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1. INTRODUCTION 

*As ensemble forecasting has been operational 
successfully for about 10 years for the global 
forecasting systems at centers such as NCEP and 
ECMWF, increasing emphasis is placed on 
mesoscale ensemble forecasting in recent years 
[e.g., the Storm and Mesoscale Ensemble 
Experiment (SAMEX) of 1998 (Hou et al., 2001)].  
Since ensemble prediction provides an estimate of 
the forecast probability distribution of atmosphere 
states and generates huge amount of data, one of 
the main problems for its operational use is the 
design of manageable products for potential users.  
The common products include the ensemble and 
cluster means, standard deviations or spread, and 
probabilities of different events (Toth et al., 1997).  
One of the most widely used products is the 
“spaghetti” diagram where a single map contains 
all ensemble forecasts (e.g., Toth et al., 1997).  
However, many questions about how to best 
interpret and evaluate ensemble forecasts still 
remain.   

This issue becomes even more complicated 
for mesoscale quantitative precipitation forecast 
(QPF), since QPF is a discontinuous field. 
Employing the technique of the ensemble mean 
and spread may yield meaningless results.  More 
over, due to various errors, such as phase shift, 
rotation, and deformation errors (see Fig. 1), it has 
been a challenge to generate and interpret the 
ensemble QPF products. 

Appropriate verification tools are essential in 
understanding the abilities and behaviors of an 
ensemble forecast system.  Since each member of 
the ensemble is a deterministic forecast and 
therefore each member is subjected to systematic 
error (bias), it would be helpful in understanding 
the ensemble precipitation forecasting to examine 
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and extract individual systematic error 
distributions.  However, for conventional statistical 
and other methods it has been very difficult to 
properly take into account spatial characteristics of 
forecasting precipitation fields including phase 
shift, rotation, and deformation. This difficulty 
hinders further studies on spatial distributions and 
relationships. 
 

 

 
Fig.1 Illustration of three precipitation forecasting 
(deep gray shaded region) errors against 
observation (light gray shaded region): a) Forecast 
with phase shifting error; b) Forecast with shifting 
and rotation error; c) Forecast with shifting, 
rotation and deformation error. 

 
Aimed at overcoming the above problems, this 

study proposes a spatial data mining approach as 
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a new tool for verifying and understanding 
ensemble precipitation forecasts.  Data mining is a 
process of exploring the data interrelationships or 
patterns from a potentially large volume of data 
using techniques that go beyond a simple search 
through the data (Huntsville, 1999; Fayyad, 1998).  
Data mining algorithms, in contrast to conventional 
methods, use discovery-based approaches in 
which pattern-matching and other algorithms are 
employed to determine the key relationships in the 
data.  Data mining can look at numerous 
multidimensional data relationships concurrently, 
highlighting those that are dominant or 
exceptional.   Since most of meteorological and 
geospatial data are related objects that occupy 
space, recent studies on data mining have 
extended the scope of data mining from relational 
and transactional databases to spatial databases 
(Koperski et al., 1996). 

Spatial data mining can be classified into 
many categories based on data mining 
functionalities (Goebel and Gruenwald, 1999).  For 
our specific study, we mainly focus on the 
following three aspects:   
1) Pattern recognition 

Although weather systems or features are well 
understood once shown graphically, many of them 
are ill-defined and hence difficult to quantify and 
extract using brute-force numerical methods.  
However, the identification and extraction of 
spatial objects share many similarities with the 
recognition and figure-ground separation problems 
in computer vision (Huang and Zhao, 1999).   A 
spatial object is not just a collection of constituent 
objects but with a rich internal structure that may 
influence the aggregate properties of the object 
including its identity.  Therefore, it is feasible to 
bridge the semantic gap between the input data of 
a massive grid field and the final symbolic 
description.   
2) Spatial clustering 

Clustering is usually one of the first steps in 
spatial data mining analysis and has been studied 
extensively for many years.   The main advantage 
of using this technique is that interesting structures 
of clusters or natural grouping of distribution of 
data can be found directly from the data and help 
users to focus on a particular set of clusters for 
further analysis.   

One of th3 well-known methods is the 
Partitioning algorithm which constructs a partition 
of a database D of n objects into a set of k 
clusters.  k is an input parameter for these 
algorithms, i.e., some domain knowledge is 
required which unfortunately is not available for 
many applications.  k-means algorithm is an 

example of  Partitioning algorithms.  The general 
weakness of partitioning-based algorithms is their 
inability to find arbitrarily shaped clusters.    

It is often desirable to find natural clusters, i.e., 
clusters which are perceived as crowded together 
by human eye.  To meet this need, other 
clustering methods have been developed based 
on the notion of density (Ester et al., 1996; Han et 
al, 2001).   

The first density-based algorithm is the 
DBSCAN algorithm (Ester et al., 1996), which 
judges the density around the neighborhood of an 
object to be sufficiently dense if the number of 
data points within a distance ε of an object is 
greater than MinPts number of points. As the 
clusters discovered are dependent on the 
parameters ε and MinPts,  DBSCAN relies on the 
user's ability to select a good set of parameters.  
To help overcome this problem, a cluster ordering 
method called OPTICS (Ankerst et al., 1999) was 
proposed.  Rather than producing a data set 
clustering explicitly, OPTICS computes an 
augmented cluster ordering for automatic and 
interactive cluster analysis.  One of the 
advantages of OPTICS is that OPTICS can handle 
very different local densities to reveal clusters in 
different regions.  However, the required 
parameters of ε and MinPts still rely on user’s 
decision, since we may not see clusters of lower 
density. 

In order to avoid any required parameters, in 
this research, we used Delaunay triangulation to 
get neighbors and local densities.  We then 
adapted OPTICS cluster ordering idea to reveal 
clusters in different regions. 
3) Spatial association rule 

A spatial association rule is a rule which 
describes the implication of one feature or a set of 
features by another set of features in spatial 
databases.  For example, a rule like “80% of 
schools are close to parks” is a spatial association 
rule. 

To determine a specific spatial distribution 
region of an ensemble member, the concept of 
alpha shapes is applied, which is an approach to 
formalize the intuitive notion of "shape" for spatial 
point sets. The clustering points are used as the 
spatial point sets to determine their shape. 
Therefore, the spatial association rules between 
the observation and each ensemble forecast can 
be derived with a specific spatial distributed 
region. 

In order to implement and test this approach, 
we generated a simulated dataset, in which 
observed and forecast precipitation regions are 
approximated by ellipses. Using the dataset, 



pattern characteristics or features, such as the 
center, axis and rotation, from the fields are 
depicted, and a new density-based clustering 
algorithm is then designed to extract the spatial 
precipitation distribution information.  Finally, 
spatial data mining association rules are derived 
from the database to reveal the relationships 
among the observations and forecasts.  

The organization of the rest of this paper is as 
follows.  We will first introduce the simulated 
dataset in Section 2.  Following this is an 
explanation of a pattern recognition method in 
Section 3.  Sections 4 and 5 describe the 
proposed density-based clustering with Delaunay 
triangulation and spatial association rules.  
Discussion and conclusions are given in Section 6. 

 
2. GENERATION OF SIMULATED DATASET 
 

As discussed previously, for precipitation 
forecast, there are generally three kinds of errors 
involved: phase shifting, rotation and deformation.  
Therefore, in our study, generating a 2-D 
precipitation dataset that contains such errors is 
important and necessary. This error information 
will be used in clustering analysis and for further 
association rule analysis as well. 

To simplify the problem of extracting patterns, 
with the possibility of generalization later, we use 
ellipses to represent the patterns in the 
precipitation field.  The standard ellipse equation 
is: 
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where a and b are the half axes. Rotation of a 
point (x, y) with respect to the origin is given by 
 

x’ = x * cos ϕ - y * sin ϕ ,             (2) 
y’ = x * sin ϕ + y * cos ϕ,             (3) 

 
where ϕ is the angle of rotation.  Furthermore, we 
need to consider the shift (xc, yc) from the origin.  
For a given center of ellipse (xc, yc), the horizontal 
and vertical axes a and b, and a rotation angle (ϕ), 
we can specify an ellipse.  For our test, we use a 
200 × 200 domain and set precipitation to zero 
outside the ellipses and to 1" inside.  We also 
assume that each model forecast only contains 
one precipitation field.  Figure 2 illustrates the 
samples of our datasets.  The dataset contains 
forecasts from 20 member models and each 
model generates 100 forecasts.  
 

3. PATTERN CHARACTERISTICS SELECTION 
 

The spatial objects or features perceived by 
scientists have common characteristics: they are 
all visually salient.  Therefore, the symbolic 
description must impose a conceptual structure on 
the system so that the complexity of the system 
can be understood in terms of well-defined parts 
and subparts, and the interactions among them. It 
is important to represent properly and objectively 
some specific properties of the objects with 
aggregate spatial properties.  We choose the 
center, major and minor axis and its rotation for 
the symbolic descriptions.  Moreover, additional 
specific properties for further descriptions with a 
given classified object are developed.  For 
example, for a closed space curve, except for 
characteristics like center, major and minor axis, 
additional properties and constrains are needed to 
distinguish whether the object is similar to an 
ellipse, circle or square.  With this feature 
selection technique, it becomes feasible to 
measure the errors of phase shifting, rotation and 
deformation for further data mining. 
 

 
Fig.2 Multiple model precipitation forecasts and 
observation (dark and thick-line ellipse) 

 
This mining process will result in the spatial 

data in terms of the center (x, y), minor and major 
axis (a, b) and rotation angle. Adding the model 
number and the sample number information, the 
output of relative forecasting information of phase 
shift, azimuth and rotation against observation will 
be like: 

 
(modelNo, sampleNo, x_center, y_center, minor_axis, 

major_axis, rotation). 
 

4. DENSITY-BASED CLUSTERING WITH 
DELAUNAY TRIANGULATION 

 
The Delaunay triangulation of a point set is a 



collection of edges, which satisfies an "empty 
circle" property: for each edge we can find a circle 
containing the edge's endpoints but not containing 
any other points (Cetin, 2000). With this 
characteristic, Delaunay triangulation becomes an 
excellent method for solving the nearest neighbor 
problem, because each point in the diagram is 
connected to its nearest neighbor (Fig. 3).  For a 
point set, p1, p2, …, pn, let NDE(pi) denote the 
number of Delaunay edges incident to pi.  
Therefore, the local mean distance or edge of a 
point and global mean distance can be calculated 
by the following equations: 

( )1
( )

( )

iNDE p

i j
ji

LocalMean p d
NDE p

= ∑       (4) 

1
( )

n

i
i

GlobalMean LocalMean p
n

= ∑     (5) 

where dj is the length of Delaunay edge.  We use 
the GlobalMean as a radius to get the local 
density, density(pi), which is the number of points 
within a circle centered at point pi.  To create an 
ordering of the object, instead of using core-
distance and reachability-distance as in OPTICS 
(Ankerst et al., 1999), we search the point with 
minimum distance, di, among the points not yet 
searched and record the local density, density(pi) 
(Fig. 4).   

 

 
 

Fig.3 Illustration for Delaunay triangulation of 100 
samples of model No. 4. 
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Fig.4 Cluster ordering of Model 4. 
 
With the ordered points, one can obtain 

various clustering results, which are constrained 
by different thresholds. For example, in this study, 
we use maximum polygon area, Maxσ, and 
minimum confidence, Min c%, to be introduced in 
the next section, as the specific constraints in our 
clustering analysis.  Those points not satisfying 
the thresholds of constraints are viewed as noises.  
Figure 5 shows one of the clustering results, in 
which the solid gray circles are clustering points 
and others are noises. 
 

 
 

Fig.5 Clustering results of model No. 4.  Solid gray circles 
are those points satisfying the threshold and constraints. 

 
5. SPATIAL ASSOCIATION RULE ANALYSIS 
 

In order to discover the knowledge about the 
hidden relationships among the observations and 
forecasts, spatial association rules, which  can be 
derived through the data mining and provide very 



important information. An association rule is a rule 
that associates one or more spatial objects with 
other spatial objects, which is of the form X→ Y 
(c%), where X and Y are sets of spatial or non-
spatial predicates and c% is the confidence of the 
rule. 

There are various kinds of spatial predicates 
that could constitute a spatial association rule. 
Examples include: spatial orientations like left_of, 
west_of, etc.; and distance information, such as 
close_to, far_away, etc.   

With the spatial distribution of individual model 
forecasts revealed by our density-based clustering 
algorithm, it is possible to quantitatively describe 
the location, size and shape of the clustering 
objects for spatial association rule analysis. The 
concept of alpha shapes  formalizes our intuitive 
notion of "shape" for a spatial point set of data.  
Alpha shapes can be viewed as generalizations of 
the convex hull of the point set (Edelsbrunner and 
Mucke, 1994). It formalizes the intuitive notion of 
shape, and for varying parameter alpha, it ranges 
from crude to fine shapes. The most crude shape 
is the convex hull itself, which is obtained for very 
large values of alpha. As alpha decreases, the 
shape shrinks and develops cavities that may join 
to form tunnels and voids.  Fig. 6 represents an 
alpha shape for the clustering data.  The alpha 
shape forms a polygon region, which indicates that 
one ensemble member forecasts appearing in 
such area with respect to the observation have a 
higher probability.  

 

 
 
 
 
 

 
To confine the number of discovered rules, the 

concept of minimum confidence is used. The 
confidence is the proportion of database 
transactions containing X that also contain Y.  The 
intuition behind this is that in large databases, 
there may exist a large number of associations 
between objects but most of them will be 
applicable to only a small number of objects, or 
the confidence of rules may be low.  We are only 
interested in strong rules, which are rules with 
large confidence, i.e., no less than the minimum 
confidence threshold, Minc%. With the alpha 
shaped polygon, we first calculate the polygon 
area, σ, and confidence, c%.  Then we check if the 
c% > Minc%, and σ < Maxσ.  In the study, Minc% 
is 60% of all samples.  This threshold should be 
determined and verified based on real case 
studies. 

Therefore, spatial association rules can be 
derived and represented as "model(X) → 
event_in(polygon Px) (c%)".  Since the polygon 
location is a relative location with respect to the 
observation, we can further interpret it with 
information such as, distance (close_to, 
far_away_to,…), azimuth (northeast_of, west_of, 
…), and orientation (normal, left_bias, …), etc.  
This information reveals each ensemble member's 
spatial distribution and behavior.  These spatial 
association rules will help us in evaluating and 
understanding the ensemble precipitation 
forecasts. 

 
6. DISCUSSIONS AND CONCLUSIONS 
 

This paper proposed a spatial data mining 
approach as a new tool for verifying and 
understanding ensemble precipitation forecasts. 
With this approach, a particular attention is given 
to the spatial distribution characteristics of 
precipitation. Two particular issues are addressed 
in this paper: first the assessment of forecast 
quality through pattern recognition which can 
identify errors due to phase shift or displacement, 
rotation and deformation, and second the 
investigation of association among observations 
and forecasts.   

With the feature selection process, spatial 
characteristics such as center of forecasting 
precipitation field, axis, and rotation can be 
selected.  These results make it possible and 
convenient to depict quantitatively the spatial 
distribution of each ensemble member.  Our 
proposed density-based clustering algorithm using 
Delaunay triangulation can automatically find out 

Fig.6 Alpha shape for clustering results of Model 4.  
Solid gray circles are those points satisfied the threshold 
and constrains. 



natural clusters of ensemble members’ 
precipitation forecasts.  Moreover, the proposed 
algorithm allows users to apply additional 
constraints, such as confidence and polygon area, 
for interested clusters.  The alpha shape concept 
is applied to represent graphically the shape of the 
clusters.   

Based on the knowledge gained from the 
distributions, a further step is taken to derive 
association rules between the observations and 
forecasts from the database. Eventually, the 
approach provides information on the distribution 
of individual ensemble members and reveals the 
relative spatial associations among the 
observations and forecasts with a certain 
confidence.  In our experience with our simulated 
dataset of 20 ensemble members , most members 
have a strong association rule with observations, 
although their spatial distributions vary in a wide 
range.  Some ensemble member forecasts do not 
have a strong association rule with the 
observation, which implies that these members 
have less value in the ensemble forecast. 

Therefore, this approach can not only takes 
into account the spatial distribution characteristics 
of individual ensemble members, which are 
otherwise difficult to describe, especially 
quantitatively, with conventional composite charts 
or “spaghetti” charts, but also provides strong 
spatial association rules between the observation 
and each ensemble member.  These properties 
can help users in verifying and understanding the 
ensemble precipitation forecasting.  Since the 
spatial association rules indicate systematic errors 
for each member and provide confidence in 
specific polygon region, users can make use of the 
information in generating and interpreting 
ensemble products. 

It should be mentioned that we used a 
simulated dataset so that we can focus on the 
development of the procedure for mining and 
deriving spatial characteristics, distributions and 
relationships of individual ensemble members. 
Extending this procedure to realistic precipitation 
data sets is our next step.  We envision that by 
adding more shapes and characteristic 
representations, we will be able to apply the 
procedure to real ensemble forecasts to reveal 
much valuable information so as to help us 
understand , verify and interpret the ensemble 
forecast. 
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