Tornado Climatology

All Tornado Events




Climatology: Why Should We Care?

I’m here to learn about tornadoes!

What do | care about climatology?!

Being aware of severe weather climatology helps
us establish a baseline of what’s “normal”.

In turn, this allows us to identify

anomalous environments

(whether anomalously low or high).
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Understanding climatology can help

‘ W aaaaaaa hese questions!



Tornado Climatology

Work done by SPC forecasters to identify tornado/ingredient climatologies
o Smith et al. 2012 (Weather and Forecasting)
o Thompson et al. 2012 (Weather and Forecasting)
o Grams et al. 2012 (Weather and Forecasting)

Looked at ~10,000 tornado cases
o Period: 2003-2011
o Considered Supercell EF-2+ and QLCS EF-1+

Assigned storm mode based on WSR-88D data

o Ex: discrete supercell, QLCS, cluster supercell, etc...

Collected SPC Mesoanalysis data for each instance at the nearest grid point

Created plots of tornado events and ingredients based on:

o  Seasonal (spring, summer, fall, winter)
o Convective mode
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Ingredient Climatology

> Considered tornado environments for right-moving supercell and QLCS tornado
events

> Considered seasonal variations in:
o MLCAPE

MLCIN

Effective BWD

Effective SRH

MLLCL

STP

© © © © ©



& When poll is active, respond at pollev.com/severeclass641

What is the 10th percentile MLCAPE for springtime RM

supercells?
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MLCAPE

Consider low-level moisture availability in summer vs. winter.

RM Supercell EF-2+

QLCS EF-1+

winter (127, 137) spring (738, 404) summer (205, 102) fall (153, 71)



RM Supercell EF-2+

QLCS EF-1+

winter (126, 124) spring (733, 389) summer (204, 100) fall {151, 68)



RM Supercell EF-2+

QLCS EF-1+
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Consider seasonal temperature trends.

winter (127, 137)

spring (738, 404) summer (205, 102)

fall (153, 71)




Bulk Wind Difference

- RM Supercell EF-2+

Consider seasonal patterns in the upper-level jet stream

QLCS EF-1+

winter (119, 119) spring (598, 360) sunmer (166, 86) fall {119, 50)



RM Supercell EF-2+
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STP distribution Is largely driven by the
overlap in MLCAPE and 0-1 km SRH

90% of Environments 90% of Environments

Supercell MLCAPE Supercell 0-1 km SRH Supercell STP



STP distribution Is largely driven by the
overlap in MLCAPE and 0-1 km SRH
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STP distribution Is largely driven by the
overlap in MLCAPE and 0-1 km SRH

A A SPC Day 1 Convective @20z Outlook [All] of at least Categorical High Risk
Found 51 events for CONUS between 10 Nov 2002 and 20 May 2019
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Ingredients Summary

> Clear regional and seasonal variations in tornado ingredients
o Seasonal variations are physically tied to other seasonal trends

(ex: temp)

> Regional variations in thermodynamic parameters between Supercell

and QLCS
o Larger CAPE and higher LCL heights for supercellsin the Plains

> Vertical shear is similar spatially for Supercell and QLCS tornadoes
o Slightly greater wind shear in MS/TN Valleys



Overall Frequency:
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FIG. 3. The total number of tornadoes per ycar for every grid point across the
United States.




Diurnal Trend

Start time of the 4-
hour period that
captures the highest
fraction of tornado
reports.

(Requires N > 40)

See also:
Krocak and Brooks
2020 (WAF)

187 19Z 20Z 217 227 23Z

FI1G. 7. Start time of the 4-h period that captures the highest fraction of tomado reports for
cvery location across the country. Note the calculation was only done for points with greater
than 40 reports over the 1954-2015 period.




# of tornadoes
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Tornado Events per Decade




Tornado Events per Decade

;W- NWS Issuance Count of [TOR] Tornado Warning

Plot valid between 01 Jan 2001 00:00 UTC and 08 Mar 2021 04:29 UTC, based on unofficial |IEM Archives

This result is supported well by the number of

tornado warnings issued over the past 20 years
(Though these datasets are not entirely independent...)
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Tornado Events per Decade

QLCS + Line RM + Line Marginal 2716




Tornado Relative Frequency

Discrete + Cluster RM




Tornado Relative Frequency

Discrete + Cluster RM 6467 7 QLCS + Line RM + Line Marginal 2716
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What are some possible reasons for this shift in
distribution?
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RM Supercell Tornadoes by Season
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QLCS Tornadoes by Season

QLCS (Spring) ¥, QLCS (Summer)




Shifting Tornado Climatology?

From Gensiniand Brooks 2018 Recent work by Gensini and Brooks (2018)
argues that the frequency of tornadoes may be
shifting eastward.

This study used STP (from the NARR) as a
proxy for tornado environments and
occurrences (recall that even more recent work
by Gensini and Bravo de Guenni showed STP
was a strong covariate for tornado frequency).

They noted that the annual “accumulation” of
STP was decreasing across the southern Plains
and increasing across the Midwest/Southeast.

The cause? Unknown at this point!

Still lots of room for research!
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A Few Notes on Tornado Intensity Estimation

EF4-rated damage from the Rolling Fork, MS, tornado on
24 March 2023.

The Fujita Scale was developed in 1971 to
quickly estimate tornado intensity from damage
surveys.

Ratings with wind speed ranges were
developed so that a reasonable range of
possible wind speeds could be estimated
without the need for detailed forensic
engineering studies of structures.

Engineers quickly raised concerns that wind
speeds for the higher damage ratings were
overestimates of the wind speeds necessary to
cause the associated damage.

The Enhanced Fujita Scale was debuted in
2007 to provide more damage indicators to
estimate tornado intensity and to lower the wind
speed ranges for the higher ratings (EF2—EF5).



A Few Notes on Tornado Intensity Estimation

The American Society of Civil Engineers (ASCE)
Median Windspeed Profile has formed a Wind Speed Estimation Standard
Committee (WSEC) to develop a standard for
estimating tornado wind speeds.

The WSEC is working on arevised EF scale, as
well as standard methods for tornado wind speed
estimation using radar, forensic engineering, tree
fall pattern analysis, in-situ observations, and
satellite and UAS remote sensing.

Radar estimation of tornado wind speeds is of
particular interest since radar has a unique ability to
detect wind components throughout the entire
vortex at relatively high-resolution.

Work by Kosiba and Wurman (2023) used a radar
climatology of tornadoes sampled with Doppler on
Wheels (DOWSs) to illustrate that tornado winds may
be strongest near the ground (consistent with past
modeling studies).

Fig. 4 from Kosiba and Wurman (2023).



A Few Notes on Tornado Intensity Estimation

EF-Scale Wind Speed
Estimate from Damage
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Adapted from Figs. 6, 12, and 17 of Lyza et al. (2024;
MWR)

Lyza et al. (2024) gathered 194 observations from
105 different tornadoes that had observations from
WSR-88D radars 150 m AGL and compared those
observations to both EF and F-scale estimates of
wind speed from damage.

Applied two different assumptions to estimate winds
near the ground: (1) that wind speeds

and (2)
that wind speeds remain constant from radar beam
height to the surface.

For both assumptions, radar-based intensity
estimates of near-ground winds increase more
quickly than wind speed estimates from damage
from the EF scale as vortex intensity increases.

Damage-based wind speed estimates from EF
scale more closely match radar for weak tornadoes,
while wind speed estimates from the more
closely match radar for strong—violent tornadoes.
However...



A Few Notes on Tornado Intensity Estimation

EF-Scale Wind Speed
Ranges
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Adapted from Figs. 14 and 17 of Lyza et al. (2024; MWR)

The official tornado climatology is still based on the
ratings of tornadoes.

When the radar-based wind speed estimates and
damage-based wind speed estimates are both
binned into their respective EF and F scale ratings,
the yields less rating error than the EF
scale across the entire range of tornado intensities.

Key Takeaway: Tornado intensity estimation is still
a very difficult task, and damage-based estimates of
tornado intensity can still contain a lot of error.
Estimates of tornado intensity from the EF scale
likely yield lower-bound estimations of actual
tornado intensity in many cases, especially for
stronger tornadoes.




Tornado Climatology Summary

Tornadoes tend to occur more frequently across the southern Plains and

northern Gulf states
o Typically occur mid/late afternoon over the central CONUS, but can occur at any time of day.
o Associated STP values tend to be higher in this region - suggesting a favorable tor environment

Supercell tornadoes tend to dominate the distribution
o Can occur over a wider range of the eastern 2/3rds of the CONUS compared to QLCS tornadoes
o Favored over the Plains in the spring, but can occur throughout the year across the CONUS.
m Spring maxima is due to favorable overlap of quality CAPE/Shear.
m  Western maxima may be related to initiation mechanisms favoring discrete modes vs.
upscale growth further east

QLCS tornadoes are also most common in the spring with a minimum in the
fall.

o However, these can also occur throughout the year.
o Tornado maxima over the OH/MS River Valleys may be related to upscale growth from the west

Tornado intensity estimationis still a work in progress!



Tornado Climatology: Application

So tornadoes happen in the Spring in the center U.S.
- big deal!

How is this helpful?!

W e can use tornado ingredient
climatologies to help characterize how
favorable an environment is for
tornadoes.
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@ When poll is active, respond at pollev.com/severeclass641

How would you compare this environment compared to
climatology?

Anomalously unfavorable

Typical of climatology

Anomalously favorable
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May 22, 2010 Bewele,

© 2010 Scoft Blair
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@ When poll is active, respond at pollev.com/severeclass641

How would you compare this environment compared to
climatology?

Anomalously unfavorable

Typical of climatology

Anomalously favorable
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April 27, 2011 Tuscaloosa, AL EF-4
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@ When poll is active, respond at pollev.com/severeclass641

How would you compare this environment compared to
climatology?

Anomalously unfavorable

Typical of climatology

Anomalously favorable
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Tornado Tracks near Bellemont, AZ October 6, 2010

Bellemont, AZ
EF-2
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high-end Plains/SE

Bellemont Tornado #2 & Environments!
Convective
parameter

magnlatudes are
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Estimating Tornado Probability & Intensity in Real Time
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Estimating Tornado Probability & Intensity in Real Time

Recent studies have shown that observed WSR-88D and environmental trends can

yield reasonable probabilities of tornado occurrence and intensity in real time.
o Smith et al. 2015 (WAF)
o Thompson et al. 2017 (WAF)
o Cohen et al. 2018 (WAF)
o Smith et al. 2020 (parts 1 & 2) (WAF)

Recent studies by SPC featured:
o ~4700 tornadoes from 2009-2013
o ~10500 severe events & tornadoes from 2014
m Tornado events required credible report or TDS
m Environmental data, such as STP, also collected

Used 2009-2014 tornadoes to create conditional probabilities by EF scale

Used 2014-2015 tornadoes and severe events to create unconditional probabilities by
EF scale.



Tornado Detection Via WSR-88D

> Combined radar attributes (same place and time)
o Storm-relative velocity (Vo > ~40 kt)
m Stronger and deeper [
o Correlation coefficient < 0.8
m More obvious and deeper []
o Reflectivity > 20 dbZ (can include “debris ball”)

o Low ZDR

> Radar signatures combined with expectation based on storm
environment
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A Quick Note on WSR-88D Tornado Signhatures
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A Quick Note on WSR-88D Tornado Signhatures




A Quick Note on WSR-88D Tornado Signhatures
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A Quick Note on WSR-88D Tornado Signhatures
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A Quick Note on WSR-88D Tornado Signhatures
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A Quick Note on WSR-88D Tornado Signhatures
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Step 3: Find Vrot
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Step 4: Note beam height/distance from radar
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Check for TDS

Step 5
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Step 7. Check Conditional Tornado Probs

RM+01CS Tornadoes (2009-2014): | 0-5900 ft ARL|
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Step 7. Check Conditional Tornado Probs

RM+QLCS Tornadoes (2009-2014): | 0-5900 ft ARL|
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Unconditional Tornado Probabilities

>> Often don’t know if a tornado is occurring in remote areas or at night

>> Must consider “null” cases with low-level storm rotation to develop
unconditional tornado probabilities



|s a tornado occurring?

RM+QLCS Tornadoes and NULLs (2014): 0-5900 ft ARL
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Combined Tornado Probabilities

RM+QLCS Tornado Probability: 0-5900 ft ARL
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Need to consider influences of beam
height/range

>> | ower tornado probabilities with distant circulations sampled well above
ground

> Higher tornado probabilities with closer circulations sampled near the
ground

Influences On Radar Coverage

©The COMET Progeam



Height Above Ground Level of Radar Coverage, 1755 UTC 10 November 2008
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Height Above Ground Level of Radar Coverage, 1755 UTC 10 November 2008
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Even in the
Plains there are
radar gaps!
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Variations by heig

RM+QLCS Tornadoes: (0-2900 ft ARL|
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Variations by heig

RM+QLCS Tornadoes: |3000-5900 ft ARL|

Sample sizes by group
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Variations by heig

RM+QLCS Tornadoes: |6000-9900 ft ARL|

Sample sizes by group
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Need to consider influences of
circulation diameter

> |ower tornado probabilities with broad circulations

>> Higher tornado probabilities with tight circulations




Variations by circulation diameter

RM+QLCS Tornadoes: 0-5900 ft ARL and <1 nmi diameter

Sample size by year
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Variations by circulation diameter

RM+QLCS Tornadoes: 0-5900 ft ARL and 1-2 nmi diameter
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Variations by circulation diameter

RM+QLCS Tornadoes: 0-5900 ft ARL and =2 nmi diameter
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Conditional Probs by Height ARL

Conditional Probability of tornade damage intensity (0.5° peak rotational velocity)
RM + QLCS [events 0.01—-0.99 circulation diameter by ARL/WSR-88D range]
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Conditional Probs by Distance

Conditional Probability of tornado damage intensity (0.5° peak rotational velocity)
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Conditional Probs (TDS vs. No-TDS)

Conditional Probability of tornade damage intensity (0.5° peak rotational velocity)
RM + QLCS [events < 90 n mi (9,900 ft ARL) of WSR-22D]
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What about regional differences?

RM+QLCS Tornadoes (2009-2014): 0-5900 ft ARL
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Need to consider storm environment

>> S0 far we've only considered W SR-88D signatures, but the env can help!
>Try to keep the environment estimate simple

O Lookat significant tornado parameter (STP)

O Take max value within 80 km of each storm
B Forecasters consider more than a point value!




Tornado Probabilities by Vrot

RM+QLCS Tornado Probability: 0-5900 ft ARL
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Tornado Probabilities by Eff. STP

RM Tornado Environments (Effective-Layer STPgq,,,): 0-9900 ft ARL

Cm o

—

-
- ——
-~

09-14 EFO+ (3951)
——00-14 EF1+ (1972)
g 0-14 EF2+ (765)

09-14 EF3+ (2686)
——3-14 EF4+ (67)
- 2014 NULL (3386)

=@ » 2014 EFO+ (497)
* =@ = 2014 EF1+ (257)
= =@ = 2014 EF2+ (79)

€ = 2014 EF3+ (28)

1.00-1.99 2 .00-2.99 3.00-3.99 4.00-5.99 6.00-7.99 B.OO-11.99 12.00-23.21
Effective-Layer STPaoem




STP effective layer with CIN [max value within 80 km]
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Tornado Probabilities by Eff. STP

Available at http://arctic.som.ou.edu/tburg/products/R20/torprob/

Enter the input parameters into the fields below to get simulated probabiities.
All radar-based entries are intended to be derived from lowest.elevation (0.5 degrees) WSR-88D base data.

Try |t yo urse | fl : Max Inbound: Max Outbound: Dist:
Heght of sirmulated Crculation above y Crodanon Sameter - Satance Detween

Madmum iInbound velooty (k1) Maxdmum outbound velooty (k)

TDS:

Tornado probability tool
developed by Tomer Burg.
Based on research outlined in
Cohen et al. 2018
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