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ABSTRACT

A generalized forward-in-time upstream advective operator following the methodology of Crowley is developed
and advective schemes of orders 1 through 10 are tested analytically and numerically. Flux forms of these
schemes are also derived with Crowley’s methodology. It is shown that these flux forms do not reduce to the
advective form with constant velocity and grid spacing for schemes of order 3 and higher and they are not as
accurate as the advective form. A new flux form is derived which does reduce to the advective form under the
conditions of constant velocity and grid spacing.

The schemes were tested in two dimensions using time splitting. In the rotating cone test, the advective and
new flux forms performed identically, while the other flux form had larger dissipation and dispersion errors. In
the deformational flow field test, the advective forms were unstable for both time steps tested. The flux forms
were less unstable for the higher Courant number and the domain as a whole was stable for the lower Courant
number.

With respect to order of the various forms, the schemes performed consistent with the linear stability analysis;
errors decrease as the order of the scheme becomes greater. The sixth-order schemes appear to be the best

balance between efficiency and accuracy.

1. Introduction

Various forms of the forward-in-time, upstream ad-
vection scheme have been used and referenced fre-
quently over the past two decades. Examples of such
schemes are the classical first-order forward upstream
scheme (analyzed by Molenkamp, 1968), the second-
order Crowley (1968) scheme and the fourth-order
Crowley (1968) scheme. The second-order Crowley
scheme has probably received the most attention; re-
searchers have studied its behavior in multiple dimen-
sions (Smolarkiewicz, 1982) and added third-order
spatial correction terms (Schlesinger, 1985). It'has been
used in simulations of almost all scales of atmospheric
motion including two-dimensional cloud simulations
(Orville and Kopp, 1977; Chen and Orville, 1980).

We will use and expand Crowley’s (1968) method-
ology to upstream schemes of order greater than 4.
When we refer to the order of a scheme, we mean the
order of spatial accuracy. If the schemes were to be
expanded in a Taylor series, the order of the first trun-
cated spatial term would be one larger than the order
of the scheme. Thus, a fourth-order scheme has fifth-
order errors (order of Ax°). Similarly, when we refer to
the order of accuracy of a scheme, we are referring to
the highest-order term that is explicitly included in the
scheme. The leading term in the truncation error would

* Current affiliation: Department of Mathematics, University of
Arizona, Tucson, AZ 85721.

© 1987 American Meteorological Society

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 09/27/23 04:53 PM UTC

be one order higher. The number of data points re-
quired to produce an nth order scheme is #» + 1; a
fourth-order scheme requires five points of data. Flux-
conservative forms of the advection schemes, the eflects
of constant and variable grid spacing, and the appli-
cation of these schemes in more than one dimension
will be discussed. We will detail the construction of
both flux and advective forms and test these schemes
analytically and numerically. We will also provide an
indication of the relative computational cost of the
schemes.

2. The one-dimensional linear upstream advection
scheme—derivation and stability

To derive the advection schemes, we will follow the
methodology of polynomial fitting, although, as men-
tioned by Crowley (1968), the same results can be
achieved through Taylor series expansions. Our ap-
proach is to fit a Lagrangian polynomial of arbitrary
degree to a discrete set of data points. This polynomial
will be used to predict the value of the data field at a
future time level through interpolation. Let U be the
advecting velocity and A7 the time step. Intuitively, the
value of the polynomial at a distance UAf upwind of
the predictive point, x;, will be that point’s value at the
next time step. The set of data points used for the poly-
nomial is determined by whether the polynomial is
odd or even ordered. For a polynomial of order 2n, n
points will be upwind and another 7 points downwind
of x;. For a polynomial of 2n + 1 degree, the extra
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point will be added in the upwind direction (n + 1
points upwind of x;). Although any other combipation
of upwind and downwind points is possible, this set
produces the most accurate results for an advection
scheme.

The Lagrangian polynomial is

ORD ORD
P (x’ d)jn) = 2 [

k=0

x“""’]m’* M

m=0,m#k X~ Xpm

where ORD is the order of the polynomial, ¢ denotes
values of the field to be advected and the superscript
n designates the time level. Indices k and m vary
through the ORD + 1 grid points used for the poly-
nomial. To derive the advection scheme, we will in-
terpolate upstream along P a distance of UAt. The ad-
vection scheme then becomes :

¢! = Plx;— UAL, ¢/ ()]

It is possible to obtain the coefficients of the La-
grangian polynomial using Taylor series expansions.
We want to express ¢"*! as a linear combination of ¢",
ie.,

¢ = 2 Qi 3

where g; are constants depending on grid spacing, and
i=0, *1, £2,- . .. Considering the ¢,;; as samples
from a continuous data field ¢ and Ax as a constant
grid increment (x;; — X;), expanding (3) in a Taylor
series gives

@[5 (ke
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Reorganizing (4) gives
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(5)
Using

Lo=-UZ@
and assuming U constant gives
¥o_ _yyde
otk axk
Consequently we have a set of equations
2 (= x)ta; = (=Udnk.

Uy

To obtain the coefficients g; in (3) for an upstream
approximation, restrict { to the same set of points used
for the polynomial Pand kt0 0, 1, ..., ORD. Solving
this system of ORD + 1 equations in ORD + 1 un-
knowns yields the same expression for ¢™*! as (2), as
demonstrated by Young and Gregory (1972).
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The approximation for ¢! given by (2) is ORD-
order accurate in time and space if the velocity field is
uniform; by construction, all truncation errors of order
up to and including ORD are zero. However, if the
velocity field varies in time or space, as shown by
Crowley (1968), these schemes are only first-order ac-
curate in time. The leading terms of the truncation
error are of order At? and are a function of the temporal
and spatial gradients of the velocity field.

With Ax constant, each (x; — x,,) becomes (j — m)Ax
and x can be expressed in terms of Ax. The advection
schemes for values of ORD from 1 through 6, where
o = UAt/Ax, are

ORD = 1 (Forward-upstream):

&/ = ¢+ aldy-1 — ¢))
ORD = 2 (second-order Crowley):

¢ =¢f +%(¢j—l —djr1)

o?
+ E(d’j—l =2¢;+ ¢j11)
ORD = 3:
a
o =¢f+ '6‘(_¢j~2 +6¢;-1— 3¢~ 2¢j11)
o?
+ —2‘(¢j—1 =2¢;+ ¢jv1)
o
+ €(¢j—2 = 3¢j-1+ 30— djs1)
ORD =4 (fourth-brder Crowley):

o/ =9+ 1%(“051'—2 + 861~ 8yer + ¢ju2)

2
o
+ ‘22(“%'—2 +16¢;_; —30¢;-,

+16¢i+1— djs2)

3
+ ‘1"—2 (bj-2— 201 + 20,41 — $j2)

4
+ ;‘4(¢j—2 —4¢; +6¢;— d¢j + Pji2)
ORD = §:
¢ =9+ %(2@'—3 —15¢;2+60¢;_, — 20¢;

- 3O¢j+l + 30j+2)
o?
+§(“¢j—2+ 16¢;-1 — 300+ 16641 — ¢j12)

3
«
+EZ(—¢j—-3 + 7¢j—2 - 14¢j—l + lO(b]

- ¢j+l - ¢j+2)
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4
+ %(d’j—z —4¢;_ 1 +6¢;—4¢j1 + ¢j-2)
o
120 (¢]—3 5¢j"2 + 10¢j-l - lod’j
+ 5¢j+1 - ¢j+2)
ORD = 6:
o =0/ + :_O(d)j—s —9¢;2+45¢;-
—45¢j1 +99ji2— Pja3)
o?
3 50 - (2¢;3—27¢; > +270¢,_,
—4906;+ 270641 — 27¢js2 + 2¢j43)
o
t g T3t 82— 13,
+ 130501 — 8¢z + dji3)
ot
144 —(—¢j3+ 12¢1— 39¢;-,
+56¢;—39¢41 + 12642~ $j43)
5 .
2 20 (@3 —4¢i2+ 501 — S5¢j4
+4¢j.2~ dju3)
720 (¢j—3 6¢j—2 + 15¢;—1 — 20¢;
+ 15¢41 — 6¢js2 + @jy3).

The schemes of orders 7 through 10 are given in the
Appendix. The third-order scheme has also been dis-
cussed by Takacs (1985).

A standard von Neumann stability analysis was per-
formed on the ten schemes. The results, presented in
Tables 1 and 2, suggest

o Even-ordered terms most affect amplitude errors
and odd-ordered terms are most responsible for phase
errors. An even-order scheme decreases the amplitude
error of the next lower-order odd scheme, but phase
errors are slightly increased. Conversely, an odd-order
scheme will improve phase accuracy but increase am-
plitude errors over the next lower-order even scheme.

o As the order of the scheme increases, the rate of
improvement decreases. The sixth-order scheme is
probably the best balance between complexity and ac-
curacy.

e All schemes have the Courant—Fnednch—Levy
stability criterion, o < 1.

e Odd schemes have more damping than even
schemes. Odd-order schemes also cost more to execute
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TABLE 1. Amplification factor for the advective form and
constant grid flux form.

' Courant number

Order 001" 0.1 0.3 0.5 0.7 0.9 1.0
2Ax
I 0980 0.800 0.400 0.000 0400 0.800 1.000
2 1.000 0.980 0.820 0.500 0.020. 0.620 1.000
3 0.986 0.848 0.456 0.000 0.456 0.848 1.000
4 1.000 0.973 0.765 0.375 0.147 0.723  1.000
5 0.989 0.868 0.481 0.000 0.481 0.868 1.000
6 1.000 0970 0.737 0.313 0.225 0.766 1,000
7 0991 0.88¢ 0495 0.000 0495 0.880 1.000
8 1.000 0968 0.719 0.273 0.272 0.792 1.000
9 0.992 0.888 0.505 0.000 0.505 0.888, 1.000
10 1.000 0.966 0.706 0246 0.305 0.809 1.000
4Ax
1 0990 0906 0.762 0.707 0.762 0.906 ..000
2 1.000 0995 0.958 0.901 0866 0.920 1.000
3 0.997 0.966 0.908 0.884 0908 0966 1.000
4 1.000 0997 0978 0.952 0943 0.971 1.000
5 0999 0986 0.961 0.950 0961 098 1.000
6 1000 0.999 0989 0.978 0975 0.988 1.000
7 0999 0.994 0.983 0.978 0983 0994 1.000
8 1.000 0.999 0995 0.990 0989 0995 1.000
9 1.000 0997 0992 0.98% 0992 0.997 1.000
10 1.000 1.000 0.998 0.995 0.995 0.998 1.000
8Ax
1 0997 0973 0936 0924 0936 0973 1.000
2 1.000 1.000 0.996 0.992 0989 0.993 1.000
3 1.000 0.997 0993 0992 0993 0.997 1.000
4 1.000 1000 1000 0999 0999 0999 1.000
5 1.000  1.000 0999 0.999 0999 0999 1.000
6 1.000 1.000 1000 1.000 1.000 1.000 1.000
7 1.000  1.000 1.000 1.000 1.000 1.000 1.000
8 1.000 1000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 1000 1.000 1.000 1.000 1.000 1.000

efficiently on a vector-based computer; the asymmetry
of the odd scheme (one extra upwind point) requires
a decision regarding upwind direction or the calculation
of the advection scheme in both positive and negative
velocity directions. These two facts make even-ordered.
schemes more attractive in most applications.

3. The flux conservative form—derivation and stability

Again following the polynomial fit methoclology
used by Crowley (1968), a flux conservative form of
the ten orders of advective schemes can be derived.
The flux form of the one-dimensional advection equa-
tion, assuming negligible divergence, is

% __dus
at ax

In finite difference form

At
¢.j‘"+1 =¢/+ E[F}H/z ~Fj1p]- (©)
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TABLE 2. Phase speed ratio for the advective form and
constant grid flux form.
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Courant number

Order  0.01 0.1 0.3 0.5 0.7 09 1.0

4Ax

1.000
0.749
1.000
0.911
1.000
0.964
1.000
0.984
1.000
0.993

8Ax

1.000
0.928
1.000
0.992
1.000
0.999
1.000
1.000
1.000
1.000

0.643
0.637
0.852
0.849
0.935
0.934
0971
0.970
0.986
0.986

0.704
0.641
0.879
0.852
0.947
0.935
0.976
0.971
0.989
0.987

0.859
0.676
0.945
0.873
0.976
0.946
0.989
0:976
0.995
0.989

1.060
0.856
1.023
0.956
1.010
0.983
1.005
0.993
1.002
0.997

1.033
0.964
1.013
0.991
1.006
0.997
1.003
0.999
1.001
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

—
WO~V Hh WN -

0.903
0.900
0.98%9
0.988
0.999
0.999
1.000
1.000
1.000
1.000

0.926
0.901
0.991
0.988
0.999
0.999
1.000
1.000
1.000
1.000

0.970
0.910
0.996
0.990
1.000
0.999
1.000
1.000
1.000
1.000

1.013
0.953
1.002
0.995
1.000
0.999
1.000
1.000
1.000
1.000

1.008
0.984
1.000
0.999
1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000

OV I B WA -

—

To derive the flux, Fj,,/, the Lagrangian polynomial
(1) of one order less than the desired order of the flux
scheme is fitted to the points surrounding X;. 2. These
points. are centered about x;.i, for odd numbered
polynomials and an extra point in the upwind direction
is added for even ordered polynomials. The polyno-
mial, P(x;, ¢"), is then integrated from X1, — uls to
Xj+12 to arrive at the total flux through a boundary
during a time step, i.e.,

1 Xj+1/2
Frn=r [ Plxfld. %
At Xj1/2~UAL

The resulting expressions for fluxes of order 1 through
6, with Ax constant, are

ORD = 1:
At
Fj+l/2zx‘= —ad;
ORD = 2:
At
E+1/2K‘x=a/2("¢j"¢j+1)
+ 0?2~ ¢+ dj11)
ORD = 3:
Fun 2L~ /8651 — 66— 30
JH/ZAx_a/ (¢j—1 — 60, — 3¢11)

+ o2 (2(—¢;+ djs1)
+ a3 /6(—dj—1 + 20, — bj+1)
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ORD = 4:

At
F}+1/2‘A"x = af16(¢j—1 — 9¢;— 9pjs1 + Pj12)

+ a?/48(¢j-1 — 27¢; + 2T dje1 — djs2)

+ a3 12(—¢pjy + ¢+ djs1 — dj42)

+ a/24(— ;1 + 3¢;— 311 + $j42)
ORD = 5:

At
F}+1/2K)—C = af128(—3¢;—2 +20¢;-; —90¢;

—60¢;+1 + 5¢;42)
+ 0P /48(¢j-1 — 27¢;+ 2T a1 — Bj42)
+0/144(5¢;-2 — 321 +42¢;
~8¢jr1—Tdj2)
+0/24(— -1+ 3¢~ 341 + Bj42)
+a’[120(~¢j2 + 46, — 6

+4¢p1— dir2)
ORD = 6:

At
F}+‘/2A—x = a/256(—3¢j.2 + 25¢j_1 - 1504),

—150¢;41 +25¢502 — 3¢j43)
+ o?/3840(—9¢;_> + 125¢,_; — 2250¢;
+2250641 — 125¢;42+ 9¢;43)
+a?/288(5¢,-2— 39¢;-1 + 34¢;
+34¢51 — 3992+ 5¢)43)
+ a*/192(¢j—2 — 13¢;—1 + 340, — 34¢;
+13¢j12— dj13)
+ 0 [240(— @2 + 351 — 26— 204
+ 3¢50~ ¢j43)
+a®/720(— ;-2 + 5¢;-1 — 10¢;+ 10¢;.,
= 5¢j12+ ¢ja3).

Fluxes of order 7 through 10 are given in the Ap-
pendix.

Derivation of flux expressions for variable grid spac-
ing is straightforward with this methodology. However,
when u and Ax are constant, the flux form (7) does
not reduce to the advective form for schemes of order
3 and higher. This can be seen from the definition of -
the Lagrangian polynomial (1). The advective form in-
volves an interaction of grid spacings between all ORD
+ 1 points, while the flux form, by integrating a poly-:
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TaBLE 3. Amplification factor for the integrated flux form.

Courant number

Order 001 0.1 0.3 0.5 0.7 09 1.0
2Ax
1 0.980 0.800 0.400 0.000 0400 0.800 1.000
2 1.000 0980 0.820 0.500 0.020 0.620 1.000
3 0990 0.881 0556 0.167 0223 0548 0.667
4 0980 078 0317 0.125 0462 0.643 0.667
5 0.992 0903 0.600 0214 0.172 0475 0.572
6 0985 0.830 0415 0.013 0.357 0547 0.572
7 0994 0914 0.622 0.238 0.146 0.437 0.524
8 0987 0.853 0466 0047 0302 0498 0.524
9 0.994 0921 0.636 0254 0.129 0414 0.493
10 0.989 0.867 0.495 0.085 0.267 0467 0.493
4Ax
1 0.990 0.906 0.762 0.707 0.762 0.906 1.000
2 1.000 0995 0558 0.901 0.866 0920 1.000
3 0.997 0.973 0920 03886 0.883 0.906 0.920
4 0998 0.977 0945 0935 0935 0.929 0.920
5 0999 0.989% 0962 0.938 0922 0914 0.910
6 0.99¢ 0.990 0.972 0957 0942 0.923 0910
7 1.000 0.995 0978 0958 0.938 0.918 0.907
8 1.060 0995 0982 0966 0946 0921 0907
9 1.000  0.997 0985 0966 0944 0920 0.906
10 1.000 0.997 0987 0.970 0948 0921 0906
8Ax
1 0.997 0973 0936 0924 0936 0.973 1.000
2 1.000 1.000 0996 0.992 0989 0.993 1.000
3 1.000 0998 0994 0992 0991 0.992 0.993
4 1.000 0.999 0998 0997 099 0.994 0.993
5 1.000 1.000 0999 0997 0996 0994 0.993
6 1.000 1.000 0.999 0998 0996 0994 0.993
7 1.000 1.000 0999 0998 099 0994 0.993
8 1,000 1.000 0.999 0998 0.996 0994 0.993
9 1.000 1.000 0.999 0998 0996 0994 0.993
10 1.000 1.000 0999 0998 0996 0994 0.993

nomial of one order less than the desired scheme, only
contains the interactions between ORD points. Thus,
it is not guaranteed that the subtraction of two fluxes
will produce the advective form. This is the case for
ORD = 3 through 10. :
Although this inconsistency between the flux and
advective forms does not affect the conservation prop-
erties of the flux form, it does affect the accuracy. A
stability analysis was performed on the flux form as-
suming a constant u and Ax (Tables 3 and 4). Both
amplitude and phase errors are increased significantly
from the advective form (Tables 1 and 2).
Fortunately, by requiring that a flux form reduce to
the advective form for a constant grid spacing and ve-
locity, a new form can be derived that has identical
errors to the advective form in the linear stability anal-
ysis. A constant grid flux form can be obtained alge-
braically in the following manner. We can write

Fir12= 2 bl 14m

m

Fip=2Z butlim
m
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wheyem =-UP,-UP+ 1,++--,ORD - UP -1 and
UP is the number of points upwind of j in the advective
form. Rewriting (6) and using (3),

¢! =¢+ X aidli
;

At .
= ¢jn + 'A—x[z bm¢;"'+l +m ™ Z bm¢j"‘+m ®)

where we have separated ¢;” from (3) and { = —-UP,
—UP + [,+ - -, ORD — UP. From (8), by equating
similar ¢,,,, we can find the coefficients b,

b_yp=a Ax
-uUp —UPAt

Ax

borp-upP-1 = AorD-UP——
At

Ax
b,,,—-amrt +bm_1.

The expressions for constant grid fluxes Fj;., for orders
1 through 6 are then
ORD = [:

At
Fiip—=—ag,

Ax

TABLE 4. Phase speed ratio for the iﬁtegrated flux form.

Courant number

Order  0.01 0.1 0.3 0.5 0.7 0.9 1.0

4Ax

1.000
0.749
0.915
0.990
0.909
0.937
0.908
0.920
0.908
0913

8Ax

1.000
0.928
0.976
0.982
0.975
0.976
0.975
0.975
0.975
0.976

1.033
0.964
0.947
0.951
0.932
0.934
0.927
0.928
0.925
0.926

1.000
1.000
0.942
0.942
0.933
0.933
0.931
0.931
0.930
0.930

1.060
0.856
0.943
0.973
0.924
0.936
0.919
0.924
0916
0919

0.859
0.676
0.868
0.992
0.887
0.933
0.895
0.915
0.899
0.908

0.643
0.637
0.798
0.957
0.856
0.916
0.881
0.906
0.891
0.902

0.704
0.641
0.318
0.972
0.865
0.922
0.884
0.908
0.893
0.904

OO0 ~JANWU B WN -

—

1.008
0.984
0.978
0.978
0977
0.977
0.976
0.976
0.976
0.976

1.000
1.000
0.978
0.978
0.977
0.977
0.977
0.977
0.977
0.977

1.013
0.953
0.978
0.980
0.976
0.976
0.976
0.976
0.976
0.976

0.926
0.901
0.968
0.985
0.974
0.976
0.974
0.975
0.975
0.975

0.970
0.910
0.973
0.984
0.974
0.976
0.975
0.975
6.975
0.975

0.903
0.900
0.966
0.986
0.974
0.976
0.974
0.975
0.974
0.975

QOO TN P W~

—
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ORD = 2:
At )
F}”ﬂ&_x =a/2(—¢;~ djs1) T a”/2(—;+ Bjv1)
ORD = 3:

At
Fj+1/z?['x= /6(dj-1 — 53— 2¢j41)

+ o/ 2(—¢;+ ¢js1)
+ a>/6(— -1 + 2¢;— @jv1)
ORD = 4;

At
P‘j+1]21—x =a/12dj-1 — Td;— Tdjr1 + djs2)

+ @2 /24(¢j-1 — 15¢;+ 15641 — djs2)

+ 6 12(= 1 + b5+ b — b52)

+0*/24(= @1 + 385 311 + Bj12)
ORD = 5:

At
Fioip Ax = a/60(—2¢;-,+ 13¢;- — 479,

= 27¢;41+ 3¢j42)
+ 0‘2/24(¢j-1 ~15¢;+ 15¢41 — djs2)
+/24(¢j2~ 661 + 8¢~ 20101 — Bj42)
+ a%/24(= @1 4 3¢~ 3t + ju2)
+ a5/120(—¢j_2 + 4| — 6¢;
41— djs2)
ORD = 6:

At
F‘j+l/2?‘; =a/60(—¢j-2+ 8¢~ 37¢;— 374
+ 82— @js3)
+~a2/3600—2¢y_24-25¢y-|—-245¢y

+245¢;41— 25¢2+ 2j43)
+a*/48(¢j—2 — Tdj—1 + 66+ 6¢;4,

Tzt dp3)

+ a¥/144(¢;2 — 11¢;-1 + 286, — 28+,
+11¢j0— @js3)
+0%/240(~ @2+ 3¢j-1 — 20~ 254
+ 3¢j+2 - ¢j+3)
+08/7120(~bj-2 + 5¢j-1 — 10¢;+ 10¢1,
~5¢j2+ dji3).
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The expressions for order 7 through 10 are given in
the Appendix.

The linear stability analysis for the constant grid flux
schemes is equivalent to the analysis in Tables 1 and
2. Unfortunately, this technique cannot be extended
to a variable grid spacing, as the coefficients for ¢4;
are nonlinear functions of the grid spacings.

4. Multi-dimensional advection

As pointed out by Leith (1965), the second-order
Crowley scheme is unstable in two dimensions if the
advective operators are applied simultaneously, that
is, if we approximate ¢}}' with

1= PIx e — ubst, o] + Pilyix— vAL, ¢4

where u and v are perpendicular velocity components
and the subscript on P indicates the direction in which
the spline is applied. All orders of upstream Lagrangian
schemes show the same behavior. This instability is
caused by the neglect of the cross-derivative terms in
the Taylor expansion, as mentioned by Leith (1965)
and Smolarkiewicz (1982). The simultaneous or com-
bined scheme can be viewed as fitting two one-dimen-
sional polynomials to a set of data points, instead of a
polynomial surface, consequently excluding a great deal
of data from the domain of dependence.

To control this instability, two methods have been
used. Leith (1965) and Crowley (1968), among others,
used the method of fractional timesteps or ““time-split-
ting,” which consists of two consecutive passes through
the field. Thus

B = Pl — ubdt, ¢l
@7t = P xjp— vAL, o).

FIG. 1. The initial condition for the rotating cone experiments.
The scale in the upper right corner is the initial height of the cone.



546

c) ORD=¢g

FIG. 2. The results of the rotating cone experiment after one rev-
olution (449 timesteps) with the advective form or constant grid flyx
form, (a) ORD = 2,(b) ORD = 4 ang (C)ORD = ¢,

Altematively, Smolarkiewicz (1982) explicitly added
the cross-deri vative terms to the Crowley scheme. This
method was alsg tested by Schlesinger (1985).

We have chosen to use the time-split scheme for
several reasons:
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FIG. 3. As in Fig, 2 but with the integrated flux forn,

® The methodology in section 2 coul_d possibly be

extended to multidimensiong} polynomial surface fit-
ting. H
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TABLE 5. Results from the rotating cone experiment after one
revolution (449 time steps); the initial amplitude was 10 units.

Order d’max ¢min 2 ¢neg/ 2 ¢0 E ¢2/ 2 ¢02 CPU
Advective form and constant grid flux form
1 0.56 0.00 0.00 0.056 1.1
2 4.57 —-1.83 -0.70 0.774 1.0
3 5.43 ~0.21 -0.10 0.658 1.8
4 8.04 -0.84 -0.16 0.963 s
5 8.13 -0.22 ~0.16 0.939 37
6 8.78 —0.26 -0.07 0.990 32
7 8.66 -0.15 -0.04 0.986 7.8
8 8.69 -0.21 -0.05 0.994 5.9
9 8.67 -0.13 -0.03 0.993 13.6
10 8.60 -0.18 -0.05 0.995 94
Integrated flux form

1 0.56 0.00 0.00 0.056 1.1
2 4.57 ~1.83 ~0.70 0.774 1.0
3 5.40 -0.62 -0.17 0.682 1.8
4 6.80 -1.50 -0.35 0916 1.5
5 7.11 ~1.20 —0.24 0.902 37
6 7.24 —1.36 -0.28 0.930 32
7 7.30 -1.33 ~0.26 0.929 7.8
8 7.30 —1.35 -0.27 0.932 59
9 7.31 -1.35 -0.26 0.932 13.6
10 7.31 -1.36 -0.27 0.932 9.4
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m(ORD + 1) points. For a second-order scheme, this
may be reasonable, but for higher-order schemes the
cost becomes prohibitive,

e Smolarkiewicz (1982) favored cross derivatives
over time-splitting because time-splitting requires more
data transfer than computing cross derivatives. How-
ever, time-splitting requires far less computation since,
as with the multidimensional surface fit, the cross term
scheme requires (ORD + 1)™ points. Also, a model
can be engineered so that there need not be any ad-
ditional data transfer for the time-split schemes.

e The stability criterion for the time-split scheme
does not change from one to several dimensions.

a. Rotational flow field tests

The upstream advective schemes using time-splitting
were tested with the classic rotating cone experiment.
The initial condition is shown in Fig. 1. The domain
consisted of an unstaggered grid of 101 by 101 points
with a pure rotational, nondivergent velocity field hav-
ing an angular velocity of 0.2. The cone had an initial
amplitude of 10 units and a base diameter of 10Ax.
The Courant number at the center of the cone was
0.35. The lateral boundaries were held constant, while
second-order advection and fluxes were computed at
points near the boundary where higher-order approx-
imations could not be computed.

Figure 2 shows the cone after one revolution (449
time steps) with the advective form and ORD = 2, 4
and 6. Figure 3 contains the same order schemes with
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the integrated flux forms. Table 5 summarizes the re-
sults for all schemes. Constant grid flux forms were
also tested. We expected the behaviors of constant grid
flux and advective forms to be similar, given the re-
quirement that the constant grid form reduce to the
advective form for constant spacing and given that the
velocities were relatively uniform across adjacent grid
points in the rotating tests. Indeed, the results of the
tests were identical to eight significant figures for both
forms.

The results in Table 5 are consistent with the linear
stability analysis. The first-order schemes almost com-
pletely damp the cone after one revolution. The second-
order schemes maintain more of the amplitude but,
because of the large dispersion errors, a trailing wake
is produced which contains much of the original am-
plitude of the cone. As the order of the scheme in-
creases, both errors are reduced; less damping main-
tains more of the initial maximum of the cone while
less dispersion decreases the negative amount of ma-
terial produced by the scheme. A higher-order scheme,
although not maintaining a positive definite field, will
reduce the problem of negative quantities dramatically.

Comparing the constant grid flux form and the in-
tegrated flux form, the results are again consistent with
the linear stability analysis. The lower maximums pro-
duced by the integrated flux forms are evidence of the
greater damping and the larger negative quantities are
evidence of the higher dispersion errors.

Relative efficiencies for various order schemes are
also listed in Table 5. All schemes were completely
vectorized (the odd-ordered schemes required the
computation of two fluxes per point per direction).
Again, it appears that the sixth-order scheme gives a
good balance between accuracy and efficiency.

b. Deformational flow field tests

The second-, fourth- and sixth-order schemes were
tested in the deformational flow field given by Smo-
larkiewicz (1982). A grid of 101 by 101 points was used
with the velocity field defined from the streamfunction
given in Fig. 4. A cone of amplitude 10 and base di-
ameter of 30 Ax was initially centered in the domain
as shown in Fig. 5. Two different time steps, yielding
maximum Courant numbers of 0.14 and 0.70, were
used. No damping or filtering of any kind was em-
ployed.

The solutions after 3000 time steps are shown in
Figs. 6 through 9. Figure 6a is the sixth-order advective
form with the lower Courant number and Fig. 6b is
the same scheme with the higher Courant number. All
orders tested, including eighth and tenth orders, show
this same highly unstable behavior with the advective
form in this deformational flow field.

Figure 7 is the sixth-order constant grid flux form
after 3000 time steps with the higher Courant number.
Along with the integrated flux form this same pattern
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FiG. 4. Streamfunction for the deformational flow field tests.

was produced for all orders of schemes. Although the
field is unstable, the rate of instability is much less than
the advective form.

The domain, as a whole, was stable for the flux forms
run with the lower Courant number. Figure 8 is the
integrated flux form with ORD = 2, 4 and 6 while Fig.
9 is the constant grid flux form with ORD = 4 and 6.
Even though the domain was stable, there was some
evidence of local instability. These results are consistent
with Petschek and Libersky (1975) who showed that
the second-order time-split flux form was unstable in
a particular deformational flow field and that the in-
stability increased with increasing Courant numbers.
The results for all orders of advective and flux forms
tested are summarized in Table 6.

As pointed out by Smolarkiewicz (1982), this flow

F1G. 5. The initial condition for the deformational tests.
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4. Summary

The methodology used by Crowley (1968) to derive
an advectijve scheme by upstream interpolatr'on along
a polynomijg] has been extended to higher orders, and
a new flux form that can pe used for constant grig
Spacing hag been developed. The advective form ang
constant grid flyx form have identical linear Stability

b
iy

!
|

f

has greater amplitude ang phase errorg for
schemes of order 3 and higher.

number,

For the ten orders of schemeg tested, the sixth-order
advective scheme appears to be the best balance pe.
tween accuracy and eﬁiciency. For constant grid ap-
plicau'ons, the corresponding sixth-order constant grid
flux form is equally desirable, and has the added ad-
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TABLE 6. Results from the deformational flow experiments after
3000 time steps.

VOLUME 115

vantages of being less unstable than the advective form
in deformational flow fields and conservative in non-
divergent fields. In any case, a sixth-order approxi-

Order  ¢mex  $mn  Zda/Zdo 2¢%/Z 0’  mation dramatically decreases errors over lower-order
Advective form upstream schemes. Advection costs are relatively siall
=014 2 55.65 —58.54  —11.59 117573 in a three-dimensional atmospheric model with de-
2 ‘1‘ 23-32 :Zgg-;g :g;‘;z 43 ; ‘1)-‘1‘38 tailed physics, and consequently the expense of sixth-
) i ' ' order schemes is not prohibitive. It appears that the
Amax = 0.7 220617 -203.71  —36.69 1810.561  sixth-order schemes are well-suited for many atmo-
4 20336 -20001  -4500 2505305  gpheric modeling applications where advection plays
6 226.59 -221.18 --50.14 2876.209 a signiﬁcant role.
Constant grid flux form
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APPENDIX

Advective schemes of order 7 through 10

The expressions for the advective schemes and fluxes of order 7 through 10 are described in tabular form
below. The table is arranged with the coefficient of each order of term in the first column and the grid point
horizontal. For example, the second-order term for the seventh-order advective form would be

2

3‘-"6—0 (2j—3— 2782+ 2700, — 490¢, + 270,11 + 2T dsv2 + 2 143).

The entire expression then would be the sum of all orders of terms.

1. Advective form

The advective form of the schemes is given by

¢ =¢;"+ G(x;, ")

and G(x;, ¢") is given in the following tables for orders 7 through 10. A positive velocity is assumed for the

odd-ordered schemes.

ORD=T7:

[T i3 bj-2 @i @& .1 iz .15
af420 -3 28 —-126 420 -105 —252 42 —4
a*/360 0 2 -27 270 —490 270 -27 2
/720 7 -64 267 —440 245 48 =71 8
a*/144 0 -1 12 -39 56 -39 12 -1
%1720 -2 17 ~54 85 -70 27 -2 -1
a%/720 0 1 -6 15 -20 15 -6 1
/5040 1 -7 21 -35 35 -21 7 -1
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ORD =8§:
Ba bj-3 b2 [ % bj+1 bjr2 b3 Gjea
«/840 -3 32 —168 672 0 —672 168 -32 3
2110080 -9 128 —1008 8064 —-14350 8064 -1008 128 -9
«*/1440 7 -72 338 —488 0 488 —338 72 -7
*/5760 7 -9 676 —1952 2730 —~1952 676 -96 7
{720 ~1 9 -26 29 i} —-29 26 -9 1
«®/2880 -1 12 -52 116 —150 116 —52 12 -1
«’/10080 1 -6 14 —14 0 14 -14 6 -1
/40320 1 -8 27 —56 70 —56 28 -8 1
ORD=9:
bj-s bp-a b3 -2 i1 &; -7 b2 Bje3 Gjes
/2520 4 —45 240 -840 2520 —-504 —1680 360 —60 5
a?/10080 0 -9 128 —1008 8064 —14350 8064 —1008 128 -9
a*/90720 -205 2286 -11916 38514 —56574 25830 13524 —-13914 2691 -236
a*/5760 0 7 —96 676 —1952 2730 —1952 676 -96 7
a*/17280 13 -141 684 —-1716 2334 —1638 396 156 -99 11
«®/2880 0 -1 12 =52 116 ~150 116 -52 12 -1
o /60480 -5 5t =216 504 -714 630 ~336 96 -9 -1
a?/40320 0 | -8 28 -56 70 —56 28 -8 1
«’/362880 1 -9 36 -84 126 —-126 84 ~36 9 -1
ORD = 10:
(] j-s ®j-3 b2 [ @; i1t Djr2 Dj+3 bjra [
af2520 2 =25 150 —600 2100 0 -2100 600 —~150 25 -2
?/50400 8 -125 1000 —-6000 42000 ~73766 42000 —6000 1000 —125 8
a®/181440 -205 2522 —14607 52428 —70098 0 70098 —52428 14607 —2522 205
«*/362880 -82 1261 —9738 52428 —140196 192654 ~140196 52428 —9738 1261 -82
a*/34560 13 -~152 783 —-1872 1938 0 -1938 1872 -783 152 -13
/172800 13 -190 1305 —4680 9690 —12276 9690 —4680 1305 -190 13
/120960 -5 52 =207 408 -378 0 378 —408 207 —52 5
/120960 -1 13 —69 204 -378 462 -378 204 —69 13 -1
a°/725760 1 -8 27 —48 42 0 —42 48 -27 8 -1
«'%/3628800 1 -10 45 -120 210 —252 210 -120 45 —-10 1

2. Integrated flux form

The flux form of the schemes is given by ¢,"*' = ¢;" + (At/Ax)(Fj+1/2— Fi~1,2) and Fj,y ), (At/Ax) is given in
the following tables for orders 7 through 10. A positive velocity is assumed for the odd-ordered schemes.

ORD=T:
[ bj-2 [T @& [ [} 3%}
af1024 5 —42 175 -700 —525 70 -7
o?/3840 0 -9 125 -2250 2250 —-125 9
a®/34560 —259 2154 ~8565 9260 195 ~3126 341
a*/192 0 1 -13 . 34 -34 13 -1
«*/2880 7 —54 141 : 164 81 -6 -5
a®/720 0 -1 5 —-10 10 -5 1
/5040 -1 6 —-15 20 -15 6 -1

ORD = 8:

-3 i 78 b5 birt Gjs2 b3 jra

/2048 5 —-49 245 —1225 —1225 245 —49 5
/215040 75 —-1029 8575 —128625 128625 —-8575 1029 -75
a?/69120 -259 2495 —11691 9455 9455 —-11691 2495 —-259
a*/46080 -37 499 —3897 9455 —9455 3897 —-499 37
«*/5760 7 -59 135 —83 -83 135 -59 7
a%/17280 5 -59 225 -415 415 —225 59 -5
a’/10080 -1 5 -9 5 5 -9 5 -1
«?/40320 -1 7 . =21 35 -35 21 -7 1
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ORD =9:
s -3 bj-2 i1 @; Djei D2 D3 e
a/32768 =35 360 —1764 5880 22050 —17640 2940 ~504 45
a?/215040 0 75 -1029 8575 —-128625 - 128625 —8575 1029 -75
311935360 —3229 -33084 160272 -508172 490770 83916 -236936 44028 ~4023
a*/46080 0 -37 499 —-3897 9455 —9455 3897 —-499 37
a®/230400 -141 1408 —6308 13296 —-13190 4576 1452 —-1232 139
a5/17280 0 5 —59 225 —415 415 225 59 =5
/40320 3 -28 104 ~-204 230 —~148 48 -4 -1
4140320 0 -1 7 -21 35 -35 21 -7 i
a’/362880 -1 8 —28 56 =70 56 -28 8 -1
ORD = 10:
s b3 G2 $i1 @ D1 bjr2 jes Bjsa Djas
af65536 -35 405 —2268 8820 —39690 ~-39690 8820 —2268 405 =35
a?/20643840 ~-1225 18225 —142884 926100 —12502350 12502350 ~926100 142884 —18225 1225
/3870720 3229 -37107 204300 ~745108 574686 574686 ~745108 204300 -37107 3229
*/23224320 3229 —-47709 367740 -2235324 5172174 -5172174 2234324 —367740 47709 -3229
a*/460880 —141 1547 —~7540 14748 —8614 —8614 14748 —-7540 1547 ~141
a%/829440 -47 663 —4524 14748 ~25842 25842 —14748 4524 —663 47
o’/80640 3 ~-29 100 -156 82 82 -156 100 -29 3
a*/967680 7 ~87 420 -1092 1722 -1722 1092 —-420 87 -7
/725760 -1 7 -20 28 -14 -14 28 -20 7 -1
«'°/3628800 -1 9 -36 84 ~-126 126 -84 36 -9 1

-

3. Constant grid flux form

The expression for Fj,(,(At/Ax) for the constant grid flux form is given in the tables below for orders 7
through 10. A positive velocity is assumed for the odd-ordered schemes.

ORD = 7:
-3 $j-2 [ L i1 P2 Bje3

‘a/420 3 -25 101 -319 ~214 38 -4
o?/360 0 -2 25 —245 245 -25 2
/720 -7 57 =210 230 -15 -63 8
a*/144 0 1 ~11 28 ~28 11 -1
a’/720 2 —15 39 —46 24 -3 -1
a5/720 0 -1 5 -10 10 -5 1
a’/5040 -1 6 ~15 20 —-15 6 -1
ORD = 8: :

-3 b2 1 7 [ D2 D3 Pj+a
a/840 3 -29 139 —533 -533 139 -29 3
o?/10080 9 -119 889 =7175 7175 —899 119 -9
a’/1440 -7 65 ~273 215 215 -273 65 -7
a*/5760 -7 89 -587 1365 -1365 587 -89 7
/7120 1 -8 18 ~11 =11 18 -8 1
«%/2880 1 -11 41 ~75 75 —41 11 -1
/10080 -1 5 -9 5 5 -9 5 -1
«*/40320 -1 7 =21 35 =35 21 -7 1
ORD =9: .

[T O3 P2 -1 & b1 D2 b3 Pjsa
«/2520 —4 41 -199 641 —~1879 —-1375 305 =55 5
*/10080 0 9 -119 889 -7175 7175 —889 119 -9
3190720 205 —2081 9835 28679 27895 2065 —11459 2455 236
a*/5760 0 -7 89 —587 1365 -1365 587 -89 7
(17280 -13 128 —556 1160 —1174 464 68 —-88 1
a%/2880 0 1 -1t 41 =75 75 —41 i1 -1
a’/60480 5 —46 170 -334 380 —250 86 -10 -1
a®/40320 0 -1 7 ~21 35 -35 21 -7 1
/362880 -1 8 -28 56 ~70 56 -28 8 -1
Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 09/27/23 04:53 PM UTC



FEBRUARY 1987 TREMBACK, POWELL, COTTON AND PIELKE 555

ORD = 10:
bj-a ;-3 12 i1 & ™ bj+2 Dj+3 Djra Djas
/2520 -2 23 -127 473 —-1627 —1627 473 —127 23 -2
a?/50400 -8 117 —883 5117 ~36883 36883 ~5117 883 -117 8
o’/181440 205 —-2317 12290 —40138 29960 29960 —40138 12290 -2317 205
«*/362880 82 -1179 8559 ~43869 96327 -96327 43869 —8559 179 -82
/34560 —-13 139 —644 1228 =710 ~710 1228 —644 139 -13
a%/172800 -13 177 —1128 3552 —6138 6138 —3552 1128 —177 13
a’/120960 S —47 160 —248 130 130 —248 160 —47 5
*/120960 1 ~12 57 —-147 231 -231 147 -57 12 -1
a®/725760 -1 7 -20 28 14 —14 28 -20 7 -1
a'%/3628800 -1 9 -36 84 —-126 126 —84 36 -9 1
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