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What I1s an MCS?

A Mesoscale Convective System (MCS) is “a cloud system that occurs in connection with an
ensemble of thunderstorms and produces a contiguous precipitation area on the order of 100 km
or more in horizontal scale in at least one direction” (AMS Glossary — 2025).

«  This definition can be applied liberally to any organized thunderstorm clusters that:
. Is at least 100 km long

. Lasts for at least 3 hours
. Shares a common feature, such as a trailing precipitation region or cold pool.

. MCSs may take on many forms, morphology and evolution

«  MCSs may be accompanied by all thunderstorm hazards:
. Heavy rain and potential flooding
. Frequent Lightning
° Strong, damaging winds/gusts
° Tornadoes
. Hail
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* Parker and Johnson (2000): MCS defined as convective phenomenon where Coriolis acceleration is the same order of
magnitude as all other terms in Navier-Stokes equations of motion.

du  10dp F
E__Ea_x—l_fv-lh U

* Markowski and Richardson (2010): Most Phenomena have space/time scale ratios on the same order of magnitude (10 m s?)
* In mid-latitudes: f = 2Qsin® ~107*s 1, s0 fv = (107*s ) *x (10ms™ 1) =10"3ms 2

* In mid-latitudes, L < 1000 km means that Coriolis becomes less relevant, L > 1000 km and ageostrophic motions become less
significant, so:

. . . ) _l@ . 1 10 mb -3 -2 . 3 )
In mid-latitudes: 59x — Tkgm=3 1000 km 107°m s~ “, with F,also 103 m s
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MCSs on the spatial and temporal spectrum

* Parker and Johnson (2000): If Coriolis is equal to other forces in Navier-Stokes, then the timescale should be f1.

~10* s, or 10,000 s (divided by 3600 s) is 2.77 or 3 h.

1 1 1
* This works out to: = = ~
> > f  2Qsind 107%s™1

« Parker and Johnson (2000): Making an advective assumption, length scaleis L = Ut = 10 m s~ * 10* s = 10° m or 100 km.
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Cold-pool-driven MCSs tend to differ in structure from synoptically forced squall
lines, with differences in wind swath attributes
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MCS Forward Motion

* Johns and Hirt (1987) and Corfidi et al. (2016) both found that
derechos move faster (sometimes much faster) than the full mean
wind speed.

* Derecho wind swaths are produced by thunderstorm clusters where
either cold pool dynamics or other internal mechanisms dominate
the processes that produce severe/destructive wind gusts.

e Corfidi et al. (1996) and Corfidi (2003) devised a routine that can
determine MCS forward motion based on the interaction between
the cold pool and ambient flow fields.
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* Propagation: Component of motion due to the initiation of new cells driven by
the convergence of storm relative inflow (V).
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* MCS motion has 2 components (Advection and Propagation)

* The Advection and Propagation components are both additive.

Ne Viees = Ver + Verop

\
VProp OR

V’Vlcs Vies = Ver — Vi ]
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Vs Magnitude and Direction

We can find the speed and direction of the MCS motion
9 vector using trigonometry.

However, these calculations are sensitive to the depth of

the cloud layer of the mean wind, and the inflow layer
available to the MCS, which can influence propagation.

P
V * sin (6
qv\‘ 0 = arcsin(‘ Prop‘ sin( ))

MCS VMCS

Vases| = J Verl? + Worop|? = 2(1Ver] * [Vprop|)cos®
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MCS Forward Motion

* Not a straightforward relationship. MCS can propagate both upwind and downwind of the mean vertical wind
field.

» Corfidi et al. (1996) demonstrated how to account for upwind propagation. What about downwind propagation?
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* The Corfidi et al. (1996) method only factors mean-wind and low-
level wind/convergence-driven propagation influences.

 What about the cold pool? Studies have shown that MCS forward
speed is dependent on cold pool evolution (Charba 1974; Newton
and Fankhauser 1975; Betts 1976; Miller and Betts 1977).
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* In reality, MCS forward motion is influenced by 3 factors: Mean Wind Speed -
, Upwind (low-level-convergence-driven) propagation - , and
Downwind (cold-pool-driven) propagation — Vp, o, pownwing (COrfidi 2003).

* However, the Corfidi et al. (1996) V|, vector already takes into upwind
propagation, so we can substitute this vector in as a component of MCS
motion. Henceforth, we will call the ‘Vy,¢s" vector 'V, ying -
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* Again, the components of MCS forward motion are additive, so we add V,
and V,uind t0 8t Vyownwing- AS such, Y,
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* Downwind-propagating MCSs are dominated by the cold pool, and derechos
are also produced by cold-pool-driven MCSs, which are dominated by internal
forcing mechanisms.

* As such, V ,wnwing Would be a useful vector for monitoring derecho
progression.

* Note that V4 unwing IS @ lOnger vector than V.



MCSs moving faster than the mean wind speed is an excellent discriminator between cold-pool-driven
MCSs and their squall line counterparts.
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Note: Cold-pool-driven MCSs and strongly forced squall lines both have degrees of internal and external forcing (i.e. a

level of contribution from the cold pool

The argument is that to define derechos as a distinct phenomena, internal forcing mechanisms must dominate, which is

defined by the MCS moving faster than the full mean wind speed. 97
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