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ABSTRACT

High-order numerical diffusion is commonly used in numerical models to provide scale selective control over
small-scale noise. Conventional high-order schemes have undesirable side effects, however: they can introduce
noise themselves. Two types of monotonic high-order diffusion schemes are proposed. One is based on flux
correction/limiting on the corrective fluxes, which is the difference between a high-order (fourth order and above)
diffusion scheme and a lower-order (typically second order) one. Overshooting and undershooting found in the
solutions of higher-order diffusions near sharp gradients are prevented, while the highly selective property of
damping is retained.

The second simpler (flux limited) scheme simply ensures that the diffusive fluxes are always downgradient;
otherwise, the fluxes are set to zero. This much simpler scheme yields as good a solution in 1D cases as and
better solutions in 2D than the one using the first more elaborate flux limiter. The scheme also preserves
monotonicity in the solutions and is computational much more efficient.

The simple flux-limited fourth- and sixth-order diffusion schemes are also applied to thermal bubble convection.
It is shown that overshooting and undershooting are consistently smaller when the flux-limited version of the
high-order diffusion is used, no matter whether the advection scheme is monotonic or not. This conclusion
applies to both scalar and momentum fields. Higher-order monotonic diffusion works better and even more so
when used together with monotonic advection.

1. Introduction

Most numerical models employ numerical diffusion
or computational mixing to control small-scale (near
two grid intervals in wavelength) noise that can arise
from numerical dispersion, nonlinear instability, dis-
continuous physical processes, and external forcing.
Such diffusion cannot always be substituted for by phys-
ical subgrid-scale turbulence parameterization, whose
coefficients can go to zero in stable flows where nu-
merical noise can still arise. Discussions on the use of
diffusion or filter to remove small-scale noise can be
found in, for example, Shapiro (1970, 1975), Raymond
and Garder (1976), and Raymond (1988).

Diffusion is often introduced by adding an additional
term to the right-hand side of the time-dependent equa-
tions, and it takes on different forms, as shown in Eq.
(1):

]f
n /211 n5 S 1 (21) a ¹ f, (1)n]t

where f is any prognostic variable. The S in (1) rep-
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resents other processes or sources. The last term on the
right-hand side (rhs) is the added diffusion term and n
(50, 2, 4, 6, . . . ) denotes the order. Here an is called
diffusion coefficient. Diffusion or smoothing can also
be introduced by periodically applying a spatial filter or
smoother to the predicted field (e.g., Shapiro 1970,
1975). Its effect is often equivalent to applying diffusion
in the prognostic equation for a period of time.

Second- and fourth-order formulations are most com-
monly used in gridpoint models (e.g., Klemp and Wil-
helmson 1978; Xue et al. 1995). Formulations of higher
order are often used in spectral models where their im-
plementation is as simple as for the lower-order ones
(see discussion by Sardeshmukh and Hoskins 1984;
Hoskins 1980). Zero-order (n 5 0) damping is also used
in models, but usually only in the lateral and/or upper
boundary zones when nonselective relaxation is needed.
The case for using high-order scale-selective filters has
also been made by Shapiro (1975) and Raymond (1988).

The second-order diffusion term (n 5 2) has a La-
placian form and resembles the physical diffusion/heat
transfer term in which higher values are always diffused/
transferred to regions of smaller values. As a result, it
never creates new extrema not present previously in the
field of the prognostic variable. The second-order as
well as zero-order diffusion is not as selective as higher-
order formulations, however, in that waves longer than
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FIG. 1. Amplification factors |l|2 as given in Eq. (2) plotted against
wavenumber (kDx) for second-, fourth-, and sixth-order diffusion
schemes. For each scheme, aDt is chosen so that |l| 5 0 for kDx 5
p, which corresponds to a wavelength of 2Dx, i.e., the shortest waves
representable on a discrete grid. In another word, 2Dx waves a com-
pletely damped after one time step of integration.

two grid intervals tend to be damped significantly. High-
er-order diffusion damps waves more selectively.

When the one-dimensional version of Eq. (1) is
solved using a forward in time and centered in space
finite difference scheme, the linear stability analysis us-
ing the von Neumann method (e.g., Haltiner and Wil-
liams 1980) yields the following amplification (damping
in this case) factors for the four lowest (zero, second,
fourth and sixth) order schemes:

1
2[2 2 2 cos(kDx)]/Dx

2 4|l | 5 1 2 aDt [6 2 8 cos(kDx) 1 2 cos(2kDx)]/Dx

[20 2 30 cos(kDx) 1 12 cos(2kDx)
62 2 cos(3kDx)]/Dx ],

(2)

where Dt is the integration time step size, Dx the hor-
izontal grid space, and k the wavenumber. For the time
integration to be stable, |l| has to be no greater than 1,
and the condition can be met by choosing sufficiently
small Dt or a. Figure 1 shows |l| 2 as a function of kDx
with aDt chosen for each scheme so that |l| 5 0 for
kDx 5 p, which corresponds to a wavelength of 2Dx,
the shortest waves that can be represented on a discrete
grid. In another word, 2Dx waves are completely
damped in one time step. (Note that in practice one
rarely chooses as large a diffusion coefficient. When
one does, the effect of diffusion in each time step is
equivalent to one application of a Shapiro-type spatial

filter, which is rarely applied every time step, however.
When a smaller diffusion coefficient is chosen, signif-
icant reduction in the amplitude of 2Dx waves occurs
in a number of time steps with the diffusion effect being
accumulative).

It can be seen from Fig. 1 that for a four-grid interval
wave, the amplitude is reduced by half by a second-
order scheme but only 20% by sixth-order scheme,
while the amplitude of two grid interval waves (kDx 5
p) is reduced to zero in all cases. Clearly higher-order
schemes are more scale selective.

Higher-order schemes have undesirable side effects,
however. They can introduce spatial oscillations known
as the Gibbs phenomenon, as evidenced by Fig. 2. (Note
that the Gibbs phenomenon can also be introduced by
most conventional advection schemes. We shall limit
our attention here to the diffusion process, however.)
The figure shows the numerical solutions of Eq. (1)
(without S) for n 5 2, 4 and 6, i.e., for second-, fourth-,
and sixth-order diffusion, respectively. Forward in time
and centered in space finite difference scheme is used
for the time integration. The 1D x-domain width is 1
represented by 50 grid zones, that is, Dx 5 1/50. Further,
an 5 (Dt)21(Dx/2)n and Dt 5 1 are chosen so that |l|
5 0 for kDx 5 p, that is, for 2Dx waves. Therefore,
two-grid interval waves are completely damped within
one time step for all schemes. In the initial profile (thick
line), f jumps from 20.4 to 0.4 within one grid interval.
Consecutive solutions at time intervals of 10 are plotted
as thin lines, with the last one being at t 5 100. Periodic
lateral boundary conditions are used.

It can be seen that the second-order scheme is strongly
diffusive even for broad-scale features, and amplitude
of the entire square wave is significantly reduced at the
end of time integration (t 5 100). The fourth- and sixth-
order schemes only modify the solution near the sharp
gradient, where short waves dominate. A sharper gra-
dient is maintained in the solution of the latter, while
both keep the solution at the center of the square wave
unchanged. The over- and undershoot in the solutions
are evident, and both positive and negative oscillations
are present in the fourth- and sixth-order solutions. They
are clearly undesirable.

Sardeshmukh and Hoskins (1984) showed that when
Eq. (1) is solved in a spectral space, the effect of the
diffusion term after a given period of time is equivalent
to applying a spatial filter, whose result at each point is
a weighted average of itself and values at the surround-
ing points. The weighting function is not all positive
for high-order schemes, which explains the source of
the Gibbs oscillations. An additional physical expla-
nation is that with high-order schemes, the diffusive flux
is no longer proportional to local gradient and does not
necessarily point in the downgradient direction. There
is no such problem with the second-order diffusion,
however. It is obviously desirable to design a class of
diffusion schemes or spatial filters that possess both the
scale-selective properties of the higher schemes and the
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FIG. 3. As in Fig. 2, but for solutions of Zalesak-type flux-limited
(a) fourth-order and (b) sixth-order diffusion schemes, with the lower-
order scheme used being the second order. Compare (a) to Fig. 2b
and (b) to Fig. 2c.

FIG. 2. Numerical solutions of Eq. (1) (without S) for (a) n 5 2,
(b) n 5 4 and (c) n 5 6, i.e., for second-, fourth-, and sixth-order
diffusion, respectively. The 1D x-domain width is 1 represented by
50 grid zones, i.e., Dx 5 1/50. an 5 (Dt)21(Dx/2)n and Dt 5 1 are
chosen so that |l| 5 0 for kDx 5 p, i.e., for 2Dx waves. Therefore,
two grid interval waves are completely damped within one time step
for all schemes. In the initial profile (thick line), f jumps from 20.4
to 0.4 within one grid interval. Consecutive solutions at time interval
of 10 are plotted as thin lines, with the last one being at t 5 100.
Forward in time and centered in space finite difference scheme is
used for the time integration. Periodic lateral boundary conditions
are used.

monotonic nature of lower-order schemes. By being
monotonic, we mean that the scheme will not create
new extrema that are not present previously in the field,
nor will it intensify existing extrema. Therefore the so-
lution will be free of Gibbs oscillations. In this paper,
we present two types of monotonic schemes, one based
on the combination of high- and lower-order schemes
with correction to the difference between their fluxes,
and the other based on ensuring that the diffusive fluxes
are downgradient.

2. Monotonic diffusion with Zalesak-type flux
correction

For simplicity, we will present our case in one di-
mension and note that the method can be readily ex-
tended to multidimensions. A one-dimensional flux lim-
iter that ensures monotonicity by advection was first
proposed by Boris and Book in the early 1970s (Boris
and Book 1973). Zalesak (1979) later proposed a flux-
limiting scheme that is truly multidimensional. It is the
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FIG. 4. As in Fig. 3, but for solutions of the simple flux-limited
(a) fourth-order and (b) sixth-order diffusion schemes, in which up-
gradient diffusive fluxes are set to zero. Compare (a) to Fig. 2a and
(b) to Fig. 2b.

latter on which we base our first monotonic higher-order
diffusion scheme. The limiter of Zalesak is also used
in the monotonic option of the multidimensional posi-
tive definite advection transport scheme of Smolarkiew-
icz and Grabowski (1990).

Without the source term, the 1D version of Eq. (1)
can be written as

n21]f ] ] f ]F
n /25 2 (21) a [ 2 . (3)n n21[ ]]t ]x ]x ]x

We call 2F the diffusive flux. Using notations

d c 5 (c 2 c )/Dx,x i11/2 i21/2

2d c 5 d (d c) 5 (c 2 2c 1 c )/Dxxx x x i11 i i21

and so on, we integrate Eq. (3) using a forward in time
and centered in space scheme,

f n11 5 f n 2( 2 ,n nA A )i11/2 i21/2 (4)

where n denotes time level and

[ Dt/Dx.n nA Fi11/2 i11/2

These are time integration schemes for which the am-
plification factors in Eq. (2) are derived, and they are
all conditionally stable. In the above, we assume the
grid spacing Dx is constant.

Following the flux correction idea of Zalesak (1979)
that was applied to advection, we propose here a flux
corrected scheme based on the combination of lower-
order and a high-order diffusion schemes. We rewrite
Eq. (4) as

n L Lf* 5 f 2 (A 2 A ),i i i11/2 i21/2

n11 HL HLf 5 f* 2 (C A 2 C A ), (5)i i i11/2 i11/2 i21/2 i21/2

where AL is a lower-order diffusive flux that we choose
to be of second order (because it is the highest-order
simple diffusion scheme that is still monotonic). Here
AHL is the difference between a high-order diffusive flux
AH and the low-order flux AL, that is,

AHL 5 AH 2 AL.

We call AHL the corrective flux that attempts to improve
the lower-order solution f*.

The factor C is the flux correction coefficient to be
determined for each grid point; it is also called the flux
limiter. It is clear that when C 5 0, Eq. (5) reduces to
the lower-order scheme (which is not preferred because
of its diffusive effect on longer waves), while when C
5 1, it becomes purely high order (which is preferable
due to its scale selectivity but can produce ripples at
places). Typically 0 # C # 1. The idea is to use the
high-order scheme to the maximum extent possible (so
that waves longer than two grid intervals are less af-
fected) while satisfying certain monotonicity con-
straints.

We should point out here when the lower-order dif-
fusive flux is used together with the high-order one,
their coefficients, an, should be chosen to be consistent
with each other. To do so, we require that two grid
interval waves be damped by the same amount for a
given number of time steps (longer waves will be
damped by a different amount, however). It should also
be noted that unlike the Zalesak flux-corrected transport
(FCT) scheme for advection where both lower- and
high-order schemes are numerically consistent approx-
imations to the same advection term, our lower- and
high-order schemes are two different formulations both
aimed at damping unphysical noise.

Since a monotonic scheme should not create new ex-
trema in the solution, we require

# # .min n11 maxf f fi i i (6)

Since we know the diffusion process does not generate
new extrema, we choose and as the minimummin maxf fi i

and maximum at the current and the immediate neigh-
boring points at the previous time step, that is,
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FIG. 5. Contour maps of a 2D field at (a) initial time, and (b) after subjecting to second-order diffusion
for 100 time steps at time 100. Negative contours are dashed. Dark shading represent values equal to or
greater than 0.4, while light shading represents values equal to or smaller than 20.4. No such region exists
in (b) because the field is significant diffused. The shading indicates areas of possible overshooting or
undershooting. The same parameters used by 1D experiments (cf. Fig. 2) are used here, with the only
difference being the second dimension.

min n n nf 5 min(f , f , f ),i i21 i i11

max n n nf 5 max(f , f , f ). (7)i i21 i i11

For advective process, Zalesak (1979) also include the
minimum and maximum in the current-level solution by
the lower-order advection. Since the second-order dif-
fusion always reduces the amplitude, the inclusion of
the lower-order solution is not necessary here.

With and properly defined, we now needmin maxf fi i

to find the flux correction coefficient C that will ensure
that condition (6) is satisfied. Following Zalesak (1979),
we choose C to be

1 2 HLmin(1, R , R ) if A $ 0i11 i i11/2C 5 (8)i11/2 1 2 HL5min(1, R , R ) if A , 0,i i11 i11/2

where

1 max INR 5 (f 2 f*)/(A 1 «),i i i i

2 min OUTR 5 (f 2 f*)/(A 1 «). (9)i i i i

Here and are, respectively, the sum of all cor-IN OUTA Ai i

rective fluxes (AHL) going into and away from grid point
i, and both are always positive. Here the corrective flux-
es can be from one, two, or three directions, depending
on the dimensionality of the problem. The « is a small
positive value typically chosen to be 10220 to avoid di-
vision by zero in the computer program. It can be shown
that by applying limiting factor C to the corrective flux-
es, the new solution f n11 obtained in (5) is prevented
from falling below f min or overshooting above f max.
Further explanation of such a limiter can be found in
Zalesak (1979) or in Smolarkiewicz and Grabowski
(1990).

3. Alternative flux-limited high-order schemes

The flux limiter described in the previous section was
designed based on the monotonicity consideration. It
was also pointed out in the introduction that diffusive
fluxes in high-order schemes are not necessarily, as the
second-order one is, downgradient. This can result in
unphysical solutions. What if we find a way of pre-
venting upgradient diffusion from happening? A simple
way is to set the diffusive flux [2F in Eq. (3)] to zero
whenever it has a different sign than the gradient of f ;
that is, we set

2Fi11/2 5 2Fi11/2 max[0, sign(2Fi11/2dxf )], (10)

where the sign( ) operator returns the sign of the operant.
Since Eq. (10) also limits the original diffusive flux
according to certain criterion, we call Eq. (10) a flux
limiter too, albeit a simple one. The solutions of the
diffusion equation with this flux-limiter applied to the
fourth- and sixth-order schemes are shown in Fig. 4.
Interestingly, the results in Fig. 4a are as good as those
shown in Fig. 3a, and those in Fig. 4b as good as in
Fig. 3b, suggesting a simple flux limiter like that in Eq.
(10) may be all one needs to ensure monotonicity of
high-order diffusion schemes. This simple limiter is far
more efficient than the previous one since the extra com-
putation in Eq. (10) is almost trivial. In the later text,
we shall refer to the current class of schemes as the
simple flux-limited or simple monotonic diffusion
schemes. The efficacy of these and those based on Za-
lasak flux limiter in two dimensions will be examined
in the next section.
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FIG. 6. Contour maps of a 2D field after subjecting to (a) regular fourth-order, (b) regular sixth-order,
(c) fourth-order flux-corrected, (d) sixth-order flux-corrected, (e) fourth-order with simple flux limiter, and
(f ) sixth-order with simple flux limiter diffusion schemes for 100 time steps at time 100. The plotting
conventions are the same as in Fig. 5.
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TABLE 1. List of bubble experiments together with rms and maximum absolute errors compared with the reference run.

Experiment

Configuration

u advection u, w diffusion u diffusion Rmse Max abs err

REF
A4D4
A4MD4
A4D6
A4MD6
A4dD6
A4dMD6
FCTD6
FCTMD6
REF1

FCT
LT4CS
LT4CS
LT4CS
LT4CS
LT4CS
LT4CS
FCT
FCT
FCT

Mono sixth order
Reg. fourth order
Mono fourth order
Reg. sixth order
Mono sixth order
Double reg. sixth order
Double mono sixth order
Mono sixth order
Mono sixth order
Reg. sixth order

None
Reg. fourth order
Mono sixth order
Reg. sixth order
Mono sixth order
Double reg. sixth order
Double mono sixth order
Reg. sixth order
Mono sixth order
None

0
0.1072
0.0926
0.0781
0.0609
0.0815
0.0718
0.0740
0.0578
0.0435

0
0.5270
0.5012
0.5744
0.5741
0.5685
0.5318
0.5481
0.4944
0.4926

4. Application to two-dimensional square wave

In the previous section, examples have been shown
for one-dimensional cases for the two flux-limited dif-
fusion schemes. The extension of both methods to mul-
tidimensions is straightforward. We examine their per-
formance for the 2D square wave case here.

Figure 5a shows the contours of the 2D version of
the square wave in Fig. 2 at initial time. Inside the black
box are constant values of 0.4 and outside constant val-
ues of 20.4. Figure 5b shows the same field after being
diffused by second-order diffusion for 100 times (as in
the 1D case). The same grid spacing, time step size, and
mixing coefficients are used for 2D tests as in the 1D
square wave ones. In Fig. 5b, the field has been sig-
nificantly smoothed even at relatively large scales, and
the peak value is reduced to 0.26 from 0.4. The results
using various high-order schemes are shown in Fig. 6.

Figures 6a and 6b show, respectively, the fields at t
5 100 using regular fourth- and sixth-order diffusion.
While a much sharper gradient is retained, overshooting
(values larger than 0.4, dark shading) and undershooting
(values less than 20.4, light shading) are obvious, with
those of the sixth-order scheme being more serious.
There is a tendency for the contours to extend outward
at the four corners.

In Figs. 6c and 6d, Zalasak-type flux correction is
applied to the fourth- and sixth-order-based schemes,
respectively. Undershooting and overshooting are com-
pletely avoided with the minimum being exactly 20.4
and the maximum exactly 0.4, just as in the 1D case.
A better gradient is retained than with the regular dif-
fusion. However, the extrusion of contours at four cor-
ners is not cured by the flux correction. Apparently, due
to the effect of the second dimension, the effect of flux
limiting at the corner is different from that away from
the corner, where the flux limiter is essentially one-
dimensional.

When the simple flux limiter is used, the results are,
interestingly, better (Figs. 6e and 6f). The squared shape
of the contours is retained almost perfectly. While little
difference is found in the 1D tests, the 2D results suggest
that the performance of the simple flux limiter is su-
perior to the more sophisticated and also much more

expensive flux limiter given in section 2a. This means
a large improvement can be obtained at little extra cost
with high-order diffusion schemes with a simple flux
limiter.

5. Application to 2D thermal bubble convection

In the previous sections, two classes of monotonic
diffusion schemes were tested with stationary 1D and
2D square waves. With them no effect of advection is
taken into account. These experiments do show that the
simple flux-limited diffusion schemes are superior to
the more sophisticated version in both performance and
efficiency. Therefore we choose to examine only the
simple flux-limited diffusion schemes in a fully nonlin-
ear time-dependent model.

We examine the performance of these schemes in 2D
thermal bubble convection. The experiment setup fol-
lows Robert (1993). A circular bubble with a 500-m
radius and 0.5 K potential temperature (u) surplus is
initially centered at x 5 250 m, z 5 260 m inside a 1
km 3 1 km box. Uniform environmental potential tem-
perature is 303.15 K. The nonhydrostatic compressible
Advanced Regional Prediction System (ARPS) model
(Xue et al. 1995) in its dry 2D mode is used for the
experiment. The ARPS employs the mode-splitting time
integration technique of Klemp and Wilhelmson (1978)
to deal with fast acoustic waves. The model employs
leapfrog time integration scheme for the slow modes
and fourth-order centered difference for advection. For
scalars including u there is an option for using the FCT
scheme for advection. Since the problem is symmetric,
we run the model and show the results in the right half
of the problem domain only.

First, we present a benchmark (experiment REF in
Table 1) solution obtained using the monotonic FCT
advection scheme for u. The FCT scheme is based on
fourth order in space, trapezoidal in time, and upstream-
forward schemes following Zalesak (1979). The resul-
tant time integration is essentially forward in time. Be-
cause the FCT advection is monotonic, it does not in-
troduce any overshoot and undershoot in u field; fur-
thermore, no other process exists in the model that
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FIG. 7. Perturbation potential temperature (u9) fields at (a) t 5 0 min, (b) t 5 7 min, and (c) t 5 10 min, showing the
evolution of a thermal bubble in a neutral environment. Flux-corrected transport is used for potential temperature advection
and the simple flux-limited (monotonic) sixth-order diffusion is applied to momentum. Zero and 0.5 contours are thickened,
and areas with values equal to or greater than 0.5 are indicated by dark shading whereas areas with values equal to or
less than 0.0 are represented by light shading. Hardly any undershooting or undershooting exists in the solution as indicated
by the maximum and minimum values in the plots, due to the use of monotonic FCT advection and the absence of
nonmonotonic diffusion.

would introduce small-scale oscillations in u, therefore
no explicit diffusion is applied to u in this benchmark
run. A regular leapfrog in time fourth-order centered in
space (LT4CS) scheme is used for momentum advection
and for momentum a sixth-order simple monotonic dif-
fusion is applied. The diffusion on momentum is nec-
essary to control small-scale noise introduced by the
nonmonotonic advection [it is difficult to apply a
scheme other than the leapfrog centered one to the cur-
rent compressible system when it is solved using the
split-explicit procedure, as discussed by Skamarock and
Klemp (1992)]. For numerical stability, the diffusion
terms are calculated at the past time level when used
together with the leapfrog scheme, but at the present
time level when used together with the effectively for-
ward in time FCT scheme. In the former case, super-
script n in all derivations in section 2 should be replaced
by n 2 1, and time step size Dt by 2Dt if the Zalesak-
type monotonic diffusion scheme is used.

The diffusion coefficient is chosen for this benchmark
and all subsequent cases (except for two that used dou-
bled coefficient) to be ¼ of the value by which two grid
interval waves are completely damped in one time step;
therefore two grid interval waves are damped in ap-
proximately four time steps. The grid spacing is 10 m
in both directions and the time step size is 0.5 s.

The perturbation potential temperature (u9) fields at

t 5 0, 7 and 10 min from the benchmark run are shown
in Fig. 7. Despite the different numerical techniques
used, our results at 7 and 10 min compare remarkably
well with those of Robert (1993) (who used a semi-
Lagrangian semi-implicit method). It can be seen in Fig.
7 that sharp gradients close to two grid intervals are
well preserved in the u9 field by the FCT advection.
Hardly any undershooting or overshooting is found in
the solution.

In the next four experiments (A4D4, A4MD4, A4D6,
and A4MD6 in Table 1), a regular LT4CS scheme is
used for the advection of both temperature and mo-
mentum. Such a scheme is known to introduce disper-
sive ripples or, in other words, overshoot and undershoot
near sharp boundaries (see, e.g., Haltiner and Williams
1980). Our purpose here is to see if the monotonic option
for high-order diffusion helps to reduce such over- and
undershoot more effectively than a regular version of
the diffusion.

Figure 8 shows the u9 field at t 5 7 min from ex-
periments using regular fourth-order (A4D4) and the
simple monotonic fourth-order diffusion (A4MD4) for
both temperature and momentum. Compared to Fig. 7b,
both solutions are significantly smoothed, and more so
for the regular fourth-order diffusion case. Overshooting
is seen in both cases, with the one associated with mono-
tonic diffusion being smaller (0.0318 vs 0.0656 K). The
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FIG. 8. Perturbation potential temperature fields at t 5 7 min. Regular LT4CS scheme is used
for advection of both temperature and momentum. In (a), regular fourth-order diffusion and in
(b) simple monotonic fourth-order diffusion is applied to both temperature and momentum fields.
Plotting conventions are the same as in Fig. 7. Overshooting and undershooting occur in both
cases, as indicated by the minimum and maximum values in the plots. They are caused by both
advection and diffusion in (a) and by advection alone in (b). Both undershooting and overshooting
are smaller in the latter case where monotonic fourth-order diffusion is used. These plots should
be compared with Fig. 7b.

additional overshooting and resultant smoothing can be
attributed to the nonmonotonic behavior of diffusion,
as illustrated by earlier 1D and 2D experiments. The
maximum overshooting occurs inside the thermal plume
near the top of the bubble, where the vertical velocity
is largest (advection normal to the u9 gradient is stron-
gest) and u9 field has a sharp plateaulike distribution
(due to strong convergence at the front). While mono-
tonic diffusion does not produce overshooting itself, it
does not prevent the advection scheme from producing
it. Therefore overshooting is still found in the solution,
but less than the nonmonotonic case. Table 1 shows that
both rms (root-mean-square) and maximum absolute er-
rors (with respect to the benchmark) are smaller (0.0926
vs 0.1072 for the former and 0.5012 vs 0.527 for the
latter) in the monotonic diffusion case (A4MD4) than
the regular fourth-order diffusion case (A4D4).

Figure 9 shows results from two other experiments
(A4D6 and A4MD6 in Table 1) in which the sixth-order
diffusion schemes are used. Clearly the sixth-order dif-
fusion schemes preserve sharp gradients much better
than the fourth-order ones and the solutions here are

much closer to the benchmark in Fig. 7. The latter is
also supported by the rms error statistics in Table 1.
Unfortunately the overshooting in u9 (0.0994 K in Fig.
9a and 0.0749 K in Fig. 9b) is also more serious. This
is reflected also in the maximum absolute errors given
in Table 1. The larger overshooting in A4MD6 com-
pared to A4MD4 is attributed to advection in the pres-
ence of strong gradient made possible by the more se-
lective sixth-order diffusion. The topmost thermal
plume rose too fast as a result. Still, the solution using
monotonic diffusion is better.

Considering that the sixth-order diffusion is more se-
lective, one can afford a larger diffusion coefficient (as
shown in Table 1, even the regular sixth-order diffusion
performed better than the monotonic fourth-order dif-
fusion in terms of rms error). We repeat the above two
experiments with doubled diffusion coefficients (A4dD6
and A4dMD6); the maximum u9 values are reduced to
0.570 and 0.546 K, respectively. The maximum absolute
errors are also reduced (to 0.5685 and 0.5318, respec-
tively) but the rms errors are slightly increased but still
less than their fourth-order counterparts. The u9 fields
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FIG. 9. As in Fig. 8, except in (a) regular sixth-order diffusion and in (b) simple monotonic
sixth-order diffusion is used. Again, undershooting and overshooting are smaller in the (b) where
monotonic sixth-order diffusion is used.

(not shown) are much closer to the benchmark solutions
than the corresponding fourth-order ones.

In the benchmark case, no diffusion is applied to the
u field since no process in the run can generate ripples.
In practice, when physical processes and external force
are included, small-scale (;2Dx) noise that are poorly
handled by almost all numerical schemes can still be
generated even if monotonic advection scheme is used.
We conducted two more experiments that are the same
as the benchmark run, except that additional sixth-order
regular (FCTD6) or monotonic (FCTMD6) diffusion is
applied to the u9 field. Since FCT advection preserves
monotonicity, all undershooting and overshooting found
are generated by the diffusion scheme alone or by the
interaction of diffusion with advection. This therefore
allows us to better gauge the effects of diffusion.

Figure 10 shows the results of these two runs. The
undershoot (0.0554) and overshoot (0.0834) are rather
large in the regular sixth-order diffusion case, support-
ing our finding in the simple tests with static square
waves. Those in the monotonic diffusion case are much
smaller (0.0032 and 0.0056) and the solution is very
close to that of benchmark. The field appears slightly
smoother, yet it still retains the sharp gradient at the
edge of the bubble. Both rms and absolute errors are
smallest among all experiments discussed so far (see

Table 1). We attribute the small amount of overshooting
and undershooting to the interaction between the ad-
vection and diffusion scheme. Perhaps true monotonic-
ity can only be achieved by strictly enforcing it when
the limiting of both advective and diffusive fluxes are
considered together. This can be a topic of a future
investigation while we remain focused on the general
effectiveness of this diffusion scheme.

Finally, we present results from one more experiment
(REF1). The experiment is the same as the benchmark
except regular instead of monotonic sixth-order diffu-
sion is applied to the momentum fields. The FCT ad-
vection scheme is used for u9 without any diffusion.
Figure 11 shows the w fields at t 5 7 min from this
experiment (REF1) and the benchmark (REF). The top-
most thermal plume is stronger and has risen higher due
to larger w in REF1. This must have resulted from over-
shooting in the momentum fields caused by nonmon-
otonic sixth-order diffusion. Unlike with u9, we do not
know the upper limit of w, it is therefore hard to de-
termine the exact amount of overshoot in w. In the end,
we comment that in the bubble experiments the off
switch as given in Eq. (10) is typically active at less
than 1% (around 0.4%) of the total number of grid
points. This is of course flow dependent.
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FIG. 10. As in Fig. 7 with the FCT scheme being used for potential temperature (u) advection
and simple monotonic sixth-order diffusion scheme used for momentum. In addition, (a) regular
sixth-order diffusion and (b) simple monotonic sixth-order diffusion is also applied to u. These
plots should be compared with Fig. 7b where no diffusion is applied to u. The solution in (b)
is very close to Fig. 7b, and only very small over- and undershoot is found. Significant over-
and undershoot exist in (a), causing the solution to differ from Fig. 7b.

6. Summary and discussion

In this paper, two types of monotonic high-order dif-
fusion schemes are proposed and examined. The first is
based on correction/limiting on the corrective flux, which
is the difference between a high-order (fourth order and
above) diffusion scheme and a lower-order (typically sec-
ond order) one. Overshooting and undershooting found in
the solutions of higher-order diffusions near sharp gradi-
ents are prevented, while the highly selective property of
damping is retained. The flux limiter is general and can
be applied to multidimensional diffusion terms.

An alternative and much simpler scheme is also pro-
posed, which simply ensures that the diffusive fluxes
are always downgradient; otherwise, the fluxes are set
to zero. It is interesting that this much simpler scheme
yields as good a solution in 1D cases as and better
solutions in 2D (and 3D, not shown) than the one using
a much more elaborate flux limiter. The scheme also
preserves monotonicity in the solutions. In terms of
computational cost, this scheme is much more attractive.

The simple flux-limited fourth- and sixth-order diffusion
schemes are also applied to a thermal bubble convection
case. It is shown that overshooting and undershooting are

consistently smaller when the flux-limited version of the
high-order diffusion is used, no matter whether the ad-
vection scheme is monotonic or not. This conclusion ap-
plies to both scalar and momentum fields. Higher-order
monotonic diffusion works better and even more so when
used together with monotonic advection.

We point out that step function–type distributions for
which regular high-order diffusion schemes are most prob-
lematic are commonly found in numerical models and in
the real world. Examples include the temperature field at
the lower and upper boundaries of an inversion layer and
at the edge of cold thunderstorm outflow, and in the liquid
and ice water fields near the freezing level where liquid
water turns into ice. At these sharp boundaries, most ad-
vection schemes will introduce small-scale noise that need
to be controlled. When high-order diffusion is used to do
so, it should not introduce new noise.

It should also be pointed out that the diffusive fluxes
could be combined with the advective fluxes in a trans-
port (advection) diffusion equation. Certain flux limiters
can then be applied to the total flux so as to control
overshooting and undershooting. However, it is not the
purpose of this paper to study monotonic advection
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FIG. 11. The w fields at t 5 7 min from (a) experiment REF1 and (b) benchmark REF. The
topmost thermal plume is stronger and has risen higher in (a) due to larger w, caused by
overshooting in momentum fields resulting from nonmonotonic diffusion.

schemes. In some cases, sophisticated monotonic ad-
vection scheme may be hard or even impossible to im-
plement (e.g., for momentum equations in compressible
models using mode splitting technique), they also tend
to significantly increase the total cost and still may not
completely remove the need of numerical diffusion (due
to the presence of other processes). This is where our
simple monotonic diffusion schemes fit in.

Acknowledgments. This work was supported by the
National Science Function Grant ATM91-2009 to the Cen-
ter for Analysis and Prediction of Storms, University of
Oklahoma. Comments and suggestions on the draft by Drs.
R. Carpenter, K. Droegemeier, and B. Fiedler improved
this paper. The author also wants to thank two anonymous
reviewers for their constructive suggestions.

REFERENCES

Boris, J. P., and D. L. Book, 1973: Flux-corrected transport. Part I:
SHASTA, a fluid transport algorithm that works. J. Comput.
Phys., 11, 38–69.

Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and
Dynamic Meteorology. John Wiley and Sons, 477 pp.

Hoskins, B. J., 1980: Representation of the earth topography using
spherical harmonics. Mon. Wea. Rev., 108, 111–115.

Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-
dimensional convective storm dynamics. J. Atmos. Sci., 35,
1070–1096.

Raymond, W. H., 1988: High-order low-pass implicit tangent filters
for use in finite area calculations. Mon. Wea. Rev., 116, 2132–
2141.
, and A. Garder, 1976: Selective damping in a Galerkin method
for solving wave problems with variable grids. Mon. Wea. Rev.,
104, 1583–1590.

Robert, A., 1993: Bubble convection experiments with a semi-implicit
formulation of the Euler equations. J. Atmos. Sci., 50, 1865–
1873.

Sardeshmukh, P. D., and B. J. Hoskins, 1984: Spatial smoothing on
the sphere. Mon. Wea. Rev., 112, 2524–2529.

Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev.
Geophys. Space Phys., 8, 359–387.
, 1975: Linear filtering. Math. Comp., 29, 1094–1097.

Skamarock, W. C., and J. B. Klemp, 1992: The stability of time-split
numerical methods for the hydrostatic and nonhydrostatic elastic
equations. Mon. Wea. Rev., 120, 2109–2127.

Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimen-
sional positive definite advection transport algorithm: Nonos-
cillatory option. J. Comput. Phys., 86, 355–375.

Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, and K. Brewster,
1995: ARPS Version 4.0 User’s Guide. Center for Analysis and
Prediction of Storms, 380 pp. [Available from CAPS, University
of Oklahoma, 100 E. Boyd St., Norman OK 73019.]

Zalesak, S. T., 1979: Fully multidimensional flux-corrected transport
algorithms for fluids. J. Comput. Phys., 31, 335–362.


