
2D Boussinesq Equations

The equation of motion for 2D fluid with Boussinesq approximation:

, (1)

, (2)

where variables, u, w, p, r, q, are wind components in x and z directions, p is pressure, r, q, is
potential temperature. r is constant base state air density, and q is constant base state potential
temperature. q' = q - q0 is the perturbation potential temperature. The second term on the right
hand side of (2) is the buoyancy term.

 (3)

is the potential temperature conservation equation.

 gives the y-vorticity equation:

, (4)

where

.

For this 2D non-divergent flow, the velocity components can be written in term of stream
function y,

, (5)

so that vorticity

, (6)

or , (7)

0

1u u u pu w
t x z xr
¶ ¶ ¶ ¶

+ + = -
¶ ¶ ¶ ¶

0 0

1 'w w w pu w g
t x z z

q
r q

¶ ¶ ¶ ¶
+ + = - +

¶ ¶ ¶ ¶

' ' ' 0u w
t x z
q q q¶ ¶ ¶
+ + =

¶ ¶ ¶

Eq.(1) Eq.(2)
z z

¶ ¶
-

¶ ¶

0

'gu w
t x z x
h h h q

q
¶ ¶ ¶ ¶

+ + = -
¶ ¶ ¶ ¶

u w
z x

h ¶ ¶
= -
¶ ¶

,u w
z x
y y¶ ¶

= = -
¶ ¶

2 2
2

2 2x z
y yh y¶ ¶

= + =Ñ
¶ ¶

2y hÑ =

which is an elliptic equation which can be solved for when is known. In this term project,
you are to use equations (3), (4) and (7) to construct a 2D model where prognostic state variables
are and , and is a diagostic state variable.

Eq. (3) and (4) are first integrated forward to obtain and at the future time level, then
elliptic Eq.(7) is solved to obtain . u and w are then obtained from (5). One time step is then
complete.

Term Project Assignment – Part 1: Solve for stream function and velocity given vorticity
distribution. Advect the vorticity field with a constant horizontal flow.

Define a computational domain that is H deep, and L wide, and grid intervals dx and dz. Then L
= (nx - 1) dx and H = (nz -1) dz where nx and nz are the number of grid points defined from the
left to right boundaries and from the bottom to top boundaries, respectively.

For the implementation lateral boundary conditions, it is convenient to define one extra column
of grid points outside the left and right physical boundaries, so that the grid point index goes
from -1 to nx+1. With Fortran, you can declare arrays like u(0:nx+1, nz) to match such index.
With Python, all arrays have to start from 0 index.

For our term project, we will assume periodic lateral boundary conditions. For example, using
Fortran, for u,

u(0,:) = u(nx-1,:)

u(nx+1,:) = u(2,:)

The above conditions should be set for all state variables. The top and bottom boundary
conditions are rigid walls, therefore w = 0 at z = 0 and z = H.

Problem 1: Assume zero initial environmental flow, therefore initial stream function is zero
everywhere. At the top and bottom boundaries, remains zero always, which is the top and
bottom boundary conditions for .

For H and L = 10,000 m, and Dx = Dz = 100 m,

 for r R otherwise = 0, (8)

 for otherwise , (9)

y h

h 'q y

h 'q
y

y
y

2
0 cos 2

r
R

ph h æ ö= ç ÷
è ø

£ h

2
0' ' cos

2 Tr
pq q æ ö= ç ÷
è ø

1/22 2 2 2() / +() / 1T c x c zr x x R z z Ré ù= - - £ë û ' 0q =

where is the coordinate of the center of thermal bubble and Rx and Rz are the horizontal
and vertical radius of the elliptic thermal bubble.

where r is the radial distance from the domain center, and R = ¼ H.

For the above vorticity distribution and = 0.01 s-1 solve for the stream function using
successive over-relaxation method. Confirm that your results are correct by plotting (within the
physical domain without extra boundary points) the original and calculated from (6).

Calculate u and w from (5) and plot the wind vectors in the physical domain.

Problem 2: For constant flow u = 10 m/s, w = 0, and the initial vorticity given by (8), integrate
(4) without the right hand side buoyancy gradient term for 2000 s, and plot your solutions at
500, 1000, 1500, 2000 s.

Use forward-in-time, upstream-in-space scheme, and Courant number 0.25, 0.5, 0.75, and 1.0 to
do the integration. Briefly discuss the results.

Term Project Assignment – Part 2. Integrate potential temperature equation (3) and
vorticity equation (4) with an initial thermal bubble and zero vorticity, to simulate rising
warm bubble and dropping cold bubble.

Problem 1: Rising warm bubble/dry thermal convection

Set initial to zero (and therefore u and w also to zero).

Define an initial thermal bubble by setting initial perturbation potential temperature as

 for otherwise , (9)

where is the coordinate of the center of thermal bubble and Rx and Rz are the horizontal
and vertical radius of the elliptic thermal bubble.

(,)c cx z

0h y

h h

h

h

2
0' ' cos

2 Tr
pq q æ ö= ç ÷
è ø

1/22 2 2 2() / +() / 1T c x c zr x x R z z Ré ù= - - £ë û ' 0q =

(,)c cx z

Set the bubble amplitude = 5 K. Set = (L/2, 2000), i.e., center the initial bubble at 2
km above ground and in the center for horizontal domain. Set Rx = Rz = 2000.0 meter. Set H =
12,800 m and L = 25,600 m, and Dx = Dz = 100 m.

Use centered difference for the right hand side term of equation (4) with g = 9.8 m s-2, q0 = 300
K, and integrate equation (3) and equation (4) using forward-in-time, upstream-in-space scheme.

Step 1: Integrate equations (3) and (4) to obtain and at the next time level (in the interior
domain). Assume that the maximum u and w will be 10 m s-1, chose your time step size Dt that so

that . The factor is due to 2D advection.

Set the boundary conditions. For and , we assume zero gradient normal to the boundary for
both. The following is a Python function that sets zero gradient condition on all boundaries.
def zero_gradient_bc(var,nx,nz):
 var[0,:] = var [1,:]
 var [nz-1,:] = var [nz-2,:]
 var [:,0] = var [:,1]
 var [:,nx-1] = var [:,nx-2]

return 0

For velocity components u and w, we use the free-slip wall boundary conditions. That is, the
normal wind component is zero, and the parallel wind component assumes zero normal gradient.
For u, a python code would look like:

 u[t+1, :,1] = 0
 u[t+1,:,nx-1] = 0
 u[t+1, 0,:] = u[t+1, 1,:]
 u[t+1,nz-1,:] = u[t+1,nz-2,:]

Step 2: Solve elliptic equation (7) to obtain then calculate u and w as you did in Task 1, using
the vorticity you obtained at the next time level. at the boundaries should be set before the
elliptic equation is solved. For the current problem, setting = 0 at all boundries is appropriate.

This completes the full time step integration, and you have obtained all state variables at the next
time level, from which you intergrate forward to more time steps until end time T=2000s.

Given Dt and T, the total number of time levels involved in the integration will be N =T/Dt+1.
For this 2D problem, memory is not an issue so you can declear arrays for all state variables like
u(0:nx+1, nz, N) so that you have values at all time steps for output and plotting purpose.

For 3D NWP problems, we never save states at all time levels in memory (it will require too
much memory). For the current problem, we only need to declare potential temperature and
vorticity arrays at 2 time levels, like pt(0:nx+1, nz, 2), vort(0:nx+1, nz, 2), and the velocity
arrays at one time level, like u(0:nx+1, nz), because within any time level, we don’t need to
know the states at more than these number of time levels. In that case, state variables need to be

0'q (,)c cx z

'q h

max 1
2

tU
x

D
£

D
2

'q h

y
y

y

written to disk files periodically, at specified intervals. Current NWP models often write output
(forecasts) to disk every hour. Also, at the end if each time step, you need to transfer pt and vort
at time level 2 to time level 1, i.e., pt(:, :, 1) = pt(:, :, 2), vort(:, :, 1) = vort(:, :, 2), so that the
next time step integration will start again time level 1. You will need a time counter to keep track
of the time.

Discuss your results.

Problem 2: Dropping cold bubble/density current along ground

Set = -15 K, = (L/2, 3000) meter, Rx = 4000, Rz = 2000 meter in equation (9) for the
initial cold thermal bubble. Set H = 6,400 m and L = 51,200 m, and Dx = Dz = 100 m. Simulate
the dropping cold bubble/density current in Straka et al. (2003) (see
https://twister.caps.ou.edu/CFD2023/Straka.pdf). Integrate the equations to 900 s, and output
and plot the and u fields using contours every 300s. Choose your time step size so that

. For this problem, the same boundary conditions as for the rising bubble can be

used.

Discuss your results in comparison with the 100 m grid spacing results in Fig. 3 of the Straka
paper at 900 s, and the reference solutions using 25 m grid spacing at additional times in Fig.1 of
the Straka paper.

Given the large grid size (~ 512 x 64 grid points), the computation is likely slow, if you use
python on a low-end laptop!

0'q (,)c cx z

'q
max 1

2
tU
x

D
£

D

