10. Vertically propagating waves
cannot be transmitted through the layer of near-uniform 6 centered at about 4 km.
The waves excited by the mountain barrier are thus reflected, and wave energy is
trapped between this layer and the surface on the lee side of the barrier, If the
depth of the cavity between the seif-induced critical layer and the mountain slope
is suitable, the reflections at the critical layer produce a resonant wave that ampli-
fies in time and produces the strong downslope surface winds and downstream
jump. -

2. Capping by a mean-state critical layer. A local critical layer need not be
induced by wave breaking. If the air impinging on the mountain ridge contains a
critical layer in its mean-state wind stratification, the necessary reflections, reso-
nance, and amplification may occur on the lee side to produce the downslope
winds and downstream jump, even if the mountain is otherwise too small to
produce breaking waves. The example in Fig. 12.10 is a case in which both a
critical layer is present in the mean state and breaking waves occur.

3, Scorer parameter layering. This situation arises when the mountain is too
small to force breaking waves but large enough to produce large-amplitude waves
in an atmosphere with constant 7 and a two-layer structure in B, . Figure 12.9 is an
example of this case, in which vertically propagating waves are partially reflected.
When the less stable (low B,) layer aloft and the more stable (high B,) lower-level
layer are suitably tuned, superposition of the reflecting waves produces the strong
downslope surface winds and downstream jump.

The strong downslope winds and downstream Jump, where: the rotor cloud
occurs, have the characteristics.of a special type of flow referred-to as a hydraulic
Jump, which occurs in a variety of geophysical situations and is characterized by a
sudden change in the depth and velocity of a layer of fluid. For example, a tidal
flow up a river is sometimes characterized by such a jump.’ A hydraulic jump

34 See Durran (1990). .

5 In general, a critical layer is defined as one in which the horizontal phase speed of a gravity wave
is equal to the speed of the mean flow.

6 The river Severn in England is famous for its tidal hydraulic jump, which surfers have been
known to ride for several kilometers upstream. See Lighthill (1978) or Simpson (1987).
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can also occur downstream of the flow over an obstacle—as in the case of the flow
over a rock in a stream, where a turbulent jump in the fluid depth is often seen just
downstream of the rock. The latter case is analogous to the atmospheric flow that
produces a rotor cloud.

To investigate this type of flow quantitatively, let us consider the steady flow of
a homogeneous fluid over an infinitely long ridge. Such a flow is governed by the
two-dimensional steady-state shallow-water momentum and continuity equations,
which may be written as

du a(H + i;)

U= (12.27)

and

ould .
— =0 . (12.28)
ox

respectively, where x is perpendicular to the ridge, u is the velocity in the x-
direction, H is the vertical thickness of the fluid, and 4 is the height of the
obstacle. The pressure gradient acceleration on the right-hand side of (12.27) is
equivalent to that on the right-hand side of (2.99), in the case where the term 8p in
(2.99) is assumed to be ~p; (which is the case if the upper layer is air and the lower
layer is water).

Flow described by (12.27) and (12.28) may be classified according to the speed
of the fiow u in relation to V' gH, which is approximately the phase speed of linear
shallow-water gravity waves [V gh according to (2.104)]. To make this classifica-
tion, it is useful to define a Froude number (Fr), such that

u2
Fr’ = — (12.29)
g
Then (12.27) may be written as
Lu? + g(H + h} = constant > 0 (12.30)
or
(S +1)H =k, @ (12.31)

where 4. is a positive constant. Since the left-hand side must be positive, the
condition

h<h, (12.32)

must be satisfied. If 4 > k., no solution of (12.27) exists and the flow is blocked,
because it is not energetic enough to surmount the ridge. The smaller the Fr, the
more likely the flow will be blocked.

Since (12.27) cannot be solved under blocking conditions, blocked flows must
be either nonsteady or three-dimensional. In Sec. 12.3, we will examine three-
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dimensional flows at low Froude number around isolated mountain peaks and see
that when the flow cannot go over the mountain, it turns laterally and goes around.
Here we are concerned with two-dimensional steady-state flows for which (12.27)
has solutions (i.e., cases for which (12.32) is satisfied and, hence, the flow can get
over a purely two-dimensional barrier). To examine these cases, it is useful to
combine (12.27), (12.28), and (12.29) to obtain

L a(H+.i€)_a_ﬁ'
(1-57) ax  ox

This equation states that the free surface of the fluid can either rise or fall as the
fluid encounters rising bottom topography. Figure 12.11 indicates various possibil-
ities. In the case of Fr > 1 (Fig. 12.11a), called supercritical flow, the fluid
thickens and {according to (12.28)] slows down as it approaches the top of the
obstacle and reaches its minimum speed at the crest. In the case of Fr < 1 (Fig.
12.11b), called subcritical flow, the fluid thins and accelerates as it approaches the
top of the obstacle. _

Physical insight into supercritical and subcritical flows is obtained by noting
that'in (12.27) there is a three-way balance among nonlinear advection uu,, the
pressure gradient acceleration associated with the depth of the fluid, and the
pressure gradient acceleration induced by the ridge displacing the fluid vertically.
The nonlinear advection can be related to the Froude number, since the continuity
equation (12.28) implies that

(12.33)

Fr? =—

pa
(12.34)
gH,

Thus, Fr? is the ratio of the nonlinear advection to the pressure gradient accelera-
tion associated with the variation of fluid depth. Also, the minus sign shows that
these two effects are always in opposition.

In the supercritical case (Fr > [), nonlinear advection dominates the pressure
gradient produced by a change in fluid thickness [according to (12.34)], and the
height of the ridge must produce horizontal variations in pressure in the same
sense as changes associated with fluid depth [according to (12.33)]. Hence, the
fluid thickens as it passes over the windward side of the ridge (accumulating
potential energy and losing kinetic energy) and thins on the lee side. In the subcrit-
ical case (Fr < 1), nonlinear advection is dominated by the effect of the fluid-
thickness pressure gradient. The only way for this to occur is for the variation in
the height of the ridge to produce horizontal variations in pressure that are in the
opposite sense of the changes associated with fluid depth, That is, H, and A, must
be of opposite sign, so that the fluid thins (loses potential energy and gains kinetic
energy) as it passes over the windward side of the ridge and thickens on the lee
side.

Figure 12.11c shows the flow regime that is characterized by a hydraulic jump
on the lee side of the ridge. This case is subcritical on the windward side of the
ridge to such a degree that the speed of the flow attains a supercritical value just at
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Figure 12.11 Behavior of shallow water flowing over an obstacle: (a) everywhere supercritical
flow; (b) everywhere subcritical flow; (¢) hydraulic jump. KE and PE refer to kinetic and potential
energy, respectively. (Adapted from Durran, 1986a, Reproduced with permission from the American

Meteorological Sociéty.)
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Figure 12.12 A volume of fluid cont‘aining a hydraulic jump.

the crest of the barrier. Thus, the flow continues 1o increase in speed and become
still shallower as it runs down the lee slope. In the atmospheric analog to this
shallow-water case, severe downslope winds are sometimes a manifestation of the
lee-side supercritical flow. Downstream, the strong flow coming down the slope
reverts suddenly back to ambient conditions. This sudden transition takes the
form of a hydraulic jump.

An important characteristic of the hydraulic jump is that energy is dissipated at
the jump. This fact can be inferred by considering a volume of incompressible
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fluid V" containing a hydraulic jump, as idealized in Fig. 12.12. The volume 7V is

" bounded by x, and x; and y and y + Ay in a coordinate system that moves with the

discontinuity in fluid height. The flow is assumed to be homogeneous (i.e., of
constant density) and steady state in this moving coordinate system.

We first consider the mass continuity in the fluid containing the jump by averag-
ing (12.28) to obtain

0 = uH = constant (12.35)
Next , we consider the conservation of momentum in the mass of fluid contained
in V. The equation of motion governing the mean fluid motion is obtained by
applying the averaging procedure described in Sec. 2.6 to (2.1), ignoring Coriolis
and molecular frictional forces and recalling that the density of an incompressible
fluid is constant. The result is

Dv 7] =

o vE ke (12.36)

Dt pP
Integrating the x-component of (12.36) over the mass of fluid in % in the moving -
coordinate system, with substitution from (12.35), and recalling that the pressure
at a given level is the weight of the fluid above leads to

<2 &
0* = —Z—HIHZ(HI +H,)+0F : (12.37)
where

2 _ HIHZ a5
02 = 0 ) J” F dV - (12.38)

P

and %, is the x-component of %. The quantity 0% in (12.37) can be seen to arise
from the drag of turbulence or other small-scale motion. The first term in (12.37)
arises from the combination of the horizontal pressure gradient acceleration and
the horizontal advection of u.

Now we may examine the energy of the mean flow in the volume ¥ containing
the hydraulic jump. Under the assumed steady-state, two-dimensional conditions,
with uniformity in the y-direction, the kinetic energy equation obtained by taking
v-(12.36) is

_2 2 —
=V u—+w—+gz+£$ (12.39)
2 2 P
where
G=vF (12.40)

A nega_tivé value of @ indicates that energy is being dissipated locally. Integration
of (12.39) over the mass of fluid in the volume V" bounded by x, and x; and y and



