Mode of Convection

METR 4403/5403 — Spring 2023



Mode and Environment Conditions

* Ordinary thunderstorm, multicell storms, and supercells
* Environment conditions (CAPE and shear) influence convective mode

 Vertical wind shear:
* has greatest influence on thunderstorm structure and behavior (mode)
 acts to promote longevity and organization of thunderstorms

* 0—-6 km bulk shear is most common measure (but it neglects details in
hodograph that matter!)
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Figure 8.5

Spectrum of storm types as a function of vertical wind shear. Although the vertical shear exerts

the greatest influence on storm type, other secondary factors can also affect the mode of convection
(e.g., vertical distribution of buoyancy, moisture, and shear, as well as the means by which storms are
initiated); thus, some overlap among storm types exists in this simple single-parameter depiction. The
relationship between vertical wind shear magnitudes and the nature of cell regeneration/propagation

is also shown. MR (2010)



Importance of Vertical Shear

* Interference between precipitation and updraft is reduced as vertical shear

increases

* Precipitation falls downwind of updraft
e Strong storm-relative winds aloft blows precipitation away from updraft core

* Storm-relative inflow at low-levels can slow speed of gust front, limiting its

ability to undercut updraft

—_

* Dynamic pressure effects via
vertical PGF in shear can
produce strong lifting
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Ordinary Thunderstorm (single cell)

* Consists of one updraft, outflow gust front spreads in all directions

* Forms in weak shear and modest CAPE, in weak synoptic forcing and
typically occur just after max daytime heating H=scale height

Wp=average updraft speed

* Pulse severe possible (wind, hail) vi=terminal velocity of precipitation
. . . H H Time for precipitation produced by ascent to fall to
e Lifetime approximated as T = — + — ground
104 m 104 m O\t/ Time for air to ascend from surface to EL
T : (b) (c)

= =103 103 s = 2000 s = 30 min»
1Oms‘1+10ms‘1 s + S s=3 mm'

* Life cycle:
* Towering cumulus (only updraft)
e Mature (precipitation falls into updraft,

downdraft and gust front forms, anvil Ay

forms) 1 »
 Dissipating stage (downdraft cuts off B 7 WL

updraft; orphan anvil) i e

MR (2010), Fig. 8.8



Multicell Convection

* Characterized by repeated development of new cells along the gust front

* Longer-lived cluster of
storms in moderate vertical
shear and small to large CAPE

* Individual storms in cluster
may be ordinary, lasting 30-
60 mins

* In high CAPE moderate shear,
multicell convection can
produce swaths of damaging
winds and hail

MR (2010), Fig. 8.9



Evolution of Multicell Convection

e Individual cells move with the mean wind
averaged over their depth

* New cells initiate along gust front
* @ Time O:

e Cell 1 —-dissipative stage

e Cell 2 - mature stage

* Cell 3 — precipitation beginning to form
* Cell 4 - towering cumulus stage

e @ Time 10:

Cell 1 — orphan anvil

Cell 2 — dissipative stage

Cell 3 — mature stage

Cell 4 - precipitation beginning to form
Cell 5 — towering cumulus stage

e @ Time 20: ...and so on.

o Mean wind=0

@ Cell 2

MR (2010), Fig. 8.11



Movement versus propagation

~ | = cell motion vector
> propagation vector
- system motion vector

e Individual cells move with the mean wind

* Repeated development of new cells on
flank of system leads to propagation of
system

MR (2010), Fig. 8.10
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* New cells develop on gust front on —
downshear side of cold pool Szt m l

MR (2010), Fig. 8.12

* Total motion is cell motion+propagation




Movement versus propagation
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* Formation of new cells along the gust front is also influenced by the low-level
system-relative winds (left) and moisture heterogeneities (right)



Multi Cell Clusters

Aggregates of multi-cell storms are common over parts of the Southeast
in the summer. Each storm can be in a different phase of the life cycle.
Can act as a loosely organized MCS or as vague as a large convective
blob.

Forcing is usually weak and the primary risk is damaging outflow winds
from collapsing storms but can also produce hail.
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Multi Cell Lines

Collections of multicell storms along a line
with a large length to width ratio.

Can take multiple forms
« Serial MCS

« Progressive MCS

- LEWPs ﬂine echo wave patterns)

« Bow echos

« Derechos

Usually more orFanized than clusters with
stronger vertical shear.

Can produce Damaging wind gusts
tornadoes and some hail.



Supercells

* Characterized by a thunderstorm with a
sustained, deep, rotating updraft 2
mesocyclone

* Occur in strong vertical shear through a
deep layer (big storm-relative winds),
but high CAPE not necessary

* Motion deviates significantly from
mean wind

* Vertical PGF enhances updraft, a special MR (2010), Fig. 8.17
property of supercells



Supercell Features

* Single, long-lived, quasi-steady, rotating, precipitation free, updraft
* Wall cloud at updraft base where humid, rain-cooled air drawn upward

 Two downdraft regions: rear flank downdraft (RFD) and forward flank
downdraft (FFD)

MR (2010), Fig. 8.22



Supercell Types

* For isolated storms, supercell type is a function of storm-relative winds
(SRW) at level of anvil (9-12 km AGL)

* Weak upper-level storm-relative winds (<18 m/s): HP; moderate (18-28 m/s):
classic; strong (>28 m/s): LP

low-precipitation supercell classic supercell heavy-precipitation supercell

* For multiple storms |[__
in close proximity, -
precipitation from o ‘\mm
one storm may seed y
another storm, L
favoring HP types R
e Weaker SRW favors QQ,
larger updrafts 2
resistant to % A ‘/
entrainment. i — g -

MR (2010), Fig. 8.24 MR (2010), Fig. 8.16 MR (2010), Fig. 8.26
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Recipe for a Squall Line

* Deep-Layer flow, shear vectors, and SR winds largely parallel to boundary
e Overlapping and interacting storms

 Strong linear convergence (ascent) along the boundary
* Form lots of storms close to one another

e Storms do not move away from the zone of ascent

- Longer residence time in the zone of ascent leads to more updrafts and more mature
updrafts interacting with each other.



Setup Favoring Discrete Convectioi/ K
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Recipe for Discrete Storms

* Deep-Layer flow, shear vectors, and SR winds oriented across a boundary
e Storms tend to not interact (need to also consider storm splitting)

* Weaker convergence (ascent) along the boundary
* Fewer storms form

e Storms move away from the zone of ascent faster
* Less chance for upscale growth into a line



27 April 2011 Supercell Mode Case

FiY
. B
. -
. ’ Fit
. reel
= ¢
f
4 b \.‘Th
oy
. 2 RN
.';l + ["'-.
— 3 % e
o 7 ! L
¢ - :
F/EF  ..NUM.. ..FAT.. ..INJ OHG. . \
FO 43 0 1 B8N
Fi 45 1 3 17.9 M -;;;
F2 15 6 12 25.5 M >
F3 15 27 311 1%.1 M
F4 11 157 2131 3044.0 M J
F5 q 121 288 1265.7 M |
RPT TYPE NUHBEER DERTHS INJURIES DAMAGE l"».
TORNADOES : 133 312 2746 4509.9 M b
WIND: 158 i 4 23.2 M ||
HAIL : 147 0 0 2.4 M
TOTAL = 438 313 2730 4335.6 M Wed 04/27/2011 1200 — Thu 04/28/2011 1200 UTC



National Weather Service 110427/1200 500 MB UA OBS, HGHTS, and TEMPS

27 APR 2011 12z
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MLCAPE and MLCIN
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O 6 km shear vectors
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9-11 km storm-relative winds
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1815 UTC Wed 27 apr 2811 Visible Satellite http://adds.aviationweather .gov
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NEXRAD LEVEL-II
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Forced Squall Line Case

* Still some cross-boundary flow and shear vectors
e Stronger cap and moderate buoyancy
* Much stronger low-level convergence

* Front moved as fast as the storms

- Relative speed is often overlooked. A surging front may travel as fast if not faster than
the storms that form on it.



080524/0000 500 MB UA OBS, HGHTS, and TEMPS
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Visible Satellite

2245 UTC Fri 23 May 2005
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Summary

* Convective mode and storm organization are primarily modulated by vertical
shear.

 Strength of forcing for ascent is likely the most important factor, along with
whether or not storms will move off a boundary.

. Shear Vector orientation and storm relative flow determine residence time
within zones of ascent along boundaries.

* Shear vector orientation is more important in cases with weaker forcing for
ascent, where storm interactions could lead to upscale growth



L] & When poll is active, respond at pollev.com/severeclass641 L]

What is the approximate life time of a single cell
thunderstorm?

1 hour
30 min
3 hours

10 min

Powered hv ‘h Pall Fvervwhere

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




] @& When poll is active, respond at pollev.com/severeclass641 ]

What are the three main types of thudnerstorms?

Single Cell, Multi Cells
and Supercells

Single Cells Squall Lines
and Clusters

Supercells Multi Cell
Clusters and Single Cells.
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Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




] & When poll is active, respond at pollev.com/severeclass641

What is the best combination of flow aloft and lift to get
linear storms?

Strong forcing for ascent and flow
across the initiating boundary.

Weak forcing for ascent and flow
parallel to theinitiating boundary.

Strong forcing for ascent and flow
parallel to theinitiating boundary.

Weak forcing for ascent and flow
across the initiating boundary.
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