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What is Mesoanalysis?

Mesoanalysis:

Utilizing observations, short-range guidance, and meteorological concepts
to anticipate convective evolution within meso spatial and temporal scales.

... Or in other words:

Anticipate potential storm hazards prior to the issuance of a warning!
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Severe Thunderstorm Warning

Mesoanalysis

Outlooks Watches Warnings
Synoptic Scale Meso-Alpha Scale dsseAlshe) e Storm Scale
ynop P Beta Scale
1-8 Days 1-4 Hours 0-2 Hours 30-60 minutes

Anticipate potential storm local to regional hazards prior to the issuance of a warning!



Why Care About Mesoanalysis?

Changes philosophy from “reactive” to “proactive”!

This can aid in:

- Enhanced lead time for the public

4 Done through non-warning methods (such as NWS Chat, phone calls,
text messages, social media graphics, etc...)

4 Consider groups that need extra lead time like hospitals, nursing
homes, outdoor events, etc...

=> Warning Type Decisions
- Polygon (Warning Shape) Decisions
- Builds trust between NWS, partners, and public



Who Does Mesoanalysis

Everyone can do mesoanalysis!

- SPC issues Mesoscale Convective Discussions:
& Typically ahead of watch issuances
4 To update ongoing watches
4 To highlight a corridor of enhanced severe potential
€ Purpose is to serve as a “heads up” to WFQOs and other partners
- WFOs do mesoanalysis to aid in warning decisions
& Will work more closely with local partners, broadcast media, and
public.
= Students can do mesoanalysis to help build their intuition of

convective evolution!



How do we do Mesoanalysis?

Get to know your tools:

Mesoscale Meteorology,
Storm Scale Dynamics,
Thermodynamics, etc...

RAP, HRRR, HREF, other
experimental guidance...



How do we do Mesoanalysis?

General Methodology

S

Apply Meteorological Concepts

a. Anticipate storm mode/evolution over the next 0-4 hours
b. Anticipate potential hazards
c. Consider a range of possible outcomes

Utilize Guidance

Check again to ensure guidance is
on the right track.

If so, use it to build confidence that
you're anticipating the correct most
likely scenario.






Storm Mode Basics

All of these must be
taken into account to

Boundary-relative storm motion anticipate storm mode for
Boundary-relative deep-layer shear the first few hours after

1)

2)

3) Storm-relative anvil-level winds : C ege g

4) convective initiation.
5)

Consider each of these:

Strength of forcing for ascent

St th of ' : :

EHEE BT EERRIS Numerous combinations
are possible!



Storm Mode Basics

Boundary = zone of ascent
Boundary Motion (B) = (0,0)

Consider each of these:

Boundary-relative storm motion .
Boundary-relative deep-layer shear

1)
2)
3) Storm-relative anvil-level winds
4)
S)

storm motion (c) = (20,0)

Strength of forcing for ascent
Strength of capping

20-0), (0-0



Storm Mode Basics

Boundary = zone of ascent
Boundary Motion (B) = (20,0)

Consider each of these:

Boundary-relative storm motion .
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2)
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Storm Mode Basics

Boundary = zone of ascent
Boundary Motion (B) = (20,20)

Consider each of these:

,
¥

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds
4)
S)

storm motion (c) = (10,10)

Strength of forcing for ascent
Strength of capping

10- 20), (10 - 20



Storm Mode Basics

Downshear Pressure Perturbation
Effective BWD Vector =

Consider each of these: —

1) Boundary-relative storm motion
2) Boundary-relative deep-layer shear Conveiiats

3) Storm-relative anvil-level winds o e
4) Strength of forcing for ascent (perturbatiou |

5) Strength of capping



Storm Mode Basics

Downshear Pressure Perturbation
Effective BWD Vector

Consider each of these: —

1) Boundary-relative storm motion
2) Boundary-relative deep-layer shear

. . . Convergence
3) Storm-relative anvil-level winds (b
4) Strength of forcing for ascent perturbation)
5) Strength of capping :

Induced Induced
subsidence ascent



Storm Mode Basics

Consider each of these:

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping

Off Boundary

‘ Effective BWD Vector

ﬂ

The deep-layer shear vector

orients the precipitation
distribution away from the updraft
(ex: size sorting)
Off-boundary deep-layer shear
vectors favor precipitation
distributions away from

neighboring cells

Also favors downshear updraft development
into warm sector, which favors discrete cells.




Storm Mode Basics
Along Boundary

Effective BWD Vector

Deep-layer shear vectors along
the boundary favor precipitation
(and outflow/cold pool)
distributions towards the updraft
regions of neighboring storms.

Consider each of these:

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping

Also favors downshear updraft
development in close proximity to
neighboring storms.

This tends to favor cold pool
amalgamation and upscale growth.




Storm Mode Basics

Anvil-level SR wind

Consider each of these:

The anvil-level storm relative
(SR) winds influence storm
morphology similar to the
deep-layer shear vector.

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping

They influence downstream anvil
shading and seeding of new
updrafts from fallout hydrometeors

Y4

/",

Storm motion



Storm Mode Basics

Along Boundary

Consider each of these: Anvil-level SR wind
Boundary-relative storm motion Along-boundary anvil-level

' SR winds tend to seed new

1)

2) Boundary-relative deep-layer shear

3) Storm-relative anvil-level winds updrafts in close proximity to
4) Strength of forcing for ascent

5)

neighboring storms.
Strength of capping

This tends to favor upscale growth

Storm motion

LY -



Storm Mode Basics

Off Boundary ‘

Consider each of these: Anvil-level SR wind

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear Off-boundary anvil-level SR
3) Storm-relative anvil-level winds winds tend fo seed new
4)
5)

. updrafts downstream into the
Strength of forcing for ascent ‘ warm sector.

Strength of capping

This tends to favor discrete cells.

Y4

Y \
’ i Storm motion
X



Storm Mode Basics

No Lift?

Consider each of these:

No storms!

1) Boundary-relative storm motion
2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping




Storm Mode Basics

Weak Ascent

Consider each of these:

1) Boundary-relative storm motion ’
2) Boundary-relative deep-layer shear o :

: . ' Fewer initial cells, greater spacing between cells,
3) Storm-relative a.nV"'IeveI winds less chance of storm interactions
4) Strength of forcing for ascent (even if shear/anvil-level winds aren’t favorable)
5) Strength of capping

‘ This tends to favor discrete cells.
Weak forcing mechanisms:
Drylines

Weak outflow boundaries
Confluence axes



Storm Mode Basics

Consider each of these:

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping

' Strong Ascent

More initial cells, smaller spacing between cells,
higher chance of storm interactions
(even if boundary-relative storm motions are
favorable for discrete)

This tends to favor upscale growth.

Strong forcing mechanisms:
Surging cold fronts
Strong outflow boundaries



Storm Mode Basics

“Nuclear” cap?

CRP 120415/0000 (Observed)

100

<

Consider each of these: "
No storms! .
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1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds
4)
S)

20

Strength of forcing for ascent
Strength of capping
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Storm Mode Basics
Weak cap?

- DDC 120415/0000 (Observed)
u ..

10

Consider each of these: I

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping

30C » 23258

- . o
Lo 200« 18006
L) |..

Hia 2450m, 445 maye
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1000 =
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Limits number of initial storms: favorable for discrete cells




Storm Mode Basics
No cap?

LIX 221214M800 (Observed)
100

Consider each of these:

1) Boundary-relative storm motion

2) Boundary-relative deep-layer shear
3) Storm-relative anvil-level winds

4) Strength of forcing for ascent

5) Strength of capping

Remember: numerous REATA 5
combinations are possible! W S 8 ST "6

E =l [l 2l 1] 40 = )
Allows for numerous storms, favors upscale growth




Storm Mode Basics

Consider each of these:

1) Boundary-relative storm motion How do | Weight each of
2) Boundary-relative deep-layer shear

3) Storm-relative anvil-level winds these factors?

4)
S)

Strength of forcing for ascent
Strength of capping



Storm Mode Basics

Consider each of these: Primary influencing factor

1) Strength of forcing for ascent

2) Boundary-relative storm motion

3) Boundary-relative deep-layer sh&ar> Secondary influencing factors
4) Storm-relative anvil-level winds

5) Strength of capping

Modulating factor



Let's see an example!

In this exercise we will primarily be focusing on the tornado
potential, but the concepts apply to other hazards as well.




Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion
a) Storms move off boundary => favorable for discrete
b) Storms stay on/move along boundary => favorable for linear
2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear
3) Anvil level storm-relative winds
a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear
4) Strength of the forcing for ascent
a) Weak forcing for ascent => fewer storms => favorable for discrete
b) Strong forcing for ascent => more storms => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries



August 29, 2019 21 UTC

We’'ll be focusing on southwest NE, northeast CO, and northwest KS

VALID: 20002 Ty 0829 - 12002 #rs 0030
FORECASTER. JEWELL

$PC DAY 1 TORNADO OUTLOOK
ISSUED 19567 00290019
VALID:. 20007 Trwy 0829 - 12007 Fri 0000
PORECASTER JEWELL
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August 29, 2019 21 UTC
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August 29, 2019 21 UTC

A

v
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Q: Is there strong synoptic forcing for ascent?

1300252100V001 700mb height (m, MSL), wing (13, Semp (C, red), and 700-500 mb mean F¥ »= 70




August 29, 2019 21 UTC

A

v,

e
SRV AN & vey . U

Q: How would you characterize the flow?

13002S2100VI01 700mb height (m, MSL), wind (13, Semp (C, red), and 700-500 mb mean FH »= 70




August 29, 2019 21 UTC

\ B
VAR

A

Q: Is there local/mesoscale forcing for ascent?
=~

VIR DOTONT} IFSaemE baighd jm WESL, Digak), bemp i, ond), Gewpoand [T, gren), anel wind (k)




August 29, 2019 21 UTC

\ B
VAR
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Q: How would you characterize the instability?
i

VIR DOTONT} IFSaemE baighd jm WESL, Digak), bemp i, ond), Gewpoand [T, gren), anel wind (k)




August 29, 2019 21 UTC
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\
300 m2/s2 SRH behind the boundary!

Q: Are these high values of Storm Relative Helicity?

132500 81 tm SRH [(m2A2) and o mofon (i 1F03THEI00 0-3 L SRH [B24Z) and flem moken 1)
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3 When poll is active, respond at pollev.com/andrewmoore925
&1 Text ANDREWMOORE925 to 22333 once to join

How would you rate the tornado threat for our area of
concern?

A: Low (10-30%)
B: Medium (40-60%)
C: High (70-90%)
D: Very High (>90%)

Pawererd hyv ‘h Pall Fvervwhere
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Tornado threat so far:

Parameter Value Subjective Ranking*

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.



Tornado threat so far:

Parameter Value Subjective Ranking*

0-1 km SRH Near O Low

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.



Tornado threat so far:

Parameter Value Subjective Ranking*
0-1 km SRH Near O Low
0-3 km SRH 100-200 m2/s2 Medium

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.



Tornado threat so far:

Parameter Value Subjective Ranking*

0-1 km SRH Near O Low

0-3 km SRH 100-200 m2/s2 Medium
ESRH Near 100 m2/s2 Low

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.



Tornado threat so far:

Parameter Value Subjective Ranking*
0-1 km SRH Near O Low
0-3 km SRH 100-200 m2/s2 Medium
ESRH Near 100 m2/s2 Low
STP 0-1 Low-Medium

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.



Tornado threat so far:

Parameter Value Subjective Ranking*
0-1 km SRH Near O Low
0-3 km SRH 100-200 m2/s2 Medium
ESRH Near 100 m2/s2 Low
STP 0-1 Low-Medium

Overall Environment: High CAPE/Low Shear

Does the SPC tornado risk seem appropriate?

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.
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Developing Thunderstorm 3
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As a Mesoanalyst:

¥
> ’(

For the next 0-3 hours... o 5 A AR 0 -1 Y
- Which areas are at risk? Nt it SRR I VL
- What will the storm mode be? : .
¢ Wil it remain discrete? o
-> What are the possible hazards? E
¢ What is the tornado potential? '

Now we’ll use meteorological concepts to
create a short-term forecast!

WA, D AT Zoshed- 19
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/ GOES-16 Ch. 2 (Red Vis) 20:56 Z
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GOES-16 Ch. 2 (Red Vis) 20:56 Z

o A
3

As a Mesoanalyst:

For the next 0-3 hours...
- Which areas are at risk? \/
- What will the storm mode be? -

¢ Wil it remain discrete? A
- What are the possible hazards?
¢ What is the tornado potential?

. \ .
"'\ Now we’ll use meteorological concepts to
create a short-term forecast!

RITh W e A Zolet- 19



Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion

a) Storms move off boundary => favorable for discrete
b) Storms stay on/move along boundary => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries



Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion

a) Storms move off boundary => favorable for discrete
b) Storms stay on/move along boundary => favorable for linear

2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries



Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion
a) Storms move off boundary => favorable for discrete
b) Storms stay on/move along boundary => favorable for linear

2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear

3) Anvil level storm-relative winds

a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries



Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion
a) Storms move off boundary => favorable for discrete
b) Storms stay on/move along boundary => favorable for linear
2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear
3) Anvil level storm-relative winds
a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear
4) Strength of the forcing for ascent
a) Weak forcing for ascent => fewer storms => favorable for discrete
b) Strong forcing for ascent => more storms => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries
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Storm Mode: boundary-relative storm motion

‘j / Mesoanalysis suggests
a storm motion of:

 —
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GOES-16 Ch. 2 (Red Vis) 20:56 Z

The storm motion is roughly 45 degrees off the
boundary to the southeast.

This is somewhat ambiguous about storm mode.




Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion ?

a) Storms move off boundary => favorable for discrete -
b) Storms stay on/move along boundary => favorable for linear

2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear
3) Anvil level storm-relative winds
a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear
4) Strength of the forcing for ascent
a) Weak forcing for ascent => fewer storms => favorable for discrete
b) Strong forcing for ascent => more storms => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries




GOES-16 Ch. 2 (Red Vis) 20:56 Z

Storm Mode: Deep-layer shear vector

Now check the Eff. Bulk
Shear. Mesoanalysis
suggests a near-storm
bulk shear vector:

40 knots
~120 deg
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- Storm Mode: Deep-layer shear vector

e,

GOES-16 Ch. 2 (Red Vis) 20:56 Z

-

I /:“\‘ =
\w.\.‘ﬁ. Eff. Bulk Shear
v 1! Vector

g’ . . :
““\l ‘ u'. “":\‘:;-."E
The effective bulk shear vector is more parallel to b
the initiating boundary.
This pushes us closer to the “linear” side.
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Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion ?

a) Storms move off boundary => favorable for discrete

b) Storms stay on/move along boundary => favorable for linear .

2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear

3) Anvil level storm-relative winds
a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear
4) Strength of the forcing for ascent
a) Weak forcing for ascent => fewer storms => favorable for discrete
b) Strong forcing for ascent => more storms => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries
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Use sounding to get an approximation of

W
the anvil-level SR winds:
~25 knots
~ 135 deg
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by - Storm Mode: Anvil-level storm-relative winds
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Eff. Bulk Shear
Vector

Storm Motion o o\ : w%
Vector (purple) : 3 IS SR ‘
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Anvil-level SR Wind

Vector (blue)

The anvil-level SR wind is about 45 degrees
off the boundary.

Somewhat ambiguous about storm mode.
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Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion
a) Storms move off boundary => favorable for discrete ?
b) Storms stay on/move along boundary => favorable for linear
2) Orientation of deep layer shear vector relative to the boundary
a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear

3) Anvil level storm-relative winds
a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete ?
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear ®

4) Strength of the forcing for ascent
a) Weak forcing for ascent => fewer storms => favorable for discrete
b) Strong forcing for ascent => more storms => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries
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/ GOES-16 Ch. 2 (Red Vis) 20:56 Z
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Unstable
Less steep low-level lapse rates

Lower LCLs
Confluence along boundary
Evidence of ongoing lift

v/ Watch for additional near-term
convective development
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Storm mode: Forcing For Ascent
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Likely unstable
Less Evidence of ongoing lift Unstable
Higher LCLs/Deeper boundary layer Less steep low-level lapse rates
Steeper low-level lapse rates Lower LCLs

o  Note dewpoint depression Confluence along boundary ‘

o May support wind threat Evidence of ongoing lift
Near-term convection less likely : Watch for additional near-term

convective development
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Unstable
ZENEIRI SR AL . Storm mode: Forcing For Ascent 651'
vidence of ongoing lift '

Unclear if towering cumulus will
continue to grow and be sustained
o Lack of low-level cumulus
field suggests deeper, drier

boundary layer and more
concentrated lift along
boundary.
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Likely unstable
Less Evidence of ongoing lift Unstable
Higher LCLs/Deeper boundary layer Less steep low-level lapse rates
Steeper low-level lapse rates Lower LCLs

o  Note dewpoint depression Confluence along boundary

o May support wind threat Evidence of ongoing lift
Near-term convective less likely Watch for additional near-term

convective development
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Storm mode: Forcing For Ascent
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TL;DR: Additional convection possible,

but uncertain. Keep monitoring. ‘ ' Y, ‘ /
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TL;DR: Environment will support storms, and new
convection is possible. Keep an eye on trends.
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TL;DR: Environment will support storms,

| but new convection is unlikely.
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Storm Mode In a nutshell

Storm mode is a function of:

1) Boundary-relative storm motion ?

a) Storms move off boundary => favorable for discrete
b) Storms stay on/move along boundary => favorable for linear

2) Orientation of deep layer shear vector relative to the boundary

a) Shear vector off boundary => storm orients off-boundary => favorable for discrete
b) Shear vector along boundary => storm orients along boundary => favorable for linear

3) Anvil level storm-relative winds
a) Winds off boundary => Anvil debris less likely to “seed” neighboring storms along boundary => discrete ?
b) Winds along boundary => Anvil debris more likely to “seed” neighboring storms along boundary => linear ®

4) Strength of the forcing for ascent
a) Weak forcing for ascent => fewer storms => favorable for discrete
b) Strong forcing for ascent => more storms => favorable for linear

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries



Storm Mode In a nutshell

End Result?
Inconclusive!

So what to do?
This is where you need to think in terms of a range of possible outcomes.

Best Case Scenario: The ongoing storm is the only storm that initiates,
severe threat is limited spatially.

Most Likely Scenario: The ongoing storm remains discrete for the next 1-2 hours  FSSss ?
before additional storms develop along the boundaries and the cluster grows upscale.
Severe threat begins small, then expands with time.

=> linear ®

Worst Case Scenario: Rapid upscale growth with a widespread
potential for severe weather.

For details: Dial et al. 2010, Short-term Convective Mode Evolution along Synoptic Boundaries



As a Mesoanalyst:

For the next 0-3 hours...
- Which areas are at risk? \/
-> What will the storm mode be?
¢ Will it remain discrete?
- What are the possible hazards?
¢ \What is the tornado potential?

Now we’ll use meteorological concepts to
create a short-term forecast!

GOES-16 Ch. 2 (Red Vis) 20:56 Z
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GOES-16 Ch. 2 (Red Vis) 20:56 Z
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For the next 0-3 hours... / 90-!‘;:._
- What are the possible hazards? | aaRL 4170
¢ What is the tornado potential? * L ﬁ"
W WID Sy e
2 AT

Let’s take a closer look
than just SPC Mesoanalysis

!
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Notice how low-level cumulus have
organized into cloud “streets”.

This gives you an idea of what the low-level
wind field in the boundary-layer looks like.

GOES-16 Ch. 2 (Red Vis) 20:56 Z
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Notice how low-level cumulus have
organized into cloud “streets”.

This gives you an idea of what the low-level
wind field in the boundary-layer looks like.

GOES-16 Ch. 2 (Red Vis) 20:56 Z
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e L% S What do the surface and boundary-layer flow [REAAS
' imply about our environmental wind shear near

12 Z LBF Obs. . _ thedeveloping storm

700 mb Wind
(from Mesoanalysis)
Est. B.L. Wind . =
Obs. Sfc wind /
~ LY L “ » ® L < 0 » o ES & »
PN Using these observations + estimated winds
Rl from Mesoanalysis, we can get a rough idea of
500 mb Win i
(from Mesoanalysis) what the near-storm SRH looks like!
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What do the surface and boundary-layer flow
- | imply about our environmental wind shear near
\ ' ?
12 7 LBF Obs. M _ thedeveloplng storm.

SRH may be higher than
y implied by the SPC
Mesoanalysis!

-. N Using these observations + estimated winds
from Mesoanalysis, we can get a rough idea of
what the near-storm SRH looks like!
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3 When poll is active, respond at pollev.com/andrewmoore925
&1 Text ANDREWMOORE925 to 22333 once to join

How would you rate the tornado threat for our area of
concern?

A: Low (10-30%)
B: Medium (40-60%)
C: High (70-90%)
D: Very High (>90%)

Pawererd hyv ‘h Pall Fvervwhere
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Tornado threat so far:

Parameter Value Subjective Ranking*
0-1 km SRH Near O Low
0-3 km SRH 100-200 m2/s2 Medium
ESRH Near 100 m2/s2 Low
STP 0-1 Low-Medium

These values are likely higher than previously anticipated!

Is the 2% tornado risk still appropriate?

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.




Tornado threat so far:

Parameter Value Subjective Ranking*
0-1 km SRH Near O Low
0-3 km SRH 100-200 m2/s2 Medium
ESRH Near 100 m2/s2 Low
STP 0-1 Low-Medium

This is valuable information that you can communicate to the
radar operator, partners, public, etc...

*The subjective ranking is largely based on the parameter’s tornado climatology. This is available on the SPC Mesoanalysis website.




Increasing tornada threat
in the next 1-2 hours.
Developing T-storms will pose a
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We used Mesoanalysis to add local

value to the forecast!

Increasing tornado threat
in the next 1-2 hours.

Developing T-storms will pose

a threat for tornadoes, severe

wind, and hail.

Vulnerable and/or exposed
groups should consider
precautionary actions.

o
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We used Mesoanalysis to add local
value to the forecast!

L SPC Storm Reports for 08/29/19
¥, "/ Map updated at 2308Z)0n 03/1319 |

A v
oy

\,_

TORMADO REPORTS.. (8) {'
WIND REPORTS/HL..... (111/5) O
HAIL REPORTSAG (3873) / -
v TOTAL REPORTS.......(157) ALACS. DI et (270 2) =
e Brecitom Contse_ Norman, Chdshoma |PRELIMINARY DATA ONLYA- 5"
‘.' ~ \ —




Storm
Prediction
Centear
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HREF MN[850 mb Z] (dam)  MN[850 mb T) (C) 12:00 UTC
850 mb wind (kts), ensemble mean 16:00 uTC
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HREF MN[850 mb Z] (dam)  MN[850 mb T] (C) 12:00 UTC
850 mb wind (kts), ensemble mean 00:00 UTC




HREF NP[2-5 km UH>P99.85]
24-hr max 2-5 km updraft heliaty (m*/s°), ensemble max
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HREF
24-hr neighborhood probability of tornado (r=40 km), Nadocast (2022 models)
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1800Z radar
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Approaching 19Z — Lets do some Mesoanalysis!

What will the radar look like in the next 1-3 hours?
(Convective Initiation, Mode and Future Evolution)



197 = Strongest midlevel flow south of | . e
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Modest low-level flow/mass response, though
guidance suggested a gradual increase into
early evening as height falls overspread.
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Vis sat with obs/NY
mesonet overlay




Vis sat with obs/NY
mesonet overlay
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Vis sat with obs/NY
mesonet overlay




Vis sat with obs/NY
mesonet overlay




Vis sat with obs/NY
mesonet overlay




Vis sat with obs/NY
mesonet overlay




Vis sat with obs/NY
mesonet overlay




Vis sat with obs/NY
mesonet overlay
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Mesoscale Analysis Data
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Pay attention to temp gradients like these
1 (always compare to surface obs)!

These can indicate baroclinic zones
| (mesoscale ascent) and possibly
| overlapping low-level shear/CAPE
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Storm Prediction Center Mesoscale Analysis Data
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' Mesoanalysis Tip:

Low-level lapse rate gradients can be
helpful in identifying these potentially
| favorable zones as well — always

: v’ compare to real obs

11900 0-3 km lapse rate (C/km)



Streamline analysis helps

dentify/confirm subtle
confluence zones

rrent surface streamlines

1300 100mb mean mbdng ratio and cul




Mesoscala Analysis Data

| Weak SFC pressure falls over
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Mesoscale Analysis Data

Storm Prediction Center

f moist boundary layer

(midlevel lapse rates were generally poor)
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tian Canlar

30-35 kt deep shear overspreading ===
buoyant sector — conditionally favors
organized storms

Note boundary-orthogonal
deep shear (for confluence zone)
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197 |7 | Low-level shear/SRH fairly

modest (50-100 m2/s2) — will this
increase with strengthening LLJ?

Note boundary-orthogonal

RM supercell storm motions
(for confluence zone)

1900 EN. Inflow Base (i, m AGL), ESRH (m2/52) and storm motion (kf)

Locally boosted SRH here?
(vis/surface analysis).
Will SFCOA capture this?
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No surprise, fairly small
=7 (yet clockwise-curved)
~{ low-level hodographs.
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Let’s look at some forecast
soundings — very helpful!
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Fairly small low-level
hodograph (as seen in
19Z objective analysis) —
sufficient deep shear
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_, HREF Sounding Valld 232 In warm SeCtOr » Sounding Powered by SHARPpy

Onset of nocturnal
cooling/stabilization, but
earlier heating + rich
moisture may offset this!
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Expanding clockwise-curved
low-level hodograph —
associated with strengthening
LLJ, and stronger deep shear

Insemble member lagend

o 8B

e e Ny A Ty we e
2 1766 -y SEC L am
2 m7r2 "mo7 SFC3 km
- 2 1766 -1 SCewm

LK (Chom) 700500 5.1 | O0-Fam: 5.7 | 3-6am: 3.2 U baflow Loyer

Much more favorable 0-1km SRH,
reduced MLCAPE... (75/68) — too
low compared to obs?




Piece It all together into a
useful conceptual model!



Mesoscale Analysis Data

19Z Composite Mesoanalysis

Leading edge of
midlevel height
falls

1500/1000 J/kg MLCAPE

Warm front

J (current edge of
buoyant sector)
S

4 I

Strengthening
deep shear

| Strengthening LLJ
Prefrontal  RRTT |
Confluence zone R

1900 EN. Inflow Base (fll, m AGL), ESRH (m2/52) and storm motion (ki)

10 250 1000

Weak midlevel height falls/implied
DCVA impinging on the warm
sector — favors Cl AND discrete
mode

Prefrontal Confluence zone:
Weak density gradient/baroclinic
circulation supports separated
updrafts/discrete mode

(compare to strongly forced cold
front, which would encourage
quicker upscale growth)

Strengthening off-boundary deep
shear AND storm motions:
Storms get OFF the boundary,
and given slow-moving boundary,
— discrete mode favored

Ample width of buoyant/warm
sector — plenty of convective
residence time in surface-based
buoyancy

Strengthening LLJ yields
expanding clockwise-curved low-
level hodos — strongly favors RM /
sustained discrete mode




Mesoscale Analysis Data

19Z Composite Mesoanalysis

Leading edge of
midlevel height
falls i 7
L'y ed identified zones o
N | Added identified f
\ - | potentially enhanced SRH
Ol = | from earlier vis/obs analysis
;..‘\;w.] <
Strengthening % | 7,
deep shear . P

Strengthening LLJ
Prefrontal ;
Confluence zone

; . l—_— 1900 EN. Inflow Base (fll, m AGL), ESRH (m2/52) and storm motion (ki)



1900Z radar .
~- 19Z: Back-te our question:

What will the radar:look like in the ne t.1 =3 ho
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So what happened?
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] Number of Tornadoes: 17
R Fatalities: 0 Injuries: 0
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