Mode of Convection

METR 4403/5403 — Spring 2024



Mode and Environment Conditions

* Ordinary thunderstorm, multicell storms, and supercells
* Environment conditions (CAPE and shear) influence convective mode

* Vertical wind shear:
* has greatest influence on thunderstorm structure and behavior (mode)
* acts to promote longevity and organization of thunderstorms

* 0—-6 km bulk shear is most common measure (but it neglects details in
hodograph that matter!)
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Spectrum of storm types as a function of vertical wind shear. Although the vertical shear exerts

the greatest influence on storm type, other secondary factors can also affect the mode of convection
(e.g., vertical distribution of buoyancy, moisture, and shear, as well as the means by which storms are
initiated); thus, some overlap among storm types exists in this simple single-parameter depiction. The
relationship between vertical wind shear magnitudes and the nature of cell regeneration/propagation
is also shown. MR (2010)



Importance of Vertical Shear

* Interference between precipitation and updraft is reduced as vertical shear
increases

* Precipitation falls downwind of updraft
» Strong storm-relative winds aloft blows precipitation away from updraft core

e Storm-relative inflow at low-levels can slow speed of gust front, limiting its

ability to undercut updraft | 1 Weakshear ® 1 Sirongshear

* Dynamic pressure effects via | *T s :
vertical PGF in shear can 20f ﬂ‘:;I}‘““” ﬁ MR (2010), Fig. 8.2
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Ordinary Thunderstorm (single cell)

* Consists of one updraft, outflow gust front spreads in all directions

* Forms in weak shear and modest CAPE, in weak synoptic forcing and
typically occur just after max daytime heating

* Pulse severe possible (wind, hail)

* Lifetime approximated as T = L + LA
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* Life cycle:
 Towering cumulus (only updraft)

* Mature (precipitation falls into updraft,
downdraft and gust front forms, anvil
forms)

 Dissipating stage (downdraft cuts off
updraft; orphan anvil)

ground
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Multicell Convection

* Characterized by repeated development of new cells along the gust front

* Longer-lived cluster of
storms in moderate vertical
shear and small to large CAPE

* Individual storms in cluster
may be ordinary, lasting 30-
60 mins

* In high CAPE moderate shear,
multicell convection can
produce swaths of damaging
winds and hail

MR (2010), Fig. 8.9



Evolution of Multicell Convection

e Individual cells move with the mean wind :
averaged over their depth

* New cells initiate along gust front
* @ Time O:

e Cell 1 —dissipative stage

e Cell 2 — mature stage

* Cell 3 — precipitation beginning to form
* Cell 4 — towering cumulus stage

e @ Time 10:

Cell 1 — orphan anvil

Cell 2 — dissipative stage

Cell 3 — mature stage

Cell 4 — precipitation beginning to form
Cell 5 — towering cumulus stage

e @ Time 20:...and so on.

Mean wind=0

MR (2010), Fig. 8.11



Movement versus propagation

* Individual cells move with the mean wind @

* Repeated development of new cells on
flank of system leads to propagation of

system

* Total motion is cell motion+propagation

* New cells develop on gust front on

downshear side of cold pool

T e— cell motion vector
=% propagation vector
== system motion vector

*' MR(ZOlO) Fig. 8.10
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Multi Cell Clusters

® Aggregates of multi-cell storms are common over parts of the Southeast
in the summer. Each storm can be in a different phase of the life cycle.

® Can act as a loosely organized MCS or as vague as a large convective
blob.

® Forcing is usually weak and the primary risk is damaging outflow winds
from collapsing storms but can also produce hail.



Multi Cell Lines

. Collections of multicell storms along a line
with a large length to width ratio.
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Supercells

e Characterized by a thunderstorm with a
sustained, deep, rotating updraft
mesocyclone

* Occurin strong vertical shear through a
deep layer (big storm-relative winds),
but high CAPE not necessary

* Motion deviates significantly from
mean wind

* Vertical PGF enhances updraft, a special MR (2010), Fig. 8.17
property of supercells



Supercell Features

* Single, long-lived, quasi-steady, rotating, precipitation free, updraft
* Wall cloud at updraft base where humid, rain-cooled air drawn upward

* Two downdraft regions: rear flank downdraft (RFD) and forward flank
downdraft (FFD)

MR (2010), Fig. 8.22



Supercell Types

* For isolated storms, supercell type is (maybe) a function of storm-relative

winds (SRW) at level of anvil (9-12 km AGL)

* Weak upper-level storm-relative winds (<18 m/s): HP; moderate (18-28 m/s):
classic; strong (>28 m/s): LP

* For multiple storms
in close proximity,
precipitation from
one storm may seed
another storm,
favoring HP types

e Stronger SRW
favors larger
updrafts resistant to
entrainment.
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Recipe for a Squall Line

* Deep-Layer flow, shear vectors, and SR winds largely parallel to boundary
* Overlapping and interacting storms

 Strong linear convergence (ascent) along the boundary
* Form lots of storms close to one another

e Storms do not move away from the zone of ascent

- Longer residence time in the zone of ascent leads to more updrafts and more mature
updrafts interacting with each other.



| \LH B .
: : - |
Setup Favoring Discrete Convection \

[}
I 2 o

I

N\
| e =
|II T+1 ||
JII T+0 |
|II |
. - |

|




Recipe for Discrete Storms

* Deep-Layer flow, shear vectors, and SR winds oriented across a boundary
e Storms tend to not interact (need to also consider storm splitting)

 Weaker convergence (ascent) along the boundary
 Fewer storms form

e Storms move away from the zone of ascent faster
* Less chance for upscale growth into a line



27 April 2011 Supercell Mode Case
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0-6 km shear vectors
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9-11 km storm-relative winds
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Forced Squall Line Case
* Still some cross-boundary flow and shear vectors
e Stronger cap and moderate buoyancy
* Much stronger low-level convergence

 Front moved as fast as the storms

- Relative speed is often overlooked. A surging front may travel as fast if not faster than
the storms that form on it.
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2345 UTC Fri 23 May 2005
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8845 UTC Sat 24 May 2005 Visible Satellite htt :;’fadds.uviationweather.gov
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Summary

* Convective mode and storm organization are primarily modulated by vertical
shear.

* Strength of forcing for ascent is likely the most important factor, along with
whether or not storms will move off a boundary.

. Shear Vector orientation and storm relative flow determine residence time
within zones of ascent along boundaries.

* Shear vector orientation is more important in cases with weaker forcing for
ascent, where storm interactions could lead to upscale growth



.. & When poll is active, respond at pollev.com/severeclass641

What is the approximate life time of a single cell
thunderstorm?

1 hour
30 min
3 hours

10 min

Powered hv ‘h Pall Fuvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




o & When poll is active, respond at pollev.com/severeclass641

What is the best combination of flow aloft and lift to get
linear storms?

Strong forcing for ascent and flow
across the initiating boundary.

Weak forcing for ascent and flow
parallel to theinitiating boundary.

Strong forcing for ascent and flow
parallel to theinitiating boundary.

Weak forcing for ascent and flow
across the initiating boundary.

Powered hyv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Count of Tornado events 2003-2022 N=20873
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Kernel Desnity Tornado events per decade 2003-2022 N=20873
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KDE Disorganized Tornado Events per decade Fall (SON) KDE Disorganized Tornado Events per decade Winter (DJF)

KDE Disorganized Tornado Events per decade Spring (MAM) KDE Disorganized Tornado Events per decade Summer (JJA)

1 2 3 4 5
events per decade



KDE QLCS Tornado Events per decade Fall (SON) KDE QLCS Tornado Events per decade Winter (DJF)

KDE QLCS Tornado Events per decade Spring (MAM) KDE QLCS Tornado Events per decade Summer (JJA)

events per decade



KDE Supercell Tornado Events per decade Fall (SON) KDE Supercell Tornado Events per decade Winter (DJF)

events per decade
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