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ABSTRACT

A two-step advection scheme of the Lax-Wendroff type is derived which has accuracy and phase
characteristics similar to that of a third-order scheme. The scheme is exactly third-order accurate in time and
space for uniform flow. The new scheme is compared with other currently used methods, and is shown to
simulate well the advection of localized disturbances with steep gradients. The scheme is derived for constant
flow and generalized to two-dimensional nonuniform flow.

1. Introduction

One of the most common ways of measuring the
relative merit of a given numerical scheme for advec-
tion is to consider the scheme’s dissipation and
dispersion properties. Following the work of Crowley
(1968), Molenkamp (1968), Anderson and Fattahi
(1974) and Mahlman and Sinclair (1977) on the
comparison of numerical schemes for the advection
equation, it has been shown that high-order schemes
tend to shift their dissipation and dispersion errors
toward the high wavenumbers of a given solution. In
choosing a scheme of a given order, however, an
objective criterion must be devised which will deter-
mine the scheme which minimizes some measure of
error while at the same time remain within the
bounds of computational efficiency and storage re-
quirement determined by each user.

Within the last few years, many schemes have been
devised which effectively transport passive scalar
quantities with impressively small errors. Examples
of familiar methods include the flux-corrected trans-
port (FCT) method developed by Boris and Book
(1973, 1976), Book et al. (1975), the pseudo-spectral
method used by Orszag (1971), the cubic spline
interpolation technique as reported by Price and
MacPherson (1973), and the quasi-Lagrangian cubic
spline approach demonstrated by Purnell (1976).
Notwithstanding the success of these methods, many
modellers still employ the simpler second-order Lax-
Wendroff conservative method or even the first-order
upstream scheme due to computational ease and cost.
In this regard, much work has been devoted to
improving the standard first-order upstream and the
second-order Lax-Wendroff schemes with respect to
their stability, amplitude and phase characteristics.
Smolarkiewicz (1982) replaced the common time-
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splitting technique for advecting the Lax-Wendroff
scheme in two or more directions with the addition
of cross-space terms and off-axis information in the
first spatial derivatives to improve its stability char-
acteristics in the case of strong deformation flow. The
inherent phase lag associated with the Lax-Wendroff
scheme, however, remained intact. Alternatively,
Smolarkiewicz (1983) used a predictor-corrector se-
quence applied to the upstream scheme such that the
corrector reversed the effect of the implicit diffusion
in the upstream predictor. Best results were obtained
when the time-splitting technique was used in con-
junction with a twice repeated corrector step. Fromm
(1968) linearly combined a forward and backward
timestep of the Lax-Wendroff scheme which effectively
“zeroed-out™ the phase lag in each step. Gadd (1978)
introduced a free parameter and four grid-points for
use in the spatial first derivative of the Lax-Wendroff

‘scheme which eliminated much of the inherent phase

lag and reduced the order of magnitude of the dissi-
pation error. However, the free parameter was chosen
in such a way that conservation of the advected
quantity was not guaranteed.

In this paper, a scheme of the Lax-Wendroff type
for uniform flow has been derived which gives an
optimal balance between the dissipation and disper-
sion errors, i.e, a scheme which dissipates most
strongly those waves whose phase speed is most
poorly represented. The schemes under consideration
are such that the order of accuracy in space and time
are equal. As mentioned in Anderson and Fattahi
(1974), phase truncation errors are related to odd-
ordered schemes while amplitude truncation erross
are related to even-ordered schemes. This relationship
will be developed for the generalized version of the
scheme presented, and then examined in detail for a
particular second-order scheme using four horizontal
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grid-points for uniform flow. We will restrict ourselves
to a two-step second-order formulation for simplicity
and computational considerations. Higher-order
methods in both time and space for nonuniform
flow, such as the third-order methods presented by
Burstein and Mirin (1970) and Rusanov (1970), are
generally implemented using an iterative predictor—
corrector—corrector sequence which is generally more
costly than simpler two-step processes. In addition,
as Petschek and Libersky (1975) and others have
shown, even the standard second-order time-splitting
Lax-Wendroff scheme may become unstable in the
case of strong deformational flow. Therefore, in this
paper an attempt is made to construct a stable two-
step scheme which at least simulates some of the
improved phase characteristics associated with third-
order schemes for uniform flow. The generalized
version of the scheme and its order of accuracy
requirements are introduced in Section 2. Section 3
examines the order of magnitude of the amplitude
and phase errors for the generalized scheme, while
Section 4 presents the actual scheme under consid-
eration. Sections 5 and 6 show a stability and error
analysis for the particular scheme, while Section 7
shows one-dimensional results using constant flow.
Sections 8 and 9 generalize the scheme to two di-
mensions, and Seciion 10 shows two-dimensional
results. Section 11 concludes with a summary.

2. Generalized scheme

For simplicity, the formulation of the scheme will
be based on the one-dimensional advection equation
given by

dq , 99 _

o + CGx 0. 2.1
Here g represents any arbitrary quantity being ad-
vected, while ¢ is the constant velocity of the flow
field in the x-direction.

In general we can write a finite-difference version
of (2.1) as

qgrt = Z aqly, j=0,x1,x2,--+. (2.2)

J

Here the subscripts j and j + j’ denote the location
in space, while the superscripts # and n + 1 denote
the time index. The weighted coefficients a; are
presently arbitrary.

For a given order of accuracy, certain restrictions
are placed on the coefficients. By using a Taylor series
substitution, (see Appendix A), it can be shown that
first-order accuracy requires

2 aj' = 15
'

2 j,aj' =—u,
J

(2.3)
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where u is the Courant-Friedrichs-Lewy (CFL) stability
parameter given by
_et
k=
Second-order accuracy requires in addition to (2.3)
the requirement

(2.4)

> j%a; = pi (2.5)
r

In general, for mth-order accuracy there are m + 1
requirements beginning with (2.3) and ending with

3 j™ay = (—uy™. (2.6)
2

When these requirements are satisfied, the scheme
will be mth-order accurate both in time and in space.

3. Error analysis
By choosing a solution of (2.2) in the form
g/ = Re{g"e™**}, 3.1

where [ = \/—_1 and k is the horizontal wavenumber,
substitution of (3.1) into (2.2) yields

An+l —

g™ = Aog", (3.2)

where \p is an amplification factor associated with
the difference solution and is given by

>‘D = z aj:eij"'.
j

(3.3)

Here we have defined the nondimensional wavenum-
ber § as
0 = kAx. (3.4)

It is easily shown that the true continuous solution
of (2.1) also has an amplification factor which is
given by

Ar = e 3.5)

We see that the magnitude of the true amplification
factor is 1. Thus, each harmonic wave component of
the true solution is simply advected with a phase shift
of —u# for each time step, while the amplitude of
each wave component remains unchanged.

Using (3.3) and (3.5), we define the relative error
¢ associated with each time step of the difference
scheme by the relation

A = (1 + OAr, (3.6)
where
€ = e + lg, (3.7)
and
R = 2 aycos(j +u)f — 1, (3.8)
I
= 2 aysin(j' + p)f. (3.9)

J
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By writing Ap and At as

Ap = |Aple®P, (3.10)
At = [Agle®T, (3.11)
it can be shown from (3.6) that
Aol = M l? + e, (3.12)
(PD = ¢T + €p, (313)
where
ey = e’ + &° + 2eg, (3.14)
= -1 fl
€p tan (GR ¥ l) . (3.15)

Here ¢ is the error associated with the square of the
modulus of the finite-difference amplification factor
while ¢, is the error associated with the phase. In
obtaining (3.12), the relation |Ar| = 1 was used.

Since the error is wavenumber dependent, an insight
into the order of magnitude of the error is gained by
expanding the error in a Taylor series about 6 = 0.
Doing so we find that Eqns. (3.8) and (3.9) may be
expressed as

A02 -y 2
€R=(Zaj'_1)"—2, 2(] + u)a;
) 'Y

4

Al )
tr ZU Ry, (16)
<

. a6
a=82 0 twey -5 20 +wat -
J T

(3.17)

It can be seen that each coefficient of A6™ is a
binomial expansion of (j' + u)™. It is easily shown
that for a scheme of mth order accuracy, Zj, ('
+ u)"a; = 0. Thus, by collectively satisfying the order
of accuracy requirements defined in Section 2, the
order of magnitude of the relative error may be
systematically reduced. Furthermore, we can see that
for a scheme of a given order m,

O(epy) = Oler), (3.18)
) O(ep) = O(er), (3.19)
SINce
-1 € — €1
tan (€R+l)~€R+l
=e(l —eg +eg?— -++). (3.20)

Using (3.18) and (3.19), we may rewrite (3.12) and
(3.13) as

Aol = [Ar]> + O(er), 3.21)
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¢D = ‘PT + 0(61). (322)

Equation (3.21) shows that the order of the error
associated with the magnitude of the finite-difference
amplification factor is only a function of the real
component of the relative error. As can be seen from
(3.16), only even-ordered schemes will reduce the
order of magnitude of the real component of the
relative error. Similarly, we see from (3.22) and (3.17)
that only odd-ordered schemes will reduce the order
of magnitude of the error associated with the phase
change of the finite-difference scheme.

Figures 1 and 2 show the amplitude and phase
errors defined by (3.14) and (3.15) for Ist-, 2nd-,
3rd-, and 4th-order accurate schemes found by satis-
fying the order of accuracy requirements presented
in Section 2. The Ist-order scheme is the simple
forward in time upstream scheme using two grid-
points (j' = 0, —1). The 2nd- and 4th-order schemes
are centered schemes using three and five grid-points
respectively (j' = 1,0, —1 and j' = 2, 1, 0, —1, —2).
These schemes are the 2nd- and 4th-order schemes
as presented in Crowley (1968), of which the 2nd-
order scheme is the standard Lax-Wendroff scheme
described by Leith (1965). The 3rd-order scheme uses
four grid-points (j' = 1, 0, —1, —2).

From Fig. 1 we clearly see the reduction in the
amplitude error between the 1st- and 2nd-order
schemes and also between the 3rd- and 4th-order
schemes although to a lesser extent. By systematically
going to the next highest even-ordered scheme, the
amplitude error is confined to smaller and smaller
scales. It is also interesting to note that the odd-
ordered upstream-type schemes have errors which are
symmetric about u = 0.5.

In Fig. 2 we see the opposite effect taking place,
i.e., a reduction in the phase error between the 2nd-
and 3rd-order schemes. In fact, since the even-ordered
schemes damp less, the phase error may appear worse
due to the poor phase properties of the surviving
scales. Finally, we again see the symmetric behavior
associated with the odd-ordered schemes.

4. Formulation of proposed scheme

From the preceding sections it was found that
using three grid-points centered about g, second-
order accuracy uniquely defined the second-order
Lax-Wendroff scheme for uniform flow as described
by Leith (1965). We know that second-order schemes
have fourth-order amplification errors and third-order
phase errors as defined by (3.21) and (3.22). By
including one more grid-point, third-order accuracy
may be achieved thus reducing the order of magnitude

. of the phase error.

Achieving a stable third-order accurate scheme in
time and space is trivial for the case of uniform flow.
However, the same is not so easy when the advecting
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FIG. 1. Amplitude error for (a) Ist-order scheme, (b) 2nd-order scheme, (c) 3rd-order scheme and (d) 4th-order scheme.

flow varies in space. As shown by Petschek and
Libersky (1975) and Smolarkiewicz (1982), even the
standard second-order time-splitting Lax-Wendroff
scheme may become unstable in the case of strong
deformational flow. In addition, higher-order schemes
in both time and space, such as the third-order
methods presented by Burstein and Mirin (1970) and
Rusanov (1970), are generally implemented using an
iterative predictor-corrector—corrector sequence,
where the higher-order accuracy comes about from
repeated evaluations of the space-differencing operator.
These three-step procedures are generally more costly
than simpler two-step procedures. Also, as pointed

out by Prof. Fedor Mesinger (personal communica-
tion, 1984), given the number of grid-points one is
considering to use within the advection scheme, it
does not necessarily follow that satisfying the maxi-
mum number of the order of accuracy requirements
should give the best result. Therefore, rather than
satisfying third-order accuracy analytically, we will
use four grid-points in a stable two-step second-order
scheme for uniform flow and allow the extra grid-
point added to act as a free parameter to minimize
specific measurements of dissipation and dispersion
error. Once the second-order scheme is found for
uniform flow, it will be generalized for nonuniform



1054

1.0

MONTHLY WEATHER REVIEW

oot A

0.8}
0.7}

0.6 |-

0.4

L R |

03

0.2}

0.1

0.0 L iz i L 1 1 1 |

0.9 C

c.8|

o1}

osl

U 0.5 (¢}

0.4}

0.3

T 1

0.2

) I l 1 F S S N

0.0

orT r 1
-
-
-

w4 ”/2

6

Ini4e

VOLUME 113

1.0 ——

0.9 - b

0.8
0.7}
0.6
W 0.5
0.4 |-
0.3}
0.2
0.1}

0.0 L

1.0 L] T T T T L] T T

0.9} d

0.8}
0.7

0.6

AT z—‘\\\.‘ ', =

0.4
0.3
0.2 o

0.1

0.0 L Il 1 1 1 ) |

FiG. 2. Phase error for (a) ist-order scheme, (b) 2nd-order scheme, (¢) 3rd-order scheme and (d) 4th-order scheme.

flow with special attention given to its stability char-
acteristics. The following, then, is a summary of the
steps taken in the formulation of the second-order
scheme.

1. Use one more grid-point than the minimum
needed for the desired accuracy. In this case, four
grid-points are used (j' = 1, 0, —1, —2) for a second-
order scheme.

2. Let the coefficient of the extra grid-point be a
free parameter.

3. Using the free parameter, obtain a family of
stable schemes.

4. From this family of stable schemes, find the
scheme which minimizes some measure of error.

The form of the second-order scheme under con-
sideration is given by

n+l —

alt = aigi + aoq” + a_\q}- + a2qia, (4.1)

where the coefficients a; are found by requiring
second-order accuracy and have the form

a; = pp—1)/2—-a,
dg = 1 —/.L2+3a_2
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a-, = uu+1)/2 - 3a_,

a-; = au(p —1). 4.2)

For the present analysis, we still assume that the flow
is positive and constant.

The form of the free parameter a_, was chosen so
that for u = 0 or 1, the scheme is exact. Substituting
(4.2) into (4.1) we have

2

n “ n
=4 —3 i —qlt) + 5 (gf1 — 2g" + ql-1)

n+1

U]

—ap(p — 1)(gfn — 3¢ + 3¢ — qf2).  (4.3)

We see that for a« = 0, the scheme reduces to the
second-order Lax-Wendroff scheme. For nonzero «,
an extra term is added corresponding to the third
derivative of g/ in space. If we allow the free parameter
o to be a function of the wind speed p, then choosing
a = (1 + u)/6 yields the unique third-order accurate
scheme in time and space using four grid-points.

5. Stability analysis

In order to obtain a family of stable schemes
associated with the free parameter, restrictions were
placed on the first nonzero derivative of the expansion
described by (3.16) so that the slope of the magnitude
of the amplification factor was negative (i.e., damping).
Thus

64eR

< (5.1)
96* 1,-0

In addition, it was also required that the scheme be
stable for the shortest waves, i.e.,

Moo= < 1. (5.2)
Together, (5.1) and (5.2) produce bounds on the free
parameter a given by

O0<as<

1
> (5.3)

for

O0<u<l.

5.4)

It is useful at this point to examine the stability of
the proposed scheme by means of the energy method.
Squaring (4.3) and summing over all space assuming
cyclic boundary conditions we find after rearranging
terms

2 2 1+
S @ - gy = w1 - ] K 4 a1 - 20
J
2 — 2
X Z (41"’+| - 2an + q,'-'_l)z -« M (1 —-2a)

2

J

X 2 (g} — 34" + 3q}-1 — q}2)". (5.5)
J
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We see that for p < | and a < 2, the scheme is
absolutely stable and damping. When a = 0 the
scheme reduces to the dissipative Lax-Wendroff
scheme. For nonzero « the scheme’s dissipative prop-
erties may actually increase depending on the value
of u. However, it will be shown in Section 7 that the
dissipation error is an order of magnitude smaller
than the phase or dispersion error associated with the
scheme, and that the reduction in the dispersion error
for nonzero o more than compensates the possible
increase in dissipation error.

6. Dissipation and dispersion error

In order to obtain the optimum value for o,
experiments similar to those of Crowley (1968), Mo-
lenkamp (1968), and others were performed in which
a cone-shaped disturbance with a base-width of 10
grid-points was advected over a distance of 70 grid-
points, (see Fig. 3). Three measurements of error
were taken representing the total error, the dissipation
error, and the dispersion error. The total error was
defined to be the mean square error for the experi-
ment, given by

1
Eror = ﬂ ? (gr — qD)z,

6.1)

where ¢ is the true solution, gp is the finite-difference
solution, and M is the total number of grid-points.
By expressing (6.1) as the variance of (gt — gp) plus
the difference of the means squared,

i L
% > (gr — go)* = o*gr — ap) + (g1 — @p)>, (6.2)
Jj

141+ -

1.0+ ~

0.8 -

0.6 -

0.4 |- -~

0.2 - —

i 1] ] 1 1 )
o 10 20 30 40 50 80 70

OISTANCE

FI1G. 3. Initial condition used for testing numerical schemes
for advection in one dimension.



1056

0.0
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

TOTAL

MONTHLY WEATHER REVIEW VOLUME 113

ERROR

T T

i 1 I L

a

DISSIPATION ERROR

T T T T

=]
@
o
o,
o
FS
/ll

0.0 = .
0.0 0.05 0.10 0.15 0.20 0,25 0.30 0.35 0.40 0.45 0.50

0.9

o

DISPERSION ERROR

1.0 T T T

0.8

0.

20

.7 30

40
50

80
s |80l

1 L 1

T T T T T T

Il L 1 I 1

o
0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

o

it can be shown that
Exor = a¥(gy) + ¢*(gp)

— 2 cov(gr, gp) + (g1 — dp)*, (6.3)
or

Eror = o*(gr) + o*(gp)
— 2pa(gr)o(gp) + (g1 — 50)2, (6.4)

where p is the correlation coefficient between gr and
gp. By rearranging terms we see that

Eror = [o(gy) — U(‘]D)]z + (gr — Q_D)2
+ 2(1 — p)a(gr)a(gn). (6.5)

Now, if gr and gp are exactly correlated, i.e. p = 1,
then the only error that can occur is that due to
dissipation. Thus we define the dissipation error as

Episs = [o(gr) — o(gp)l* + (¢r — dp)*.  (6.6)

For p # 1, the additional error introduced is due to
dispersion. Thus, the dispersion error is defined by

Episp = 2(1 ~ p)a(gr)o(gp)- (6.7)

By varying the free parameter « for different values
of the advective speed, (i.e., the Courant number),
an examination of the three error types may be made
and, thus, an optimal scheme chosen.

7. One-dimensional results

Figure 4 shows the results for the three error
measurements previously discussed. Each error mea-
surement is scaled by the maximum mean square
error and by the number of iterations required to
advect the cone the 70 grid-point distance. Thus, the
error measurements reflect the error per iteration as
a function of x and a.

From Fig. 4 we see that a minimization of the
total error occurs within the possible range of «, with
the optimal o in fact lying along the third-order
accurate coefficient &« = (1 + u)/6. As u approaches
0 or 1, the error tends toward zero as expected. It is
interesting to note here that choosing o = 0.25 yields
the one-dimensional scheme derived by Fromm (1968)
in which a forward and backward timestep of the
second-order Lax-Wendroff scheme was linearly com-
bined to *“zero-out” the phase lag in each step. We
see here that 0.25 is the linearly averaged value of «
along its third-order accurate line.

The next plot in Fig. 4 shows that the dissipation
error is affected more strongly by the advective speed

FIG. 4. Total error, dissipation error and dispersion error as a
function of the free parameter o and Courant number u after
advecting initial condition one complete translation of the 70 grid-
point domain. The relation a = (1 + u)/6 is also shown.
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rather than the free parameter a. Also, the dissipation
error is an order of magnitude less than the total
error. Thus we see that the extra grid-point added to
the second-order scheme has very little effect on
reducing dissipation error. This is in agreement with
the results from Section 3 when we were considering
the errors within the wavenumber domain. Finally,
from the last plot in Fig. 4 we see that the error
associated with dispersion is most responsible for the
observed total error. The order of magnitude of the
dispersion error is the same as that for the total error,
and is minimized by the same optimal «. From these
three error measurements we see that choosing a to
be equal to the third-order accurate coefficient is the
most effective way of minimizing the total error, with

1 Ll 1 1 T 1l
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1.2} DISS. 1.435 _
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the major influence coming from a reduction in the
dispersion error.

Figures 5-8 show the results for advecting two
initial profiles through two translations of the 70 grid-
point domain using cyclic boundary conditions. In
each figure a comparison is shown for the four
schemes discussed in Section 3, thus including the
derived scheme with the optimal « (i.€., the 3rd-order
scheme). The 4th-order scheme for uniform flow is
shown for comparative purposes only, since a com-
plete generalization to two-dimensional nonuniform
flow with proper stability characteristics is beyond
the scope of this paper. Figures 5 and 6 show the
results for advecting the cone with x = 0.2 and u
= (.7, while Figs. 7 and 8 show the same for the step

B 1 1 ! T i
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FIG. 5. Numerical solutions for (a) 1st-order scheme, (b) 2nd-order scheme, (c) 3rd-order scheme, and
(d) 4th-order scheme, after two complete translations using u = 0.2
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"FiG. 6. As in Fig

initial profile. In each plot the total error, dissipation
error, and dispersion error as defined by (6.1), (6.6)
and (6.7) are also presented scaled by the total
number of iterations and by the number of grid-
points used.

In all figures we see the drastic decrease in dissi-
pation error obtained by going from the Ist-order
scheme (a) to the 2nd-order scheme (b). The dispersion
error, however, generally increases due to the poor
phase properties of the nondissipated wave compo-
nents. The dispersion error associated with the 3rd-
order scheme (c) is seen to decrease significantly, thus
greatly improving the numerical solutions over that
of schemes (a) and (b). The 4th-order scheme (d) is
seen to generally improve the numerical solution by
reducing the dissipation error, although the solutions
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. 5 but for u = 0.7.

may contain more wake-like oscillations due to the
nondissipated small scales.

8. Two-dimensional version

There is no unique generalization to two dimensions
for the scheme presented in Section 4 for nonuniform
velocity fields. However, two-dimensional schemes
may be constructed by the application of two one-
dimensional operators in succession. The stability of
such a scheme is reduced to the stability of each
separate step. In this paper, therefore, two-dimensional
schemes are derived by applying two passes of a one-
dimensional operator. The one-dimensional operator
was constructed by imposing three constraints on the
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FiG. 7. As in Fig. 5 but for step profile.

time-continuous version (for simplicity) of the scheme
given by (4.3).
First, the requirement of conservation of mass was
imposed yielding a flux formulation of the scheme,
2
o
Second, it was required that when the flow field is
constant, the time-continuous flux form reduce to
the time-continuous advective form given by

dq; —c
_B_t] = EA‘x (gjs1 — (Ij—l)

ac
+ Ax (@jr1 — 3g; + 3gi-1 — g-2). (8.2)

In Eq. (8.2), the notation for the free parameter « is
kept generalized. In the time-continuous version, «
is simply equal to Y. For the time-discrete version,
however, « must become a function of space in
keeping with the requirement given by (8.1) since it
carried information about the wind field.

Finally, a stability criterion for the time-continuous
case when the flow field is nondivergent was imposed,
given by

d <1
=>ig<o. (8.3)
ot ; 2

Using these requirements, it can be shown that the
flux form of (8.2) using a staggered grid is given by
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dq; 1 a
6_; = T oAx [Pz — Pimi2] + Ax [Qi+12 — Oj-112)s
8.4)
where

Piiipz = Gy @i + q)

Qj+l/2 = CiryyAqj+1 — (Ij) - 5;‘+1/25’}—1/2(q1' - ‘Ij—l)

Civ12 = VCj+|/2-

A detailed analysis of the stability characteristics of
(8.4) is given in Appendix B.
For the time-discrete case (¢ > 0) and changing

wind speeds, a predictor-corrector sequence can be
devised which will reduce to Eq. (4.3) when the flow
field is constant. Substitution will show that Eqs. (8.5)
and (8.6) satisfy this requirement.

PREDICTOR:

q}" = qj" - [f‘}ﬂ/z - Fj—1/2],

Fiap= Biv124)" (8.5)
.CORRECTOR:
gt =g - % [(Pj+12 = P
120512 — @-1720-12]  (8.6)
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where
P = i@l + g7
Ojriz = piw2q@F — ") — ﬁj+1/2ﬁj—1/2(l1f = qi)
iz = (1 + piv12)/6

ﬁj+1/2 = Vﬂj+1/z-

Here we see that the free parameter o is now a
function of space.

9. Nonpositive flow fields

In all discussions thus far, the flow field, although
varying in space, was assumed to be positive. In
general, however, advection by a nonuniform two-
dimensional flow requires additional information to
ensure the inclusion of the proper grid-points for
upstream-type schemes. The two-dimensional scheme
of Section 8 generalized to allow for nonpositive flow
is given by

PREDICTOR:
Q}" = (Ij" - [Fj+1/2 - F}'-l/zl

Fiip = wfapg” + mi124i0 ©-1)
where
+ (vt lul
Mj+172 = 2
j+172
N
Hir12 = 5 )
J+172
CORRECTOR:
1
qu;+1 = an - 5 [1)j+l/2 - })j"l/2]
+ [Olj+|/2Qj+1/2 — aj_l/sz—IIZ] (92)
where

P = uirp@ly + ) + unaal + afv)
Oinp = {#jtrl/z(qj"‘ﬂ - g - ﬁﬁl/zﬁf-l/z(Qf —gi ]

= [12(gqf1 — @) + 1l gh2 — @)l

72 ( ! |)
J
6 .
J+1/2

ﬁﬁl/z = (lﬂﬁl/zl)l/z-

10. Two-dimensional results

.As the first two-dimensional test, a cone-shaped
disturbance was advected by solid-body rotation in a
100 X 100 grid-point domain. A streamfunction

defined by
Q
V= D) [(x; — 50)* + (3 — 50)] (10.1)
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was used to determine the velocity field. The constant
Q was equal to ‘g, thus the maximum Courant
number was equal to 0.625 at the domain boundary.

Figure 9 shows the initial condition for this exper-
iment and the numerical solutions after one and two
complete revolutions using the proposed scheme and
the standard Lax-Wendroff scheme with the time-
splitting technique for advection in two dimensions.
We again see the improved phase characteristics of
the new scheme when compared to the standard Lax-
Wendroff scheme. Also included in these plots are
the total, dissipation and dispersion errors as previ-
ously defined.

As a second test for the two-dimensional version,
experiments following Smolarkiewicz (1982) were
performed in which the initial cone profile was sub-
jected to strong deformational flow derived from the
streamfunction.

- 3.94 sinf ™) cosf
Vi 3.94s1n(25)cos(25).

The maximum Courant number in this case was
equal to 0.5. Figure 10 shows the initial condition
and the numerical solutions for the proposed scheme
and the standard Lax-Wendroff scheme after 3000
iterations in addition to the integrated square of the
field normalized to its initial value. As in the results
presented by Smolarkiewicz, the standard Lax-Wen-
droff scheme becomes unstable producing a growth
in the integrated square of the field. Smolarkiewicz
showed that even periodic filtering of the small scales
could not prevent this instability since it was due to
an amplification of the longer wave components. The
proposed scheme, however, behaves well and produces
a solution very similar to that obtained by Smolar-
kiewicz, although no extra smoothing or filtering was
needed as was in Smolarkiewicz’s study.

One final note should be mentioned in the case of
the two-dimensional version of the new scheme.
Although the Q. term in the corrector [eq. (9.2)]
contains geometric means of the velocity field in
order to guarantee stability in the time-continuous
case, it has been experimentally found that the overall
damping nature of the scheme allows a simpler
expression to be used, given by

(10.2)

Qi1 = pinpll@h — g — (@} — q}-0)]
= inplgin — af) — (@2 — gf)]. (10.3)

In all experiments that were performed, using (10.3)
in (9.2) produced results as good as those given by
the original formulation.

11. Summary

.By using four grid-points for a two-step finite-
difference formulation of the advection equation, a
scheme with optimal dissipation and dispersion prop-
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SCHEME

{[LTHHNNS
| “‘mm"\'\‘,\‘,\
R
(Tl
At
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F1G. 9. Initial condition and numerical solutions for proposed scheme and standard Lax-Wendroff scheme using solid-body rotation.
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INITIAL CONDITION

NEW SCHEME

FIG. 10. As in Fig. 9 but using deformation flow field.

erties is devised which simulates the characteristics of
third-order accurate schemes. For uniform flow, the
scheme is exactly third-order accurate in both time
and space. A generalization to two dimensions and
nonuniform flow is also presented. Numerical exper-
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iments indicate that the new scheme advects well
localized disturbances with steep gradients, and also
has favorable stability properties in the presence of
strong deformational flow.
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APPENDIX A

Order of Accuracy Requirements
for Generalized Scheme

A modified partial differential equation may be
obtained to investigate the space and time truncation
errors of a given scheme by expanding the generalized
difference equation in a Taylor series about the point
g/". Beginning with the advection equation given by

dq dq

=— Al
ot “ox’ (AD
we define the generalized difference equation by

+1 o
qj" - Z aj'Q;—f—j'a _], = Oa il, iz,' .
I

(A2)

Expanding (2) in a Taylor series, we have

A &
Ar ‘1+...)

., dq A1? g
qf*(‘“‘* a2 e

a2 o

Jn
(J'Ax) &g
2 9x?

dq
—+
ox

(J'Ax)’ 8q )
+ 3t 9x3 +

=2 aj'[qj" + ((j’AX)
7

] . (A3)
Jan

Regrouping, we obtain

dq
n -_ i _—— p m——
g"(1 Za,)+(At o o

, 0
AXZJGJ' q)

1 ¥q ¥q
+ —_ A 274 2 212 ) —
2 ( Par ~ A 2% axz)

1 g ¥q
+ — A 31 3 i3 fy — oo 0=
3!( t 33 Ax? Y jPa; 6x3)+ 0 (A4)
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where all partial derivatives are evaluated at the point
J, n and all summations are over all possible j'.
From the advection equation, (1), we see that

g _ _.m9"
am axm’
Using (5) in (4) and dividing through by Af gives

Syl =2 a Ja;
AS22) + (20 2 )

(—¢) m=1,2,3,-++. (A5

At ot I ox
12
A Jay 2
+_t(1_2 2 f)az_gu_A_t_
2! I ot 3!
3 %y »q
x |1+ o4 .=
(14557) 38+ -0 o

where p is the Courant-Friedrichs-Lewy stability pa-
rameter defined by u = cAf/Ax. We see that in the
limit as Ax and At approach zero while u remains
finite, Eq. (6) is consistant with the advection equation
provided

z aj' =1

F

and

2 Jjap = —p. (A7)
“

A scheme will have second-order accuracy in both
time and space provided, in addition to (7), that-

> %y = (A8)

PR
In general, for mth-order accuracy in both time and
space, accuracy requirements beginning with (7) and
ending with

2 J"ap = (=)™

7

(A9)

must be satisfied.

APPENDIX B

Stability Analysis of Two-Dimensional Scheme
in Flux Form

The stability characteristics of the time-continuous
two-dimensional flux form of Eq. (8.4) may be ob-
tained by multiplying the scheme by ¢; and summing
over all space. By applying two passes of the one-
dimensional scheme for advecting in two dimensions,
only the one-dimensional flux form need be consid-
ered. The time-continuous version of the scheme is
given by

aq; 1
_6‘171 = - Ax [cjs1/2(g41 + @) — ¢i=1/2(g; + gj-1)]
o ' a o
+ Ax [cj+1/2(@js1 — ) — Cjr1/2Ci-1/2(G5 — Gj-1)

—¢yAg — g-) + 6;‘—1/26;—3/2(‘];—1 - g-2), (B1)
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where Gv12 = (¢j+12)"2. Muitiplying (1) by ¢; and
summing over all space, we have

2 ¢80 + 47 (G2

0«1 5 _ 1
PR LA TeD:

«
~ Cj-172) — Cji—1294j—1] + Ax 2 [Q+1/2(‘1j+1‘1j
J

2 Y J—1/2 5 4j-1 j—1/2 39 -1
S D S ) 2 _ g4
Civ12 3 Gie1 — Cir12Ci—12(4; qidi—1
= gin1gj t (Ij+1(1j—1):| , (B2)

where we have assumed cyclic boundary conditions.
Equation (2) may be rewritten as

d o1 1
ot ; 2 9 == 2Ax jE 47 (Cr1r2 = G12)
a \ L
— —-——2Ax JE [Cj+1/2(qj+l - qj) - 2cj+1/20j—l/2(qj+l —_ qj)
CXA{g = g-1) * Giplg — gi-1)Y),  (B3)
or
9_ 1 g?=— 1 ;(Cj+1/2 - Cj*l/z) @
o j 27 2 j ! Ax 2Ax

X 2 [Ca1/20Gie1 — @) — Gm1p2(g — g-1))>.  (B4A)
‘ :

For two-dimensional nondivergent flow, the first
summation in (4) will vanish when both dimensions
are added. For one-dimensional constant flow, this
term is automatically zero. The second summation
in (4) is a sum of squares and is thus absolute positive
for « > 0. Therefore, the requirement for stability
given by

d 1
—3lg<o (B5)
8tj2

is satisfied.
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