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Why do we care about lapse rates?

e Helps generate buoyancy (influences T-storm intensity)
e Influences convective initiation (Houston and Niyogi 2007)

e Influence precipitation intensity (Takemi 2009)



Lapse rates in most T-storm
environments will be
conditionally unstable...

In other words, between the dry
adiabatic lapse rate (9.8 C/km)
and the moist adiabatic lapse
rate.
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Lapse rates in most T-storm
environments will be
conditionally unstable...

In other words, between the dry
adiabatic lapse rate (9.8 C/km)
and the moist adiabatic lapse
rate.

Compare the CAPE profiles for
these three environmental lapse
rates. What are the implications
for updraft acceleration?

(Recall: Wmax = sqrt(2*CAPE))
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How do lapse rates change?

Local change in lapse rate =

<

Horizontal lapse rate advection

Influence of lift/stretching

Differential Thermal Advection

Diabatic Heating



Lapse Rate Tendency
®\What physical processes alter the environment lapse rate?

Start with 15t Law of Thermodynamics

This is an important point!

temperatur

o¥ pressure Our ability to anticipate changes in lapse rate
a=6 i—:— cxi—f derives directly from the first law of
heatin .
e J O e thermodynamics!

specific specific
heat valume {:;I



Lapse Rate Tendency

®\What physical processes alter the environment lapse rate?

Expand full derivatives and assume hydrostatic conditions (OK for synoptic and mesoscale)
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Lapse Rate Tendency

®\What physical processes alter the environment lapse rate?

Expand full derivatives and assume hydrostatic conditions (OK for synoptic and mesoscale)
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Differentiate with respect to —z
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Lapse Rate Tendency

®\What physical processes alter the environment lapse rate?

Relatively small,

assume
hydrostatic
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Lapse Rate Tendency

®\What physical processes alter the environment lapse rate?

Relatively small,

assume

hydrostatic We neglected
2

lal_:r'].'.El'r'l"IS
dz2

Substitute in definition for environment lapse rate y = — 97/, and dry adiabatic lapse rate I'; = ¢ /EF

dy _ dy dvy ow 1 dg
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Lapse Rate Tendency

®\What physical processes alter the environment lapse rate?

Relatively small,
assume
hydrostatic

Substitute in definition for environment lapse rate y = — 97/, and dry adiabatic lapse rate I'; = ¢ /EF

dy dy dvy w 1 dg
Fra Viy — Waz + Bz Vil + Bz T —v¥) - @5 Lapse rate tendency equation




Lapse Rate Tendency Equation

dy _ dy dvy dw 1 dg
E— —vh‘Fh'}’_Wg'l'E‘ FhT-I-E(Fd —}f]‘—ag
A B C D E F

We’ll work through each term to understand
the physical mechanisms



Lapse Rate Tendency Equation

dy|_ dy dvy dw 1 dg
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(Markowski and Richardson 2010, Fig. 7.3)



Lapse Rate Tendency Equation

dy|_ dy dvy dw 1 dg
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0000 UTC 1 June 1985

Term A: local time rate of change of environment lapserate ., # # * # & & ¢
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(Markowski and Richardson 2010, Fig. 7.3)



Lapse Rate Tendency Equation

a ad dv aw 14
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Term B: horizontal lapse rate advection - this e W/ “ W[
one is very important! Let’s take a closer look! N , ¢
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Figure 7.4

Amalysis of the environmental temperature difference between 300 and 700 mb (K. which is a bulk measure of the
midlevel lapse rate (a temperature difference of 27 K between 500 and T mb corresponds to an approximately dry
adiabatic environmental temperature profile), revealing the presence of horizontal lapse rate advection. Wind barbs
depict the mean wind in the 500-700 mb layer. Large lapse rates from the high terrain of northern Mexico and eastern
MNew Mexico are being advected toward the southern Great Plains of the United States. This comman warm season
phenomenoen leads to the formation of the clevated mixed layer that caps soundings in the Great Plains region.

(Markowski and Richardson 2010, Fig.
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700-500 mb lapse rates -
700-500 mb mean wind o

B =30 .

Given these wind vectors, what
| do you expect to happento the
lapse rates at LZK?
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Just like moisture, lapse rates :
| can be tracked days ahead ofa |
severe weather outbreak!
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ji Here's another example.
>
" i Notice the steeper lapse rates
S8l upstream at AMA.
y : . .
= N Given westerly winds, what do
\ GUN sounding Al you think will happen to the
WAl |apse rates at OUN?
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Consider the terrain!

Amarillo
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Elevation generally increases as you go
west towards the mountains. What would
happen if we advected a surface parcel
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Elevation generally increases as you go
west towards the mountains. What would
happen if we advected a surface parcel

from"ABQ to OUN? McKinne

_Parcelis now at a higher altitude AGL!
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The last slide was a slight exaggeration of
what occurs (parcels can descendin
altitude), but illustrates an important point.
The deep, well-mixed boundary layer over
the southern Rockies can be advected
east over the plains...

And becomes an Elevated Mixed Layer!
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This is an important process for generating
steep lapse rates over the Plains, which in
turn supportlarge CAPE values.
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Nearly neutral layer
above boundary layer in
Norman noon sounding.

Notice the southwesterly flow in
this layer - it likely originated from
New Mexico plateau!
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Lanicciand Warner (1991)



Lapse Rate Tendency Equation

dy _ dy| dvy dw 1 dg
E— —vh'vhr_wE+E'FhT+a_z(rd —'}’)—aﬂ—z

A B C D E F

final sounding

/
initial sounding
I 5

Term C: vertical lapse rate advection \

Figure 7.5

Schematic thermodynamic diagram illustrating the effect of vertical lapse rate advection. The light blue arrows
indicate dry adiabatic parcel displacements. At level 2y, 9y faz <0, so when upward motion is imposed (w >0
but dw/az =0, so that all of the parcels are displaced upward by the same distance) larger lapse rates are advected
from below z; upward to zj. increasing the lapse rate there. Note that this process occurs adiabatically, so that
cooling has occurred at 2 in addition to increasing the lapse rate there. This cooling associated with upward
motion is typically more important for cap removal and thunderstorm initiation than just the increasing lapse
rate, For example, dry adiabatic large-scale ascent always leads to cooling (and cap weakening) when lapse rates
are less than dry adiabatic, but lapse rate changes resulting from large-scale ascent may or may not be significant,
depending on the initial y, ay /az, and aw/faz, . ) .

(Markowski and Richardson 2010, Fig. 7.5)



Lapse Rate Tendency Equation

dy _ dy| dvy dw 1 dg
E——Uh'FhT—WE'FE‘VhT‘FE(Fd—}’ —aﬁ

A B C D E F

final sounding

/
initial sounding
| >

Term C: vertical lapse rate advection \

Positive lapse rate advection will contribute to \
increasing lapse rates

In this case, lapse rates at level z1 increase as steeper
lapse rates from below are advected upward

Figure 7.5

Schematic thermodynamic diagram illustrating the effect of vertical lapse rate advection. The light blue arrows
indicate dry adiabatic parcel displacements. At level 2y, ay foz <0, so when upward motion is imposed (w >0
. but dw/az =0, so that all of the parcels are displaced upward by the same distance) larger lapse rates are advected
Can be Ord er Of magnltUde Ia rger than term from below z3 upward to z;. increasing the lapse rate there. Note that this process occurs adiabatically, so that
B I cooling has eccurred at 2y in addition to increasing the lapse rate there. This cooling associated with upward
on mesoscale motion is typically more important for cap removal and thunderstorm initiation than just the increasing lapse
rate. For example, dry adiabatic large-scale ascent always leads to cooling (and cap weakening) when lapse rates
are less than dry adiabatic, but lapse rate changes resulting from large-scale ascent may or may not be significant,
depending on the initial y, ay /az, and aw/az,
(Markowski and Richardson 2010, Fig. 7.5)
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Lapse Rate Tendency Equation

dy _ dy | dvy dw 1 dg
E——Uh'FhT—WE+E‘V}IT+E(Fﬂ—}’ —aﬁ

A B C D E F

Term D: when combined with term B, this term represents

final soundi
differential temperature advection e sounding =R B
\ 5 initial sounding
O g1 v 0 (—py-V,T) \
—_— - Ty, * =|=——— =11 *
9z 'k h*VaY 3z h*Vh z \
\
\
\
Figure 7.6

Schematic thermodynamic diagram illustrating the effect of differential horizontal temperature advection
{by the ageostrophic wind) on the lapse rate (temperature changes are indicated by the light blue arrows).
Cold advection increases with height at level 2y, which leads to an increase in the lapse rate at that level.
This effect is really the same effect as illustrated in Figure 7.4,

(Markowski and Richardson 2010, Fig.

PE—



Lapse Rate Tendency Equation

dy _ dy | dvy dw 1 dg
E——Uh'FhT—W£+E‘VhT+E(Fd—F —aﬁ
A B C D E F

Term D: when combined with term B, this term represents ,
R . . final sounding
differential temperature advection —E_J

\ ,,_S_ initial sounding
\

z, \

dvh d

Fre Val —vp - Vpy = —a—z(—i’h - VypT)
Lapse rates will increasein situations where cold \1
advection is increasing with height or warm

advection is decreasing with height

In this case, lapse rates at level z1 increase in
response to cold air advection increasing with Figure 7.6

height Schematic thermodynamic diagram illustrating the effect of differential horizontal temperature advection
{by the ageostrophic wind) on the lapse rate (temperature changes are indicated by the light blue arrows).
. Cold advection increases with height at level 2y, which leads to an increase in the lapse rate at that level.
Can be order of magnitude larger than term  pis effect is really the same effect as illustrated in Figure 7.4,

B on mesoscale
(Markowski and Richardson 2010, Fig.
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Differential Thermal Advection
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Differential Thermal Advection
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Lapse Rate Tendency Equation

dy

==V Vpy—w

at
A B

Term E: stretching effect on lapse rate

Horizontal convergence increases lapse rate
Horizontal divergence decreases lapse rate
Term = 0 when environment lapse rate is dry
adiabatic (y = Iy)

In this case, lapse rates at level z1 increase in
dw
response to convergence [E > 0)

Can be order of magnitude larger than term
B on mesoscale

dy
dz

C

L VT+awF 1 99
gz nh dz (Ta —¥) Cp az
D E F
final sounding Stro ngerasce nt=
Z’\\ cools faster
\ <«
\
Z4 \
\

initial sounding
\ S

Weaker ascent = /

cools slower

Figure 7.7
Schematic thermodynamic diagram illustrating the stretching effect on lapse rate. In this example,
I'q > yand iwfiz > 0, therefore the lapse rate at level z; increases in time. The light blue arrows indicate
dry adiabatic upward parcel displacements (because aw/iz > 0, the displacements increase with height).

(Markowski and Richardson 2010, Fig.
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Influence of
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Lapse Rate Tendency Equation

dy _ dy dvy dw 1 dq
¢ = VnVay - Wa_+a_‘VhT+—(Fd F)—aﬁ

A B C D E F

Term F: diabatic heating effect on lapse rate initial sounding 2»
\ final sounding
N S
e N\
s s B, \ —_—
1
In this case, in response to a diabatic heating Z //
maximum at level z1, lapse rates increase above /
and decrease below level z1. 4

Figure 7.8
Schematic thermodynamic diagram illustrating the effects of differential diabatic heating on lapse rate
(temperature changes are indicated by the light blue arrows). The maximum latent heating occurs at level
21. where 4g/az = 0 and the lapse rate is unchanged. The lapse rate increases above the level of maximum

Can be Order Of magnitUde Ia rger than term heating (z > 21) and decreases below the level of maximum heating (2 < 2¢).

B on mesoscale
(Markowski and Richardson 2010, Fig.
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Initial Profile Convection Occurs Final Profile

Latent heat release
warms temperatures

d ;:
> Evaporative cooling .-
d > d lowers temperatures’




INFLUENCE OF FAILED
CONVECTION
ON THE THERMODYNAMIC
PROFILE

Weak ascent supports an initial,
isolated updraft



INFLUENCE OF FAILED
CONVECTION
ON THE THERMODYNAMIC
PROFILE

Dry air entrainment near the

capping inv ersion erodes the
updraft.

Updraft may reach LFC, but
residual updraft/pressure
perturbationis too weak to support
further dev elopment (turkey tower).

Conv ectiveinitiation has failed.
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INFLUENCE OF FAILED
CONVECTION
ON THE THERMODYNAMIC
PROFILE

Evaporative cooling in the path of the
failed updraft cools/moistens the column.

This leads to a localized reduction in CIN.

SUERE SUS R SUC I S

*
L 4
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INFLUENCE OF FAILED
CONVECTION
ON THE THERMODYNAMIC
PROFILE

If mesoscale lift continuesin thislocalized
area of reduced CIN, subsequent
attemptsat conv ective initiation have a
higher probability of success!

T



INFLUENCE OF FAILED
CONVECTION
ON THE THERMODYNAMIC
PROFILE

Additional Considerations:

It may take multiple attempts at Cl to
sufficiently reduce CIN.

Consider time of day (is this occurring at 20 UTC
(additional diurnal heating expected) or at 00
UTC (peak diurnal heating)?

Strong forcing for ascent canreduce CIN via
lift/cooling and/or overcoming cap by lifting
parcels to LFC (i.e. is the depth of the lift
T greaterthanthe LFC?)

Watching satellite trendsis vitall

P 9 OO



In thisloop, watch for:
> |nitial attempts at Cl along dryline

> Successful Cl following the failed
attempts

> Maturation of tornadic supercells




CAPE/CIN Changes Independent of ¥ Tendency

® CIN can be reduced and/or CAPE increased by:

Rising motion Low-Level Moistening Low-Level Warming
(b) (@) ,

iah

I
1
T
1
I

ITTrI
L1111
TTTT
1111
T

Figure 7.9

CIN can be reduced by {a) large-scale rising motion, (b) low-level moistening (¢.g., mosture advection), and () low-
level warming (e.g., insolation), despite the fact that the CIN modifications may not be accompanied by lapse rate
changes, at least not over a significant depth. In (a)=(c), the isotherms and isentropes are solid gray lines, the constant
mixing ratio lines are gray dashed lines, the sounding and trajectory taken by an air parcel lifted from the surface are
solid and dashed black curves, respectively, and the modified sounding and parcel trajectory are blue solid and
dashed curves, respectively, In (a), for clarity, only the temperature profile has been modified (the moisture profile
has not been modified in accordance with the vertical motion that has been imposed in the laver of the capping
inversion ). Note that (b) and (c) are also accompanied by increases in CAPE. Conversely, CIN is augmented by large
-scale descent, boundary layer cooling (although this would typically not eccur without a concurrent stabilization of
the lapse rate), and boundary layer drying (not shown). (Markowski and Richardson 2010, Fig.
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