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APPENDIX B:
Tridiagonal System of Equations

The formulation of many implicit methods for a scalar PDE results in the following
equation:
QP+ B i = Df (B-1)
Once this equation is applied to all the nodes at the advanced level, a system of linear
algebraic equations is obtained. When these equations are represented in a matrix
form, the coefficient matrix is tridiagonal. We will take advantage of the tridiagonal
nature of the coefficient matrix and review a very efficient solution procedure.
To see the matrix formulation of the equations, consider the Laasonen implicit
formulation of our diffusion model equation, i.e., Equation (3-12), presented here as

()i — (2d + Duf*! + (d)ulfy = —uf (B-2)

where d = (%%‘5 is the diffusion number. Define the following coefficients of {B-2)

according to the formulation of (B-1):

a = d

b = —(2d+1)
c = d

D = RHS

Applying Equation (B-2) to all the grid points will result in the following set of
linear algebraic equations:

1 =2 aaty + bgu-z + Colz = Dg (B-3)
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t=3 Gatia + b31.£3 4+ czuy = D3
it =4 aguz + byuy + cqus = Dy
1= IM2 armatirms + braattime + eivrttinn = Do
t=IM1 armtiMz + bt + enntive = D (B-4)

where IM1 =1IM —1, IM2 =IM — 2, and so on. In addition, note that the super-
script n + 1 has been dropped from the equations. Assume that Dirichlet boundary
conditions are imposed and, therefore, the values of the dependent variableu atz =1
(the lower boundary) and at i = JM (the upper boundary) are given. Then the first
equation, (B-3), and the last equation, (B-4), can be written as:

byug + cauz = [y — ajuy

and
arvuime + divpun = Divee — crvnirm

Now, the set of equations in matrix formulation is

[ by o IR [ Dy ~ ayiy ]
(74 63 C3 Uz -D3
€ay b4 Cy Uy D4
a2 bivz  cime UIM?2 D
i a1 b | | umn | L Disn — et |

Applying other types of boundary conditions does not change the tridiagonal form
of the coefficient matrix, and can be easily implemented. An example is given below,
where the Neumann boundary condition at ¢ = IM is applied. Impose the boundary
condition 2% = 0 (at i = IM). Then

Ou  uppr —uiM
Jz Az

or

UIM = UIMP1

j
—-
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Note that we have introduced a fictitious boundary at IM Pl = IM +1. The grid
points are shown in Figure B-1. Now, at 1 = IM (the upper boundary), we have

armtrmy + bivurv + camurvps = Dy

or

armtinn + (drar + e v = Diag

[-Fictitious Boundary

e R S i i ’

I=IMAX ¢

I =IMMI

Ax

N

n=1 n=2 n=3
At

Figure B-1. Illustration of grid points with fictitious boundary.
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and the matrix representation takes the following form:

by o 1[0 w2 ] [ Dy —azuy ]
'a3 ba C3 * Ug D3
ay b4 Cy Uq D4
annn b CIM1 UM D
i a;e (Ot § | ume | L DPiwm )

In the example above, a first-order approximation for the gradient was used. If a
second-order approximation is utilized, then

Ou _ urmp1 ~ UM
Jz 2Azx

or
UIMPL = UIM1

Thus, the equation at : = M1 is modified according to
arpurnm + bivurnm + cimuivn = Dim

or
(arpr + erm)urnn + by = Diar

S

To proceed with the solution technique, assume a solution of the form

\/ u; = —Huugy + G; (B-5) &
—
/ where u; is unknown, u;;, is known from the imposed boundary condition, and H;

and G; are yet to be determined. Apply Equation (B-5) at node 1 — 1, then

Ui = —Hi_1u; + Giy (B-6)

Upon substitution of (B-6) into Equation (B-1), one has
a;(—Hiyui + Gi1) + bwi + civigr = D;
or
(b; — a;H;_1)u; + ciuiyy = Dy — a;Giy

from which

Ci D; - a;G;,

w b — as'Hi—luH-l + b —a;H;
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Comparing Equations (B-7) with (B-5), one concludes that

c
e =9
and ' D .
Rl Ak in.
et M bk o B-9
G b —a;H;, (B-9)

Now that H; and G; have been determined, the recursion equation, (B-5), can be
used to solve for all the unknowns. .~ . =~ —~_ _——

" To see how this procedure is applied, consider the parabolic equation investigated
in Chapter 3, i.e., the suddenly accelerated plane. At the lower boundary i = 1,
uy = UWALL is specified for all times; therefore, (B-5) at : = 1 becomes

up = —Hius + Gy

Since this equation must hold for all u;, H; =0 and Gy = u; = UWALL. With the
values of H; and Gy provided from the boundary condition, Equations (B-8) and (B-
9) can be solved for the values of H; and G; at the second node. Subsequently, (B-8)
and (B-9) are sequentially applied to all grid points to obtain the values of H; and G,.
Note that the computation of H; and G; starts from the lower boundary and proceeds
upward. Now, Equation (B-5) is used for the computation of u;. This calculation is
performed inward from the upper boundary. At i = IM, Equation (B-5) provides

unn = —Hpnuy + Gin

In this equation, usas is specified from the upper boundary condition, with H and G
at M1 previously determined. Once uyps is computed, Equation (B-5) is applied to
compute urpr; and so on. The solution procedure may be coded in the program or as

a subroutine.
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6.2 Direct Methods for Linear Systems [83

(1977, Chap. 5), and, at a more advanced level, by Duff (1981). Packages for
implementing sparse Gauss elimination are available; the Harwell programs
MAZ28, etc., discussed by Duff (pp. 1-29), are recommended.

6.2.2 Tridiagonal Systems: Thomas Algorithm

The use of three-point finite difference formulae or finite elements with linear
interpolation leads, after splitting (Sect. 8.2), to a tridiagonal structure for A in
(6.23). The use of higher-order finite difference schemes or higher-order finite
elements produces a larger bandwidth in 4. The Thomas algorithm is suitable for
solving (6.23) when A is tridiagonal. The extension of the Thomas algorithm to the
case when A is pentadiagonal is described in Sect. 6.2.4. For systems of equations, A
has a block (tridiagonal) structure typically. The treatment of A for this case is
considered in Sect. 6.2.5.

When the nonzero elements lie close to the main diagonal it is useful to consider
variants of Gauss elimination that take advantage of the banded nature of 4. An
example is provided by the convection-diffusion problem of Sect. 9.3. Using centred
difference formulac the following algorithm (in the present notation) is obtained

‘“(] +O'5RCL'”)UI'*] +2U‘—(1*0.5RCCH)U‘-+1 :0 N (6.27)
which, when repeated for every node, gives
[ b, ¢ Ty W Cd,
as by o, Uy i,y
a; b, v; d, . {6.28)
Any byoy ex oy Un -1 dn -1

B ay by || on | dy ]

where a;= —(1+0.5R_.y), b;=2, ¢;=—(1 —=0.5R ;). Nonzero values of d; are

associated with source terms, or, for d, and d, with boundary conditions. All terms
in A, other than those shown, are zero. The change in notation, particularly in

relation to b, from that in Sect. 6.2.1, may be noted.
The Thomas algorithm for solving (6.28) consists of two parts (Fig. 6.17).
First (6.28) is manipulated into the form

- P ar r .
e U1W dy
| I
E
v = dy s
!
Chn -1 . :
13
L ow | | dy
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1e. the g, coefficients have been eliminated and the b, coefficients normalised to
unmity. For the first equation

o d,
=St g2 (6.29)
'ob, Yop,

and for the general equation
¢

4 1

¢ =———— -

Yohi—ac
{6.30)
. di—adi_
di=——— .
b,—a;c;

The equations are modified, as in (6.30), in a forward sweep (Fig. 6.17). The second
stage consists of a back-substitution (backward swecp in Fig. 6.17),

vy=dy and

vp=di— v Cr (6.31)

The Thomas algorithm is particularly economical; it requires only 5N —4
operations (multiplications and divisions). But to prevent ill-conditioning (and
hence round-off contamination) it 1s necessary that

b >laji+l1c;| -

The use of splitting for multidimensional problems (Sect. 8.2) typically generates
tridiagonal systems of equations that can be solved efficiently using the Thomas
algorithm.

6.2.3 BANFAC/BANSOL: Narrowly Banded Gauss Elimination

When A is narrowly banded subroutines BANFAC and BANSOL are suitable for
performing Gauss elimination. Subroutine BANFAC (Fig. 6.18) carries out the
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Time integration of potential temperature equation in the ARPS:

6.1’*‘41’_9.7 ?_______ .
'O*T =— pxcnggf)w +f;. (340)
[3=—ADVT '+ JG DY + JG S, (3.5¢)

7

where ADVT is the advection terms, and Dg the diffusion / mixing term.
Note that Dy is evaluated at time level £-At.

3.2.4. Special treatment of vertical mixing

Given the vertical mixing coefficients K, and K, that are based, in the PBL, on
the length scale / in Eq.(2.43), vertical turbulent mixing often results in a linear stability
constraint more severe than that associated with advection, especially when the vertical
resolution is high. This problem is dealt with by using an implicit scheme for the vertical
mixing terms, wherein these mixing terms are represented as the weighted average of their
values at ¢ + Ar and ¢ - Az, and the resultant tridiagonal equations are solved as in Eq.(A3).
Paegle et al. (1976) showed in a 1-D boundary layer model that the implicit scheme is as
accurate as the explicit scheme though much more efficient. In the ARPS, due to the use of
mode-splitting scheme for acoustic waves, the implicit treatment of vertical mixing is done
in two steps - the mixing terms are first integrated without the acoustic terms, their
contributions to the time tendencies are added to the forcing terms which are then used in
the small time steps to arrive at the final solution.

Control parameters related to vertically implicit treatment of turbulent mixing in the ARPS
(from arps. input):

CHARHHHAHEHS USSR SR TSRS RS AR R A RS U R U H B HE H B 8
trbvimp Option for implicit treatment of vertical mixing

0, vertical explicit (default);
1, vertical implicit

alfcoef Time average weighting coefficient used
in the vertically implicit mixing (default is 1.0}

aaonaanaan
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&turbulence
tmixopt
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