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METR 5344 
Computational Fluid Dynamics 

Instructor: Dr. Ming Xue 
 

Homework #4: Numerical Solution of Heat Transfer Equation 
 

Distributed October 17, 2023 
Due November 2, 2023 

 
 
The goal of this computer problem is to examine the stability and accuracy of explicit and 
implicit schemes for solving a 1-D heat transfer equation. 
 
1. The 1-D heat transfer equations is  
 

  (1) 

 
where s is a positive and constant difffisivity. The problem consists of a 0.30 m thick wall of 
infinite lateral extent that is initially at a uniform temperature Tinitial = 100 K. The surface 
temperatures at the two sides (Tside) are suddenly increased to and maintained at a temperature of 
300 K. The wall is composed of a Nickel alloy that has a conductivity  s = 3.0 x 10-6 m2 s-1. 
The analytic solution for the temperature distribution can be written  
 

  (2) 

 
where 0 < x < L. The size of m determines the accuracy of the solution. 
 
a. Using the FTCS scheme, solve (1) out to time = 30 minutes and plot your solution for all x 

points every 5 minutes using Dx = 0.015 m and Dt = 20 and 60 sec. Explain your results. 
 
 Consider the following two questions and make sure you know the answers. You are not 

required to perform the actual computation, although you can do it as an exercise. 
 
b. Using the exact solution given by (2), determine the convergence rate of the FTCS scheme 

for this particular problem by running a series of experiments in which Dx is successively 
refined over a wide range of values (the choices of which are up to you). Remember to vary 
Dt such that,  remains constant. Make plots of the RMS error versus 
resolution, and the convergence rate versus resolution. Discuss your results in light of the 
theoretical order of the FTCS scheme and other issues from lecture. 

 
c. Choosing two "high resolution" solutions from part b, use Richardson extrapolation to 

determine a fourth-order solution. Then, compare this solution with that obtained from your 
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code using µ = 1/6, i.e., a direct fourth-order solution. How do the two compare? To what 
degree is the Richardson extrapolation result a function of the grid size used for the two 
"high resolution" solutions. You may wish to rerun a few coarsened-grid cases to answer 
this last question. 

 
 
2. For the same heat transfer equation given in problem 1: 
 
a. Using the Crank-Nicholson scheme, solve (1) out to t = 30 minutes and plot your solution for 

all x points every 5 minutes using Dx = 0.015 m and Dt = 20 sec. Employ the Thomas 
algorithm (see also Appendix A of your textbook) to solve the tridiagonal matrix. 

 
b. Compute additional solutions with successively larger timesteps (of your choice), and compare 

the plotted results with the analytic solution given in problem 1. At what point does the 
solution error become intolerably large, and is the scheme stable for all choices of Dt as 
predicted by linear theory? 

 
Additional question for you to consider. Actual computation not required but you need to be 
sure you know the expected results. 

 
c. Choose your favorite solution (i.e., a given Dt and Dx) from your FTCS experiments in 

problem 1 and determine the CPU time and error relative to the analytic solution. Rerun 
this same case with your C-N code and compare the CPU time and error. Given that a 
larger timestep is possible in the C-N code, make two additional sets of runs: 

 
1). For the Dx used in part c above, increase At in the C-N run until the solution error 

deviates substantially (say 20%) from that of the FTCS experiment. How much 
savings (in terms of CPU time) did you get by using an implicit scheme? In other 
words, how much cheaper is the C-N scheme (at larger At) than the FTCS scheme (at 
smaller Dt) for equivalent solution accuracy and Dx? 

 
2) Assuming that you can use no more CPU time than from your first experiment in part 

c, compute the best solution possible with the C-N scheme. That is, use the smallest 
Dx possible, coupled with the largest At, to get the "best" solution within the CPU 
time constraint given from your first experiment in part c. 

 
 
 


