Skew-T Diagram Basics

METR 4403/5403 — Spring 2021
Material originally prepared by Rich Thompson
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Features of note in SkewT log P

* Temperature is skewed about 90° from the dry adiabats
* Pressure decreases as a logarithm of height (faster at bottom than

top)

* Mixing ratio crosses over temperature lines
* It’s a function of pressure, which is why the same dew point temperature at higher elevation
contributes more to buoyancy

* One thing missing is a plot of saturated parcel ascent



Saturated ascent (clouds) —
parcel cools at a rate of
~6.5 C km?

(pseudo adiabatic “lapse rate”)

Lapse rates R
between'saturated -
and unsaturated— =
“conditionally
nstable”

A

Dry ascent (no clouds) —




Lifted Parcel (chunk of air)

* Begin at lifted parcel level (ground)

* Rise “dry adiabatically” until saturation
* Where dry adiabat crosses mixing ratio
* We call this the “lifting condensation level” or LCL
e First guess at cloud base
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Illustration of lifted parcel

* From LCL, rise “moist adiabatically” to “level of free

convection” or LFC

* “Free convection” begins where lifted parcel becomes warmer than
environment

* Energy resisting lift below LFC is known as “convective inhibition” or CIN

* From LFC, continue up to the “equilibrium level” or EL. Accumulated
area (energy) from LFC to EL is known as CAPE

e “Overshoot” above EL



Common Sounding Terms

e Lapse rate — change in temperature with height
* Dry adiabat =9.8 C km™
* Moist adiabat = 6.5 C km™

* Conditional instability — lapse rate between dry and moist adiabatic
* LCL — lifting condensation level

* LFC —level of free convection

* EL — equilibrium level

* CAPE — buoyancy (positive area)

* CIN — convective inhibition (negative area)
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What's the difference between the lifted
parcels?

* Virtual temperature accounts for moisture

* Warmer than measured temperature
 Makes most difference with tropical moisture

* Virtual temperature correction increases CAPE and reduces CIN

e Which chunk of air to lift?

 Some sort of averaging is usually more representative
e Surface vs. “mixed layer” or “most unstable”
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Surface and most
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What are we assuming?

* No mixing with environment (not true)

e “entrainment” usually reduces updraft strength from expectations based on
CAPE alone

 All rain falls out instantly (not true)
e Suspended rain particles reduces updraft strength
* That’s why we say “pseudo” adiabatic for saturated parcel ascent

* “Parcel Theory” is a first guess at a complicated process!



Always keep in mind what
we don’t know:

* Uncertainty in observations
* “Good” measurements?
* Do they represent what we’re trying to forecast?

* Unknown details with lifted parcels
 What is right layer to view?
* What assumptions are valid, and which might be terribly wrong?

* Lots of room for error, but the concepts are useful!



al mixing

ives thermals and mixing, which
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Surface heating drives
vertical mixing
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Impact of ascent and moisture advection

* See moist layer deepen faster than you would expect with just
surface heating and mixing

* “Deep” moist layer and horizontal moisture advection both combat
vertical mixing driven by surface heating
e Can see moist layer deepen while dew points increase near surface
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Sounding diagrams are used for...

* Moisture and temperature profiles

e Estimates of CAPE, CIN, Lifted Index, etc.
 Will storms form?

* Vertical wind shear (material on hodographs next week!)
* What kind of storms will form?

* Many of your favorite thunderstorm parameters are based in these
diagrams, and subject to the same errors and concerns!



Quality of Surface
Observations?

P

Courtesy of Oklahoma Mesonet



Standard surface observations

METAR 140823/2200 SKYC THPY N:-’Yli GUST DNPY BREX
4087 2200 OB 8




OK mesonet observations at the sametime




Dew point analysis for OK mesonet observations




What do these sites have in common?

METAR 140823/2200 SKYC THPY N:-’Yli GUST DNPY BREX
4087 2200 OB 8
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Understand the Data and Processes!

* Understanding the processes gives you a sound way to interpret
weather data, and recognize errors

* If you don’t know what you’re using, how do you know if you’re using
it correctly?
* Must consider data quality

* Focus on observations!



Parcel Theory

METR 4403/5403 — Spring 2021

Material prepared by Tom Galarneau



Buoyancy

* Buoyancy is the upward force arising from the displacement of a fluid by
another fluid or object (Archimedes’ Principle)
* The upward force is equal to the weight of the displaced fluid
* Buoyancy is the key force for convection! (Supercells are more complicated...)

* Vertical momentum equation for convective scales goes as:

dw 16 ! r 16 ’ r
P P P + B B=—g%=buﬂyancy

E=_Eﬂz_gp

_E 0z
: . d
If p’ > 0, parcel is more dense than environment. . B <0 = d—": <0

. . d
If p" < 0, parcel is less dense than environment. . B > 0 — d—": >0

* B controls the parcel acceleration. So, rising parcels can continue to rise
for some time after becoming negatively buoyant (like overshooting top!)



Buoyancy
* Write buoyancy in terms of temperature since we measure that

Using idealgas law: B = _ng= (Té_p_)
p

Tvr 91;’ 9! Neglecting
e o = —_— = — B — -_—
T, B=g T, g 0, g g \Water vapor

I
For small mach number: B = ‘ppf

* Reference state temperature is environment (temperature line on
sounding)

Top — Tvenv) T,, is virtual temperature of air parcel

~B=g ( Tyeny 1S Virtual temperature of ambient environment

TFEHP
. : d
If Typ < Tyeny, parcel is colder than environment. . B <0 - d—‘: <0

dw

dt‘kﬁ

If Typ > Tyenv, parcel is warmer than environment. . B > 0 -



NOTES AND CORRESPONDENCE

The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations

CHARLES A. DOSWELL III AND ERIK N. RASMUSSEN*
NOAA/Environmental Research Laboratories, National Severe Storms Laboratory, Norman, Oklahoma

3 March 1994 and 22 June 1994

ABSTRACT

A simple theoretical analysis of the impact of neglecting the virtual correction on calculation of CAPE is
made. This theory suggests that while ignoring the virtual correction does not introduce much error for large
CAPE values, the relative error can become substantial for small CAPE. A test of the theory is done by finding
the error made by ignoring the virtual correction to CAPE for all the soundings in 1992 having positive CAPE
(when the correction is made). Results of this empirical test confirm that the relative error made in ignoring
the correction increases with decreasing CAPE. A number of other “corrections’ to CAPE might be considered.
In a discussion of the issues associated with the results of the analysis, it is recommended that CAPE calculations
should include the virtual correction but that other complications should be avoided for most purposes, especially
when making comparisons of CAPE values. A standardized CAPE calculation also is recommended.
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Parcel theory

* We need to be able to determine whether a lifted parcel has buoyancy

* Convective available potential energy (CAPE) tells us the kinetic energy a
parcel may gain due to buoyant acceleration

EL

CAPE = f B dz Vertical integration of buoyancy from LFC to EL.
LFC

Caveats: CAPE>0 does not guarantee convection.
Not all parcels have an LFC.

e Convective inhibition (CIN) tells is the work done by a parcel against stable
stratification to reach its LFC

LFC
CIN = —f B dz Vertical integration of buoyancy from ground to EL.
0

Need to overcome CIN to trigger convection.



Theoretical Maximum Updraft Speed

* Parcel theory can be used to estimate w__, from buoyancy alone

: : . d
* Manipulate vertical momentum equation (d—‘: = B) for parcel theory

40 or less Regular updraft
Wiy = V2 * CAPE 1000 J kgt CAPER 45 m st updraft (??) ro6o Strons pdrat
61 to S0 Very strong updraft

81 or greater Extreme updraft

* Theoretical updraft speeds based on CAPE seem large — what factors
counteract buoyant accelerations for air parcels?

One can relate CIN to a vertical velocity, wig, or the
estimated amount of lifting required to overcome the negative
area by the following expression:

W, =~2%CIN



1. Vertical PGF wide warm bubble o narrow warm bubble

Jecr- 8
g

Wider thermal has larger PGF compared to
narrow thermal (more air needs to be moved out
of the way)

As thermal becomes wider the scenario
approaches hydrostatic where PGF offsets

buoyancy (dw/dt=0)
Narrow updrafts more favorable for LN
thunderstorm development 7 47 *
2 o/ DJPRA
2. Entrainment =

Mixing of environment air into rising thermal

Wy = 16.5m s~

If env is cooler/drier, evaporation cools thermal,
reduces B o\

Updraft dilution more detrimental for narrow or
tilted updrafts (wider is better)

Fig. 3.1 MR 2010



Summary

* Parcel theory overestimates updraft speed
* Vertical PGF limits updraft speed; significant for wide updrafts
* Entrainment limits updraft speed; significant for narrow/tilted updrafts

* Hydrometeor loading also limits updraft speed

* Parcel theory does not account for layer lifting and development of moist
absolutely unstable layers (MAULSs)

A3 o
X Absolutety
s N s 4 HUnstable |

- #| “ !

\ e
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Fig, 1. Idealized sounding: (a) initial conditionally unstable sounding, (b) layer lifting is applied (thin black lines represent the
path of selected parcels within the lifted layer), and (¢) resulting structure after lifting, which features a deep moist absolutely un-
Bryanand Weisman 2000

stable layer.



Layer Lifting

Layer lifting can lead to convectively unstable
conditions

Unsaturated layer lifted, bottom reaches
saturation before top of layer

Bottom of layer cools at [},
Top of layer cools at [4

Layer destabilizes!
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Figure 3.3

[llustration of the concept of potential instability. A potentially unstable layer initially spanning
the pressure range of 910-810 mb has been lifted to 850-750 mb. Although destabilization of the
layer has occurred, lifting would have cooled the layer (and therefore reduced CIN) regardless of
whether or not lifting led to saturation at the bottom of the layer.

Fig. 3.3 MR 2010
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...Storm Motion Vectors...
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