QG Omega

(and drylines!)

Arranged by Andrew Moore
Contributions from Thomas Galarneau






What is a dryline?

This is simply a density discontinuity between
warm/moist air and hot/dry air.




What is a dryline?

This is simply a density discontinuity between
warm/moist air and hot/dry air.

Let's take a cross-
sectional look!
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What is a dryline”

This is simply a density discontinuity between
warm/moist air and hot/dry air.

Elevated Mixed\Layer




How does a dryline move?

By mixing!
Strong boundary-layer flow within the hot/dry air
mechanically mixes out the moisture.
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How does a dryline move?

Eventually, low-level convergence and/or moisture depth
is strong enough to resist further eastward mixing
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Let's zoom in again!



How do we get T-storm development?

Low-level convergence acts to tighten moisture gradient.
Dry air overruns the low-level moisture.
Parcels can not yet reach their LFC
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How do we get T-storm development?

With time, there is an upward moisture flux.
Ascent increases, parcels begin to approach LFC,
but need additional ascent...
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How do we get T-storm development?

Boundary-layer eddies (such as HCRs) locally enhance ascent along

dryline, helps parcels reach the LFC.
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Along-dryline mean east-west Cross-section centered at Y=340.5 km
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Dryline & ascent strengthening in ARPS simulations
(Fig 10 from Xue and Martin 2006a)
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Boundary-layer
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probable in these
localized area.



Initial parcels reach the LFC & condense - but do they survive?

Strong cross-boundary flow may displace parcels away from ascent

before convection can be self-sustained.
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Initial parcels reach the LFC & condense - but do they survive?

Weaker cross-boundary flow OR al -boundary flow can maintain
parcels within zone of ascent - better ch or sustained/.convection!
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The question becomes whether the circulation can lift parcels to
their LFC. The depth of the ascent can be estimated by
comparing the height of the LCL on the dry side to the LFC on
the moist side.
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The question becomes whether the circulation can lift parcels to
their LFC. The depth of the ascent can be estimated by
comparing the height of the LCL on the dry side to the LFC on
the moist side.
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The other consideration is how long will air parcels reside within
the zone of ascent. If they are ejected from the zone prematurely,
they may not reach their LFCs.

With too much westerly flow near the LFC, parcels may be

ejected too quickly out of the zone of ascent.
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The other consideration is how long will air parcels reside within
the zone of ascent. If they are ejected from the zone prematurely,
they may not reach their LFCs.

With too much westerly flow near the LFC, parcels may be

ejected too quickly out of the zone of ascent.
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Lift along the dryline can be enhanced simply by mass convergence
associated with the eastward progression of the boundary.

L Weaker ascent Enhanced ascent
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April 19, 2023
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Where would the dryline
ascent be strongest?

In other words, where is T-
storm development most

likely?
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April 19, 2023

EF-3 near Cole, OK
Courtesy of Sean Earnst




Back to QG Omega...



Physical Intuition:
Vorticity and Divergence

Notice what happens when the weights
(i.e. mass) are brought inward.

/ Spin (i.e. vorticity) increases!
d(¢y+f) p 0w

it Cop
S0

Change in a parcel’s Vertical acceleration
vorticity (spin)

but by mass conservation this is

. i also convergence/divergence!
Another example: https://i.imgur.com/7h5GvdK.mp4 du oy dw —



Physical Intuition:
Vorticity and Divergence
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Let’s imagine we have this 500 mb chart.

Let’s assume that a parcel will propagate
through the mean flow faster than the speed

of the upper-wave/jet-streak.

This means that the parcel’s vorticity will
change as it moves through the trough.

G, +f) _ 20
dt % dp



Physical Intuition:
Vorticity and Divergence

d((g+f)= 06_&) Bu+av+6m=
dt dp 0x dy 0p

0

\_//V
_,/\‘ .
The air parcel approaches the base of As the parce! exits the base of
an upper trough and acquires the trough it loses absolute

absolute vorticity vorticity.



Physical Intuition:
Vorticity and Divergence

d((g+f)= 06_&) Bu+av+6m=
dt dp 0x dy 0p

0

\_//V
_,/\‘ .
The air parcel approaches the base of As the parcel exits the base of
an upper trough and acquires mass the trough it loses mass

(convergence) (divergence)



Physical Intuition:
Vorticity and Divergence
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Let’s imagine we have this 500 mb chart.

Let’s assume that a parcel will propagate
through the mean flow faster than the speed
of the upper-wave/jet-streak.

This means that the parcels vorticity will
change as it moves through the trough.

G, +f) _ 20
dt % dp

So then how do we get ascent?



Physical Intuition:
Vorticity and Divergence

=N

induced descent induced ascent
due to mass conservation | due to mass conservation

Tropopause

No vorticity changes near ground




Physical Intuition:
Vorticity and Divergence

Differential changes in vorticity with height induce
upward/downward motions.

The direction of vertical motion is determined by
which level has the strongest change in vorticity
(and the sign).

In general, it’s safe to assume that vorticity

changes (i.e. advection) near ground is weaker
than vorticity changes aloft.

Not always the case in some scenarios.
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Physical Intuition:
Temperature Advection & Ascent

. ABQ 1305201200 (Observed)

Let’s start with isentropes!
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Notice that the potential temperatures increase

with height!
200

This means we can use potential temperature
values and/or isentropes as an approximate

200 vertical coordinate.
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Focus on the
red lines

Path a parcel
would take on
its trek north
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Focus on the
red lines

Note what’s happening:
parcel starts at 850 mb
Is being pushed
northward into

colder air.

Increases its height to
above 700 mb.
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Warmer

Colder

Our parcel is displaced
horizontally.

Because of the sloped
isentropic surfaces, it is
now warmer than its
environment.

Adiabatic ascent must
occur to restore the
parcel to its isentrope.

This response is
adiabatic ascent due to
warm advection!



Warmer

Colder

The opposite is true for
cold air advection.

Parcel is displaced to a
warmer isentropic
surface.

Adiabatic descent must
occur to restore the
parcel to its original
isentropic surface.



QG Omega Equation (Traditional form)

See Bluestein Voll p329.

(V2+E£)w=—é— -V, V,(¢ +f)]——v2( V, V,T)
p o apz o 3]:) p\>g
1* N
/ * Laplacian of temperature advection by
geostrophic wind
* 2"derivative in space of w * Warm advection, w<0 (ascent)
* Proportional to negative of w «  Cold advection, w>0 (descent)
* RHS (“forcing”) positive, w<0 (ascent)
* RHS (“forcing”) negative, w>0 (descent)

* Differential advection of geostrophic absolute vorticity by the
geostrophic wind

* Cyclonic vorticity advection increasing with height, w<0 (ascent)

* Anticyclonic vorticity advection increasing with height, w>0 (descent)

w = sin(mp/py) sin(kx) sin(ly)

(‘E’f, );D ap? )MN N |('!‘f2 O+ L o pZ.



QG Omega Equation: differential vorticity
advection term

Differential advection of geostrophic absolute vorticity by the geostrophic wind
Assume vorticity advection near surface = 0.

534 = 500 hPa height
= SLP
540
N 546 -1 * -1* (+DVA) = -1* ®
\\
\5‘52 +DVA=-1* w

E +DVA = ascent!

"
V area of positive |
/ ‘\ differential vorticity’
\ , advectlon (DVA)/
(v

——’

+fii)m—-—— 1y 5,6+ - v, 71
G.apz - g F g

=



QG Omega Equation: differential vorticity

advection term

Differential advection of geostrophic absolute vorticity by the geostrophic wind

Assume vorticity advection near surface = 0. 53

- —

540

546

552

area of negative\\
differential vorticity “<_
advection (DVA)

—————

= 500 hPa height
— SLP

-1 * -1* (-DVA) = -1* w
DVA =-1*
DVA = w

DVA = descent!

Vp(S + )= —?2 o (Vg VpT)



QG Omega Equation: differential vorticity
advection term

Differential advection of geostrophic absolute vorticity by the geostrophic wind

Assume vorticity advection near surface = 0.
534 = 500 hPa height

= SLP

TA = Temperature Advection

1% -1 (+TA) = -1* w

+TA=-1* w

+TA = ascent!

Vp(Sg + )] ——Vz(—V VpT)



QG Omega Equation: differential vorticity
advection term

Differential advection of geostrophic absolute vorticity by the geostrophic wind

Assume vorticity advection near surface = 0.
534 = 500 hPa height

= SLP

TA = Temperature Advection

1% -1* (-TA) = -1* w

-TA=-1* w

-TA = descent!

Vp(Sg + )] ——Vz(—V VpT)



One Final Consideration:
Static Stability

;02 fo 0 R Consider this:
V2422 |y =-2—[-v, .V A2y, .p.T '
( b )m o aiﬁ'[ 5 p(lo + ) op 5V VpT) Which is easier to sip

f f up through a straw?

Note that static stability is found in each term of the QG Omega equation.
But what does this mean?

More dense air = higher static stability

Less dense air = lower static stability
Omega is inversely related to static stability.
Higher density => lower omega!

So in other words, cold air may subdue ascent
compared to warm air!



One Final Consideration:
Static Stability

2 . .

, S0 0%\ _ fod _Ra_, Consider this:
(\? T apz) aﬂp[ Vg Vp(lo+ 1)) crpv"( Vg UpT) Which is easier to sip
/ / up through a straw?

Note that static stability is found in each term of the QG Omega equation.
But what does this mean?

More dense air = higher static stability

Less dense air = lower static stability
Omega is inversely related to static stability.
Higher density => lower omega!

So in other words, cold air may subdue ascent
compared to warm air!



One Final Consideration:
Static Stability

You expect ascent to
overspread OK and
KS.

But where will ascent
be subdued?

Where might a
surface low develop
(based on ascent and
mass continuity)?



Reflectivity Mosaic 700 hPa Z and QG Omega Forcing (Term B+Term
23557/31 Jan 2021
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https://www2.mmm.ucar.edu/imagearchive/ https://inside.nssl.noaa.gov/tgalarneau/real-time-qg-diagnostics/



Precip in PA/NJ in
region of QG ascent
assoc. with warm
advection

Convection in NC to
FL in region of QG
ascent assoc. with
differential cyclonic
vorticity advection
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0-h CMC Global forecast at 2021020100
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