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Buovyancy

* Buoyancy is the upward force arising from the displacement of a fluid by
another fluid or object (Archimedes’ Principle)

* The upward force is equal to the weight of the displaced fluid
e Buoyancy is the key force for convection! (Supercells are more complicated...)

* Vertical momentum equation for convective scales goes as:

dw 10p’ p' 10p’ p' op —
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If p" > 0, parcel is more dense than environment. . B < 0 — o < 0

: : d
If p” < 0, parcel is less dense than environment. . B > 0 — d—Mt/ >0

* B controls the parcel acceleration. So, rising parcels can continue to rise for
some time after becoming negatively buoyant (like overshooting top!)



Buovyancy

* Write buoyancy in terms of temperature since we measure that
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For small mach number: K
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* Reference state temperature is environment (temperature line on
sounding)

Top — Tyenv Typ is virtual temperature of air parcel
~B=g ( ) Tyeny is Virtual temperature of ambient environment
Tvenv
: : d
If Ty < Tyenw, Parcel is colder than environment. . B <0 — d—‘f <0

: : d
If Typ > Tyeny, Parcel is warmer than environment. » B > 0 - d—‘: >0
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NOTES AND CORRESPONDENCE

The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations

CHARLES A. DoswWELL III AND ERIK N. RASMUSSEN*
NOAA/Environmental Research Laboratories, National Severe Storms Laboratory, Norman, Oklahoma

3 March 1994 and 22 June 1994

ABSTRACT

A simple theoretical analysis of the impact of neglecting the virtual correction on calculation of CAPE is
made. This theory suggests that while ignoring the virtual correction does not introduce much error for large
CAPE values, the relative error can become substantial for small CAPE. A test of the theory is done by finding
the error made by ignoring the virtual correction to CAPE for all the soundings in 1992 having positive CAPE
(when the correction is made). Results of this empirical test confirm that the relative error made in ignoring
the correction increases with decreasing CAPE. A number of other “corrections” to CAPE might be considered.
In a discussion of the issues associated with the results of the analysis, it is recommended that CAPE calculations
should include the virtual correction but that other complications should be avoided for most purposes, especially
when making comparisons of CAPE values. A standardized CAPE calculation also is recommended.
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Parcel theory

* Vertical accelerations are due to parcel buoyancy alone

* Vertical momentum equation for convective scales goes as:

dW_B
dt

* Parcel theory neglects vertical pressure gradient force, viscosity,
entrainment, hydrometeor loading, environment modifications



Parcel theory

* We need to be able to determine whether a lifted parcel has buoyancy

* Convective available potential energy (CAPE) tells us the kinetic energy a
parcel may gain due to buoyant acceleration

EL

CAPE = f B dz \Vertical integration of buoyancy from LFC to EL.
LFC
Caveats: CAPE>0 does not guarantee convection.

Not all parcels have an LFC.

* Convective inhibition (CIN) is the work done by a parcel against stable
stratification to reach its LFC

LFC
CIN = —j B dz Vertical integration of buoyancy from ground to EL.
0

Need to overcome CIN to trigger convection.



Theoretical Maximum Updraft Speed

* Parcel theory can be used to estimate w,_, from buoyancy alone

: : . d
* Manipulate vertical momentum equation (d—vtv = B) for parcel theory

dz & =Bdz > wdw=Bdz >
Wiy = V2 * CAPE 1000 J kg'! CAPE - 45 m s updraft (??) at

w2

d(%) = Bdz

* Theoretical updraft speeds based on CAPE seem large — what factors
counteract buoyant accelerations for air parcels?



1. Vertical PGF

Wider thermal has larger PGF compared to
narrow thermal (more air needs to be moved out
of the way)

As thermal becomes wider the scenario
approaches hydrostatic where PGF offsets

buoyancy (dw/dt=0)

Narrow updrafts more favorable for
thunderstorm development

2. Entrainment

Mixing of environment air into rising thermal

If env is cooler/drier, evaporation cools thermal,
reduces B

Updraft dilution more detrimental for narrow or
tilted updrafts (wider is better)

wide warm bubble

narrow warm bubble

Fig. 3.1 MR 2010




Summary

* Parcel theory overestimates updraft speed

 Vertical PGF limits updraft speed; significant for wide updrafts

* Entrainment limits updraft speed; significant for narrow/tilted updrafts
* Hydrometeor loading also limits updraft speed

* Parcel theory does not account for layer lifting and development of moist
absolutely unstable layers (MAULSs)
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Fic. 1. Idealized sounding: (a) initial conditionally unstable sounding, (b) layer lifting is applied (thin black lines represent the
path of selected parcels within the lifted layer), and (c) resulting structure after lifting, which features a deep moist absolutely un-

stable layer. Bryan and Weisman 2000



Layer Lifting

Layer lifting can lead to convectively unstable
conditions

Unsaturated layer lifted, bottom reaches
saturation before top of layer

Bottom of layer cools at [},
Top of layer cools at I,

Layer destabilizes!
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Figure 3.3

Illustration of the concept of potential instability. A potentially unstable layer initially spanning
the pressure range of 910-810 mb has been lifted to 850-750 mb. Although destabilization of the
layer has occurred, lifting would have cooled the layer (and therefore reduced CIN) regardless of
whether or not lifting led to saturation at the bottom of the layer.

Fig. 3.3 MR 2010



Skew-T Diagram Basics
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Raw SkewT-log P diagram
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Features of note in SkewT log P

* Temperature is skewed about 90° from the dry adiabats

* Pressure decreases as a logarithm of height (faster at bottom than
top)

* Mixing ratio crosses over temperature lines
* One thing missing is a plot of saturated parcel ascent



Saturated ascent (clouds) —
parcel cools at a rate of
~6.5 C km1

(pseudo adiabatic “lapse rate”)
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Lifted Parcel (chunk of air)

* Begin at lifted parcel level (ground)

* Rise “dry adiabatically” until saturation
 Where dry adiabat crosses mixing ratio
* We call this the “lifting condensation level” or LCL
 First guess at cloud base
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llustration of litted parcel

* From LCL, rise “moist adiabatically” to “level of free

convection” or LFC

* “Free convection” begins where lifted parcel becomes warmer than
environment

* Energy resisting lift below LFC is known as “convective inhibition” or CIN

* From LFC, continue up to the “equilibrium level” or EL. Accumulated
area (energy) from LFC to EL is known as CAPE

e “Overshoot” above EL



Common Sounding Terms

* Lapse rate — change in temperature with height
e Dry adiabat = 9.8 C km™!
* Moist adiabat = 6.5 C km

* Conditional instability — lapse rate between dry and moist adiabatic
* LCL — lifting condensation level

e LFC — level of free convection

* EL — equilibrium level

* CAPE — buoyancy (positive area)

* CIN — convective inhibition (negative area)
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What’s the difference between the lifted
parcels?

* Virtual temperature accounts for moisture
 Warmer than measured temperature
* Makes most difference with tropical moisture

* Virtual temperature correction increases CAPE and reduces CIN

 Which chunk of air to lift?

* Some sort of averaging is usually more representative
* Surface vs. “mixed layer” or “most unstable”

* Leading to different CAPE values — mixed layer CAPE, most unstable CAPE
(MCAPE), sfc-based CAPE.
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Boundary layer vertical mixing

* During daytime, surface heating drives thermals and mixing, which
take heat and moisture both upward (from surface) and downward
(from aloft)

e Usually see surface dew point drop in afternoon if not offset by
moisture advection (bringing in greater moisture from somewhere
else)
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Flagstaff, AZ sounding
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Impact of ascent and moisture advection

* See moist layer deepen faster than you would expect with just surface
heating and mixing

e “Deep” moist layer and horizontal moisture advection both combat
vertical mixing driven by surface heating
* Can see moist layer deepen while dew points increase near surface
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Sounding diagrams are used for...

* Moisture and temperature profiles

e Estimates of CAPE, CIN, Lifted Index, etc.
e Will storms form?

* Vertical wind shear (material on hodographs later!)
* What kind of storms will form?

* Many of your favorite thunderstorm parameters are based in these
diagrams, and subject to the same errors and concerns!



