

Application of Meteorological Theory to Severe Thunderstorm Forecasting

Title: Intro to Radar Principles and Dual-Pol Parameters

Why Us?

Warning Decision Training Division teaches weather radar theory & applications to NWS forecasters for use in warning operations

We Train on Warning Decision Making & Operational Tasks

- Job-centered
- Time-sensitive tasks
- Evidence-based
- Focus on service to the public

Goals for Today

• Part 1: Basics of radar

• Part 2: Radar analysis using Dual-Pol

• Part 3: What can go wrong?

How Does Distance from the Radar Impact that Volume's Size?

The beam increases in size continually down range

Range = 120 km Width = 11,830 ft Range = 230 km Width = 22,680 ft How Does Distance from the Radar Impact Feature Interpretation?

Radar Height and Sampling Uncertainty

Range Folding

Range Folding

Side Lobe Contamination

Side Lobe Contamination

Horizontal

Most commonly seen in the low-levels near strong horizontal reflectivity gradients

Vertical

Can occur in the vertical as well which will often manifest itself as velocity shadowing

Side Lobe Contamination

Horizontal

Vertical

What's Happening Below the Lowest & Highest Beam?

Occurs when the radar beam overshoots a feature because of the curvature of the earth (ignoring elevation angle)

What's Happening Below the Lowest & Highest Beam?

Beam Blockage

Occurs when objects fully (or partially) obstruct the radar beam.

Partial Beam Blockage

Complete Beam Blockage

Non-Uniform Beam Filling / Differential Attenuation

Example of Non-Uniform Beam Filling / Differential Attenuation

Viewing Angle Matters

Different radars will sample different portions of the storm from different sides

Same storm, different radars

Operational Modes

CLEAR AIR: Designed for events with no detectable precipitation or when precipitation is light or small in areal coverage

PRECIPITATION: Designed for use when significant precipitation is present within the radar umbrella

Radar Follows a Pre-Defined Scanning Strategy

How High Up In the Atmosphere Is the Radar Sampling?

Depends on the VCP **and** the dynamic scanning settings!

Dual-Pol Review

Differential Reflectivity (ZDR):

Good for assessing size and/or shape of targets!

Specific Differential Phase (KDP): Good for assessing liquid water content!

Correlation Coefficient (CC):

Good for identifying meteorological vs. non-meteorological targets!

Horizontal Side Lobe Analysis using Dual-Pol

Vertical Side Lobe Analysis using Dual-Pol

0.5 deg

Vertical Side Lobe Analysis using Dual-Pol

Non-Uniform Beam Filling in Dual Pol

 NBF results from Φ_{DP} gradient in beam and lowers CC down radial

Differential Attenuation in Dual Pol

 Differential attenuation results from attenuation differences between horizontal and vertical affecting ZDR

Data Quality

- We've covered non-uniform beam filling and differential attenuation
- Data quality artifacts can also be seen in **reflectivity** and **velocity** data
- Some examples are...

Wet Radome Effect

Biological Returns

Range Folding

Wet Radome Effect

1959Z

Notice what happens when the line passes over the radar

Biological Returns

What could this artifact be from?

1959Z

2003Z

Range Folding

Data Application: Using SRM to assess Rotational Velocity (Vrot)

 Research has found a clear link between Vrot and tornado damage ratings (Thompson et al. 2017)

$$V_{rot} = \frac{|V_rmax - V_rmin|}{2}$$

- Guidelines for calculating Vrot:
 - Max inbound & outbound velocity gates should be co-located with the hook
 - Max inbound & outbound velocity gates should be ~ 1 2 nm apart

Poll Everywhere Exercise: Calculating Rotational Velocity

Respond at: <u>https://pollev.com/wdtdrac321</u>

What is the rotational velocity with this supercell?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Poll Everywhere Exercise: Calculating Rotational Velocity

Answer: ~ 84 kts!

Impact-Based Tornado Warning Guidance

Considerable Tag <u>Without</u> TDS, STP >1

Data Application: Using DP variables to identify tornadic debris

Lofted debris from tornado -> randomly oriented -> very low CC values!

Poll Everywhere Exercise: Identifying a TDS

Respond at: https://pollev.com/wdtdrac321

Is there a tornado debris signature with this supercell?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at **pollev.com/app**

Identifying a TDS: Beware of the Inflow!

Beware of low CC from inflow air -> "don't bite on bugs in the inflow!"

Key Takeaways from Part 1

- 1. We make a lot of assumptions about what is actually happening that the data doesn't actually show us
- 2. It's amazing that these systems (and their data) are as good as they are!

End of Day 1