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Chapter 2. Mountain forced flows 
 
2.1. Mountain waves  
 
Well-known weather phenomena directly related to flow over orography include 
 

• mountain waves 
• lee waves and clouds 
• rotors and rotor clouds 
• severe downslope windstorms 
• lee vortices 
• lee cyclogenesis 
• frontal distortion across mountains 
• cold-air damming 
• track deflection of midlatitude and tropical cyclones 
• coastally trapped disturbances 
• orographically induced rain and flash flooding 
• orographically influenced storm tracks.   

 
A majority of these phenomena are mesocale and are induced by stably stratified flow over orography.   
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Mountain Waves 

 

MODIS image of mountain wave clouds over Turkey. 

Mountain waves form above and downwind of topographic barriers when strong winds blow with a significant 
vector component perpendicular to the barrier in a stable environment.  
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False color image of mountain wave cloud patterns emanating from Jan Mayen (a small Arctic island chain ~550 
km north-east of Iceland) on 25th. January, 2000 at 1627Z. The orange-white regions are polar stratospheric cloud 
decks formed by cold temperatures on this day. 
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Mountain wave clouds forming east of the Rockies. 
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This figure shows the development of the typical features often associated with a mountain wave system. Notice 
the wind flow, with a strong component perpendicular to the primary ridge line. This is a typical condition for 
mountain wave development, as is a stable atmosphere. If air is being forced over the terrain, it will move 
downward along the lee slopes, then oscillate in a series of waves as it moves downstream. Sometimes these waves 
can propagate long distances in "lee wave trains." 
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Cap Clouds 

 

Cap clouds indicate likely wave activity downstream. They often appear along mountain ridges as air is forced up 
the windward side. If the flow is sufficiently humid, the moisture will condense into a cloud bank that follows 
mountain contours. Quite often, heavy orographic precipitation occurs on the upwind side of the barrier, 
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particularly for barriers located near the sea. As the flow descends in the lee of the mountain ridge, the cloud 
evaporates. Viewed from downstream, cap clouds frequently appear as a wall of clouds hanging over the ridge top.  

It is important to remember that while cap clouds indicate likely wave activity, their absence does not mean that 
waves are absent. Under drier conditions, waves may be present without cap clouds. 

Photograph of Wave Clouds 
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The Vertically-Propagating Wave 

 

The vertically-propagating wave is often most severe within the first wavelength downwind of the mountain barrier. 
These waves frequently become more amplified and tilt upwind with height. Tilting, amplified waves can cause 
aircraft to experience turbulence at very high altitudes. Clear air turbulence often occurs near the tropopause due to 
vertically-propagating waves. Incredibly, these waves have been documented up to 70 km and higher. 
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Breaking Waves 

 

Vertically-propagating waves with sufficient amplitude may break in the troposphere or lower stratosphere. Wave-
breaking can result in severe to extreme turbulence within the wave-breaking region and nearby, typically between 
7 and 14 km. If a vertically-propagating wave doesn't break, an aircraft would likely experience considerable wave 
action, but little turbulence. 
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Downslope Winds 

 

At times, strong downslope winds accompany mountain wave systems. Strong downslope wind cases are usually 
associated with strong cross-barrier flow, waves breaking aloft, and an inversion near the barrier top. In extreme 
cases, such as in our Alps scenario, winds can exceed 100 knots. This may be double or triple the wind speed at 
mountaintop level. These high winds frequently lead to turbulence and wind shear at the surface, causing 
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significant danger to aircraft and damage at the surface. Downslope windstorms often abruptly end at the "jump 
region," although more moderate turbulence can exist downstream. The jump region is an extremely turbulent area 
that can extend up to 3 km. 

Rotor Clouds 
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Rotor location can often be identified if sufficient moisture is available to form an associated rotor cloud. Rotor 
clouds are found near the top of the rotor circulation and under higher lenticular clouds. Immediately above the 
rotor cloud, smooth, wavy air is likely.  

The rotor cloud can look innocuous, but does contain strong turbulence and should be avoided by pilots. 
Eventually, we can expect operational NWP models to resolve rotors so that they can be identified in the absence 
of rotor clouds. 



 

14 

Trapped Lee Waves and clouds 

 

Lee waves whose energy does not propagate vertically because of strong wind shear or low stability above are said 
to be "trapped." Trapped lee waves are often found downstream of the rotor zone, although a weak rotor may exist 
under each lee wave. These waves are typically at an altitude within a few thousand feet of the mountain ridge 
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crest and turbulence is generally restricted to altitudes below 25,000 feet. Strong turbulence can develop between 
the bases of associated lenticular clouds and the ground. 

Lenticular clouds form near the crests of mountain waves. As air ascends and cools, moisture condenses, forming 
the cloud. As that air descends in the lee of the wave crest, the cloud evaporates. Because air flows through the 
cloud while the cloud itself is relatively stationary, many people refer to these clouds as standing  
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Areal Extent of Mountain Waves 

 

Mountain wave activity can occur over broad regions. This MODIS true color satellite image shows wave clouds 
covering most of Turkey, a region spanning about 1000 km! However, despite their occasionally broad extent, 
regions of strong or severe turbulence within mountain wave systems are often limited horizontally and vertically. 
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Equations for two-dimensional, steady-state, adiabatic, inviscid, nonrotating, Boussinesq fluid flow over a 
small-amplitude mountain.  
 
The linear equations can be simplified from the original governing equations: 
 
 0'1''

=
∂
∂

++
∂
∂

x
pwU

x
uU

o
z ρ

, (1) 

 0'1' '
=

∂
∂

+−
∂
∂

z
pg

x
wU

oo ρθ
θ , (2) 

 0''
=

∂
∂

+
∂
∂

z
w

x
u , (3) 

 0'' 2
=+

∂
∂ w

g
N

x
U oθθ . (4) 

 
The above set of equations can be further reduced to Scorer’s equation (1954), 
 
 0')(  ' 22 =+∇ wzlw , (5) 
 
where  22222 // zx ∂∂+∂∂=∇   
 
is the two-dimensional Laplacian operator, and  
 
l is the Scorer parameter (Scorer 1949), which is defined by: 
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Equation (5) serves as a central tool for numerous theoretical studies of small-amplitude, two-dimensional 
mountain waves. 
 
Equation (5), when multiplied by U as  
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may also be interpreted as a vorticity equation, because the y-component of vorticity is  
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and making use of the mass continuity equation (3) 
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• The first term, )( ''

zzxx wwU + , is the rate of change of vorticity following a fluid particle.   
 
• The second term, UwN /'2 , is the rate of vorticity production by buoyancy forces.   
 
• The last term, 'wU zz− , is the rate of vorticity production by the vertical redistribution of the background 

vorticity ( zU ).   
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In the extreme case of very small Scorer parameter, e.g., when N=0 and vertical shear is zero, (5) reduces to 
irrotational or potential flow, 
 
 0 '2 =∇ w . (7) 
 
If the forcing is symmetric in the basic flow direction, such as a cylinder in an unbounded fluid or a bell-shaped 
mountain in a half-plane, then the flow is symmetric (see below). 
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For this particular case, there is no drag produced on the mountain since the fluid is inviscid. 
 
 



 

20 

Flows over two-dimensional sinusoidal mountains 
 
Assuming constant )(zU  and )(zN  with height and a sinusoidal terrain  
 
 kxhxh m sin)( = , (8) 
 
with mountain height mh . k  is the wave number of the terrain.  
 
For an inviscid fluid flow, the lower boundary condition requires the fluid particles to follow the terrain, so that the 
streamline slope equals the terrain slope locally, 
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For a small-amplitude mountain, this is linearized to 
 
 

dx
dhUw ='      at  0=z , (10) 

or 
 kxkhUxw m cos )0,(' =   at    0=z , (11) 
 
for h(x) given in (8).  It is the linearized lower boundary condition! 
 
 
Because of the sinusoidal nature of the forcing, we can expect solutions in the following form, 
 
 1 2'( , ) ( ) cos ( ) sinw x z W z kx W z kx= + . (12) 
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Substituting the above solution into (5) with a constant Scorer parameter leads to 
 
 2 2( ) 0izz iW l k W+ − = ,    2 ,1=i . (13) 
 
Two cases are possible:  
 

(a) 22 kl < ,  (vertically decaying solution) 
 

(b) 22 kl > .  (oscilation solution) 
 
 
The first case requires kUN </  or / 2Na U π< , where a  is the terrain wavelength. 
 
Physically, this means that the basic flow has relatively weaker stability and stronger wind, or that the mountain is 
narrower than a certain threshold.   
 
For example, to satisfy the criterion for a flow with U = 10 ms-1 and N = 0.01 s-1, the wavelength of the mountain 
should be smaller than 6.3 km.  In fact, this criterion can be rewritten as 1)/2/()/( <NUa π .   
 
The numerator, Ua / , represents the advection time of an air parcel passing over one wavelength of the terrain, 
while the denominator, 2 / Nπ , represents the period of buoyancy oscillation due to stratification.   
 
This means that the time an air parcel takes to pass over the terrain is less than it takes for vertical oscillation due to 
buoyancy force.  In other words, buoyancy force plays a smaller role than the horizontal advection.   
 
In this situation, (13) can be rewritten as 
 
 2 2( ) 0izz iW k l W− − = ,    2 ,1=i . (14) 
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The solutions of the above second-order differential equation with constant coefficient may be obtained 
 
   z z

i i iW Ae B eλ λ−= + ,   2 ,1=i , (15) 
 
where  
 
 22 lk −=λ . (16) 
 
The upper boundedness condition requires 0=iA  because the energy source is located at 0=z .   
 
Applying the lower boundary condition, (11), and the upper boundary condition ( 0=iA ) to (15) yields 
 
 0    ; 21 == BkhUB m . (17) 
 
This yields the solution, 
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The vertical displacement (η ) is defined as ' /w D Dtη=  which reduces to  
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for a steady-state flow. 
 
 Equation (18) can then be expressed in terms of η , 
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Fig. 5.1: The steady-state, inviscid flow over a two-dimensional sinusoidal mountain when (a) 2 2l k<  
(or N kU< ), where k  is the terrain wavenumber (= 2 / aπ , where a is the terrain wavelength), or (b) 2 2l k>  
(or kUN > ).  The dashed line in (b) denotes the constant phase line which tilts upstream with height.  The 
maxima and minima of 'u , 'p  (H and L), and 'θ  (W and C) are also denoted in the figures. 
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 The above solution is sketched in Fig. 5.1a.  The disturbance is symmetric with respect to the vertical axis and 
decays exponentially with height.  Thus, the flow belongs to the evanescent flow regime.  The buoyancy force 
plays a minor role compared to that of the advection effect.   
 
The other variables can also be obtained by using the governing equations and (18), 
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The maxima and minima of ', ',  and 'u p  θ  are also denoted in Fig. 5.1a.  
 
The coldest (warmest) air is produced at the mountain peak (valley) due to adiabatic cooling (warming). The flow 
accelerates over the mountain peaks and decelerates over the valleys. From the horizontal momentum equation, (1) 
with 0=zU , or (22), a low (high) pressure is produced over the mountain peak (valley) where maximum 
(minimum) wind is produced.   
 
Note that (1) is also equivalent to the Bernoulli equation, which states that the pressure perturbation is out of phase 
with the horizontal velocity perturbation.  Since no pressure difference exists between the upslope and downslope, 
this flow produces no net wave drag on the mountain (mountain drag).   
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In the second case, 22 kl > , the flow response is completely different.   
 
This case requires kUN >/ or / 2Na U π> .  This means that the basic flow has relatively stronger stability and 
weaker wind or that the mountain is wider.   
 
For example, and as mentioned earlier, to satisfy the criterion for a flow with U = 10 ms-1 and N = 0.01 s-1, the 
terrain wavelength should be larger than 6.3 km.   
 
Since 1)/2/()/( >NUa π , the advection time is larger than the period of the vertical oscillation.  In other words, 
buoyancy force plays a more dominant role than the horizontal advection.   
 
In this case, (13) can be written as 

 
 2 0izz iW m W+ = ,    2 ,1   ,222 =−= iklm . (26) 
 

We look for solutions in the form 

 ( ) sin cos ,   1,  2i i iW z A mz B mz i= + = . (27) 

Substituting (27) into (12) leads to  

)sin()cos()sin()cos(),(' mzkxFmzkxEmzkxDmzkxCzxw −+−++++= . (28) 
 

Terms of )( mzkx +  have an upstream phase tilt with height, while terms of )( mzkx −  have a downstream phase tilt.   
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It can be shown that terms of )( mzkx +  have a positive vertical energy flux and should be retained since the energy 
source in this case is located at the mountain surface. Thus, the solution requires 0== FE . This flow regime is 
characterized as the upward propagating wave regime.   
 
As in the first case, the lower boundary condition requires  
 
 0   , == DkUhC m . (29) 
 

This leads to  

 )cos(),(' mzkxkUhzxw m += . (30) 

Other variables can be obtained through definitions or the governing equations, 

 )sin(),( mzkxhzx m +=η , (31) 
 
 )cos(),(' mzkxmUhzxu m +−= , (32) 
 
 )cos(),(' 2 mzkxmhUzxp mo += ρ , and (33) 
 

 )sin(),(' 
2

mzkx
g

hNzx mo +−=
θθ . (34) 

 
The vertical displacement of the flow, and the maxima and minina of 'u , 'p , and ' θ  are depicted in Fig. 5.1b 
(below).  
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Note that the flow pattern is no longer symmetric.  The constant phase lines are tilted upstream (to the left) with 
height, thus producing a high pressure on the windward slope and a low pressure on the lee slope.   
 
Based on (32) or the Bernoulli equation (1), the flow decelerates over the windward slope and accelerates over 
the lee slope.  The coldest and warmest spots are still located over the mountain peaks and valleys, respectively.  
 
Positive wave drag on the mountain is produced by the high pressure on the windward slope and the low pressure 
on the lee slope. 
 
When 22 kl >> , the flow approaches a limiting case in which the buoyancy effect dominates and the advection 
effect is totally negligible. In other words, the vertical pressure gradient force and the buoyancy force are roughly 
in balance and the vertical acceleration can be ignored. Thus, the mountain waves become hydrostatic.  In this 
limiting case, the governing equation becomes 
 
 0'' 2 =+ wlw zz . (36) 
 
The flow pattern repeats itself in the vertical with a wavelength of NUlz /2/2 ππλ == , which is also referred to as 
the hydrostatic vertical wavelength.   
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The regime boundary between the regimes of vertically propagating waves and evanescent waves can be found 
by letting kl = , which leads to NUa /2π= .   
 
The relation among the mountain waves discussed in this subsection is sketched in Fig. 5.2.  
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Fig. 5.2: Relations among different mountain waves as determined by kl / , where l  is the Scorer parameter and 
k is the wave number. 

 


